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Abstract

Understanding gene regulatory networks is critical to understanding cellular differentiation

and response to external stimuli. Methods for global network inference have been devel-

oped and applied to a variety of species. Most approaches consider the problem of network

inference independently in each species, despite evidence that gene regulation can be con-

served even in distantly related species. Further, network inference is often confined to sin-

gle data-types (single platforms) and single cell types. We introduce a method for multi-

source network inference that allows simultaneous estimation of gene regulatory networks

in multiple species or biological processes through the introduction of priors based on

known gene relationships such as orthology incorporated using fused regression. This

approach improves network inference performance even when orthology mapping and con-

servation are incomplete. We refine this method by presenting an algorithm that extracts the

true conserved subnetwork from a larger set of potentially conserved interactions and dem-

onstrate the utility of our method in cross species network inference. Last, we demonstrate

our method’s utility in learning from data collected on different experimental platforms.

Author Summary

Gene regulatory networks describing related biological processes are thought to share

conserved interaction structure. This assumption motivates a great deal of work in model

systems–where discovery of gene regulation may be more experimentally tractable–but is

difficult to directly evaluate using existing methods. The presence of shared structure in a

well studied model system or process should make the problem of network inference in a

related process easier, but this information is not often applied to the discovery of global

gene regulatory networks. Further, to be able to successfully translate findings between

different organisms, it is important to be able to identify where regulatory structure is dif-

ferent. We provide a method based on penalized fused regression for inferring gene regu-

latory networks given prior knowledge about the similarity of interactions in each

network. This method is demonstrated on synthetic data, and applied to the problem of

inferring networks in distantly related bacterial organisms. We then introduce an
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extension of the method to deal with the condition of uncertainty over the degree of regu-

latory conservation by simultaneously inferring gene conservation and interaction

weights.

Introduction

As the volume and variety of genome scale data continues to increase in quantity and quality,

the goal of accurately modeling gene regulatory networks has become attainable [1–3]. Large-

scale data collection efforts have contributed to the development of high quality networks

which accurately represent biological processes, but most processes and organisms remain

uncharacterized at the network level. Furthermore, as new technologies are developed and

some old ones are replaced, such as RNAseq and microarray, it becomes important to be able

to combine data from multiple platforms, lest we lose valuable information from existing stud-

ies. The problem of inferring related—but not necessarily identical—structure from related—

but not identical—data is ubiquitous in biology. Multi-source network inference has applica-

tions for learning multiple networks in related species, for learning networks associated with

distinct processes within the same species, and for learning networks based on heterogeneous

data sources. Moreover, as it becomes possible to learn genome-wide regulatory networks, we

can begin to compare and to test whether there is conservation of networks across species and

biological processes. Our use of model organisms to study biological processes and diseases

relevant to humans relies on the assumption of conservation; yet this has not been effectively

tested at the genome scale.

We present two methods for network inference based on linear estimates of gene expres-

sion dynamics, extending existing dynamical-systems methods for network inference [1, 4, 5].

The core of both methods is the observation that biological information about the relatedness

of genes can be used to select which network coefficients should be similar to one another in a

multi-source network inference problem (ie orthologous TFs should regulate orthologous

genes), and that these constraints can be efficiently represented as penalties in a least-squares

regression problem.

Numerous studies have shown that functional conservation exists in gene regulatory net-

works even across large evolutionary distance [6–9]. Our first method—fused L2—takes

advantage of this similarity by imposing an L2 penalty on the differences between a priori simi-

lar interactions (termed fusion penalty). These constraints favor network configurations in

which orthologous genes have similar regulators. Because network inference problems are typ-

ically under-constrained, these additional constraints allow data in one species to improve net-

work inference performance in another.

Existing multi species approaches often use orthology as a proxy for functional conserva-

tion [10–14], or attempt to learn functional similarity via expression data [15]. Orthology can

be approximated using readily identifiable sequence similarity, which is often a useful predic-

tor of functional similarity [16, 17]. However, many genes will have evolved different functions

and therefore may have new regulatory interactions. For example, gene duplications may lead

to neofunctionalization [18] of the duplicated genes. Or, when comparing regulation across

cell lines, changes in chromatin configuration may affect our hypotheses about the similarity

of interactions between pleiotropic TFs and target genes across cell types (a within-species ana-

log to neo-functionalization) [19].

Identifying interactions that are present in one species but not another is of direct biological

interest, but existing approaches to network inference are unable to effectively test the
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hypothesis of conserved subnetworks. Observing a large difference in the weights of regulatory

interactions obtained though independent inference of multiple networks is perhaps the best

(least biased) evidence against conservation of orthologous regulatory interactions (cases

where target and regulator have orthologs across species). However, this is sometimes weak

evidence, as network inference is typically under-constrained [20], meaning there could be a

different set of networks for which conservation does hold, and which fit the data almost as

well. Solving the networks jointly with fusion addresses this problem, but may be biased when

gene function is not conserved.

Our second method—adaptive fusion—attempts to solve the problem of identifying evolu-

tionary divergence using a non-concave saturating fusion penalty to simultaneously infer the

constrained networks and to learn which constraints should be relaxed (ie which parts of the

network are genuinely different). This penalty is based on statistical techniques intended to

provide unbiased regularization penalties for regularized regression [14, 21]. We extend these

techniques fused regression, and provide an algorithm that approximates the solution to the

resulting non-convex loss function.

We develop two algorithms for solving efficiently multi-output least-squares regression

problems with pairwise L2 fusion penalties on entries of the coefficient matrix, and discuss con-

ditions under which each is suitable. We also introduce—in the form of adaptive fusion—the

idea of a saturating penalty function on fusion constraints, and estimate the solution to the

resulting optimization problem through iterative application of the fused L2 algorithm. We

start with a discussion of the fused L2 and adaptive fusion algorithms, and describe their per-

formance on synthetic datasets intended to represent related gene regulatory networks. We

then demonstrate the applications of the fused L2 network inference algorithm on biological

data, first demonstrating gains in cross-species network inference using the bacteria species

Bacillus subtilis and the distantly related Bacillus anthracis, then moving on to multi-platform

network inference using B. subtilis, and finally intra-species fused network inference using pri-

ors based on operons in B. subtilis. We then discuss adaptive fusion and show the technique’s

ability to identify incorrect orthology information which has been introduced to a biological

dataset, suggesting the technique’s applicability to discovering neo- and sub-functionalizations.

Results

Simulations

Using fused regression to learn related networks. We created synthetic networks to

approximate two related biological processes, then evaluated performance of our fused L2

regression, which learns the networks simultaneously given a prior on the relatedness of inter-

actions. Simulated networks consisted of pairs of related 10 TF by 200 gene networks, with

varying numbers of expression data samples made available to the solver. In order to compare

the relative contribution of data in the species of interest (species 1) and in a related organism

(species 2) to network recovery, we varied the number of conditions in each species while eval-

uating the mean-squared-error between the recovered network for species 1 and its known

true network. When the amount of data from the related species was held constant, increasing

the amount of data available for learning the network for the species of interest resulted in a

more accurate network prediction, as expected (Fig 1b). Similarly, when we increased the

amount of data from the related species, we obtained performance gains on network one using

fused L2 regression, demonstrating our ability to improve network inference on one dataset

through incorporation of a related dataset.

Fused regression improves performance on both the constrained and non-constrained

parts of the network. Our approach is useful for learning networks from similar sources

Multi-source Gene Regulatory Network Inference
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Fig 1. A. Schematic representation of the the generation of fusion constraints from orthology mappings. Dashed arrows

indicate potential regulatory interactions, while solid arrows denote orthology. We introduce fusion constraints for pairs of

interactions for which both the regulator and regulated gene are orthologs of one another. In this example, we would

introduce a constraint between the (A, B) and (A0, B0) interactions and the (A, C) and (A0, B0) interactions. B. In order to

demonstrate the utility of fused network inference in combining data, we generate two networks with 10 TFs and 200

genes, 75% of which are orthologous (75% sparsity). Mean squared error of the inferred vs. true coefficient matrices for

network 1 are plotted as a function of the number of conditions generated for species 1 (x-axis) and the number of

conditions generated for species 2 (y-axis). As expected, increasing the number of samples available for the species of

interest improves network inference performance. However, because we are fusing to data from a related species, similar

gains are observed when increasing the amount of data available in this second species. C-F Show the varying effects of

fusion on simulated networks with different levels of conservation. We generate a series of networks with 20 TFs by 200

genes in two species, (50% sparsity) while varying the fraction of gene orthologies in the simulated networks (Amount

fused, shown above each figure). For each network, we evaluated AUPR on one of the species for: all interactions (blue

line), interactions with fusion constraints (green line), and interactions without fusion constraints (orange line). At every

level of conservation, constrained interactions show the largest benefits of fusion, with the magnitude of the benefit growing

with fraction of orthologous genes. When the networks are highly conserved, however, even interactions that are not

directly constrained through fusion are recovered more accurately as λS increases.

doi:10.1371/journal.pcbi.1005157.g001
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such as related cell types from the same species, where there exists a one-to-one mapping of

genes, as well as datasets where the orthology mapping does not span all genes. This latter case

is typical not only for cross-species network inference, but can occur when using different

technology, eg microarray and RNAseq, where there is incomplete overlap in the genes that

each method assays as well as incomplete overlap in the genes expressed in different experi-

mental designs. When orthology is incomplete we are interested in knowing if performance

gains from fused regression are limited to those interactions which have fusion constraints, or

if they extend to the entire network. To test this we used multiple 20 TF by 200 gene synthetic

networks with varying proportions of orthologous TFs and genes. We divided networks into

those interactions with fusion constraints (the constrained subnetwork) and interactions with-

out fusion constraints (the non-constrained subnetwork). We varied the weight on the fusion

penalty, λS, and evaluated performance by computing AUPR on the constrained subnetwork,

the non-constrained subnetwork, and the whole network (Fig 1c–1f). Because the conserved

subgraphs were known to be similar to each other, we expected performance to improve as the

fusion penalty weight increased (Fig 1c–1f, Constrained).

Interestingly, performance gains were seen even in the portion of the network that was

unconstrained by fusion (Fig 1c–1f, Non-constrained). This is because a gene may have some

interactions that are constrained by fusion—regulation by TFs with orthologs—and some

interactions that are unconstrained—regulation by TFs without orthologs. Because both con-

strained and unconstrained components compete to explain the same pattern of gene expres-

sion, improving recovery of the constrained sub-network will tend to improve recovery for the

unconstrained sub-network as well.

Adaptive fusion with simulated data. Although we expect that orthology provides some

evidence of regulatory similarity, we know that it is not a perfect proxy for functional conser-

vation [22–24]. Some gene interactions may be non-conserved, and in order to minimize bias

it would be desirable to identify these interactions and relax the fusion constraints on them.

To this end, we developed an adaptive fusion algorithm that attempts to optimize a nonconvex

saturating penalty function on differences between fused interactions (Fig 2). Pairs of interac-

tions that are dissimilar even after fusion, which sit in the flat portion of this penalty function,

Fig 2. Adaptive fusion loss function (A) and derivative of loss function (B). A. Adaptive fusion is a quadratic

around the origin, begins to taper at a/2, and plateaus at a. After the plateau, increasing the difference in interaction

weight of fused interactions does not further affect the penalty incurred through fusion. As a result, interaction weights in

this zone are effectively unfused from one another (the fusion penalty behaves like a constant). B. Shows the derivative

of the adaptive fusion penalty, which is used to implement adaptive fusion through local quadratic approximation. The

adaptive fusion penalty is modified from SCAD (smoothly clipped absolute deviation) and MCP (minimax concave

penalty) functions and like these penalties has a zero derivative far from the origin.

doi:10.1371/journal.pcbi.1005157.g002
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are effectively “unfused,” and no further penalty is incurred as differences in interaction

weights grow. Our network procedure strongly favors similarity of fused interactions, and

only “unfuses” interactions when their similarity cannot be reconciled with expression data.

As a result, the “unfusing” or relaxation of the fusion penalty on certain constraints serves not

only to reduce bias in the inferred network weights, but can be interpreted directly as evidence

against conservation.

We performed a simulation to assess the performance of adaptive fusion in the context of

partially conserved networks. We generated synthetic fused networks based on a partial orthol-

ogy mapping, then randomly assigned the remaining genes unrelated orthologs. These false

orthologs gave rise to false fusion constraints, which if enforced would degrade network infer-

ence performance. Slightly more than half of the fusion constraints in the generated network

were false. We were interested in the ability of adaptive fusion to identify these false fusion

constraints, as well as improve the accuracy of the inferred networks by reducing the bias asso-

ciated with fusion. We verified that solving these partially conserved networks with fused-L2

forced interactions bound by both true and false fusion constraints to be similar (Fig 3b).

Fusion led to improved performance on the conserved part of the network and degraded per-

formance on the non-conserved part of the network (Fig 3d, Fused-L2). Applying adaptive

Fig 3. In order to evaluate the performance of adaptive fusion in the presence of non-conserved interactions, we

performed a series of simulations inferring networks given a partially corrupted list of orthology mappings (or,

orthology mappings that do not represent functional similarity). Networks were generated with 35 TFs by 200 genes, 60%

orthology coverage, 40% false orthology coverage, and 30 samples per network. A. Top: we plot the interaction weights

between pairs of fused interactions in network 1 (x-axis) and network 2 (y-axis) following network inference without fusion (λS =

0). True fusion constraints are generated from pairs of true orthologs, while false fusion constraints derive from a pair of

orthologs at least one of which is false. When λS = 0—equivalent to fitting the networks independently—interactions linked by

false constraints are uncorrelated with one another, while interactions linked by true constraints are correlated, reflecting their

functional similarity. Below we plot the distribution of differences in weights joined by true and false constraints; true constraints

have differences on average closer to zero. B. shows the weights of interactions when networks are fit using fused-L2. In this

condition, interactions bound by both true and false fusion constraints are forced to be very similar across the two species. C.

With adaptive fusion, many of the false fusion constraints are relaxed. These constraints are no longer forced to be similar, and

some of the original structure is restored. D. Shows the effect of fused-L2 and adaptive fusion on the accuracy of network

recovery, as measured by MSE between the known simulated network weights and the inferred network weights. When fusion

is introduced, recovery of the correctly fused part of the network improves, but the bias induced by fused-L2 degrades

performance on the incorrectly fused part of the network. With adaptive fusion, the gains on the conserved part of the network

are preserved with significantly less loss of accuracy on the non-conserved part of the network. Error bars are 95% confidence

intervals on the squared error of coefficients.

doi:10.1371/journal.pcbi.1005157.g003
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fusion with the “a” parameter set to a percentile that roughly matched the fraction of false

fusion constraints preserved the performance gains obtained through fusion on the conserved

part of the network, while substantially reducing the loss on the non-conserved part of the net-

work. Many of the incorrectly fused interactions were relaxed, allowing these interactions to

freely fit the data without bias from a faulty prior. These non-conserved interactions—which

have diverged from one another and left the diagonal in Fig 3c—can be identified through

inspection of the λS parameter following adaptive fusion, which falls to zero for unfused inter-

actions. This application suggests that adaptive fusion has use as both a tool to reduce bias

while retaining many of the benefits of fused regression, and as a method for determining con-

servation across networks.

Fused network inference with bacterial data

We used gene-expression data from Bacillus subtilis and B. anthracis in order to assess perfor-

mance gains of fused regression on real data. Our B subtilis data set consists of 360 time-series

and steady-state observations of 4891 genes, 4100 of which are protein coding [25], during the

life cycle. Our B. anthracis dataset consists of 72 time-series and steady-state observations of

5536 genes comprising data from distinct points in the life cycle and iron-starvation condi-

tions. There were 247 known transcription factors (TFs) in the B. subtilis dataset, and 248 TFs

in the B. anthracis dataset. We obtained 1,870 one-to-one orthologs from Inparanoid [26], 95

of which are transcription factors, which produced 177,650 fusion-constraints between gene

interactions within the two species. This number represents only 14.7% of the regulatory inter-

action matrix in B. subtilis and 12.9% in B. anthracis.
To assess network inference performance, and for use as priors, we used a gold standard of

3,040 known B. subtilis interactions with corresponding activation and repression sign. Of

these 3,040 priors, 968 had corresponding interactions in B. anthracis. Based on our simulation

results, we can expect the greatest gains in network-inference performance from fusion when

the species of interest has a small number of available conditions, but data is abundant in a

related species. However, in order to evaluate performance objectively a gold-standard of

known interactions is necessary. As a result, we can only evaluate network recovery for B. sub-
tilis, and B. subtilis also has the majority of our conditions. In order to simulate the data-poor

regime, we subsampled our B. subtilis data. We divided our B. subtilis data into k folds, and

then for each fold fit a network to the B. subtilis data from that fold alone fused to the entire 72

B. anthracis conditions (Fig 4a). Though overall performance is hindered by our subsampling

of B. subtilis data (a necessary procedure to allow evaluation of networks) we demonstrate

marked improvement in learning the B. subtilis network when using fused regression (Fig 4a).

Notably, these performance gains occur mostly at low values of recall. That is: the highest con-

fidence part of the network is inferred more accurately, with minimal gains for interactions

which are more uncertain. Because these interactions are likely to be the focus of followup

experiments and validation, gains here are more valuable for prioritizing the order in which

interactions are investigated.

Adaptive fusion using bacterial data. When we applied adaptive fusion to our bacterial

datasets we did not see a significant improvement in network recovery relative to fused-L2.

Based on simulation results, we expected that non-conserved interactions weights would be fit

more accurately with adaptive-fusion than with fused-L2, but that both algorithms would per-

form worse than independently fitting the networks on this subset of interactions. It may be

that the quality of the independently fit network was too poor in this case for fusion constraints

on non-conserved interactions to meaningfully degrade network inference performance. Nev-

ertheless, we were interested in the application of adaptive fusion to identifying neo-

Multi-source Gene Regulatory Network Inference
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functionalized or non-conserved interactions. Essentially, we wanted to identify constraints

arising from orthology that does not correspond to functional conservation. However, because

we lacked a comprehensive gold standard of known non-conserved interactions between B.
subtilis and B. anthracis, we were forced to indirectly evaluate the performance of adaptive

fusion in identifying these interactions.

We obtained a known set of non-conserved interactions by randomly generating orthology

mappings between genes not known to be orthologous. These orthology mappings generated

false constraints, as in our simulation studies, which are unlikely to reflect any conserved net-

work structure. We used these constraints served as a proxy for the unknown fraction of non-

Fig 4. A We first optimized λR, then performed a 20-fold cross-validation procedure in which subsets of the B.

subtilis network were fit either independently or fused to the B. anthracis network. Each B. subtilis network

was then evaluated on a gold standard of known interactions, to simulate results of network inference with a

small amount of available data in the species of interest (B. subtilis) but more data available in a related

species (B. anthracis). Fusion with λS = 1.0 improved performance, yielding a mean AUPR across the learned

networks of 0.0388 vs. 0.0298 fit independently of B. anthracis. Plotted is the resulting precision-recall curve,

with significant performance gains at low values of recall. We show 95% bootstrap confidence interval. In B.,

C. we tested adaptive fusion using the same procedure, adding an additional 561 randomly selected

additional orthologs. We set the a parameter of adaptive fusion equal to 60t percentile of the differences in

fused interaction weights when networks were fit with λS = 0, so that approximately 40% of constraints were

relaxed. This reflected our belief that many of the fusion constraints arising from known orthologies did not

necessarily reflect functional similarity, and could be unfused. B. Shows the fraction of fusion constraints

arising from known orthologies and false random orthologies which were relaxed by adaptive fusion; a larger

fraction of constraints known to not reflect functional conservation were relaxed. C. After fitting the networks

independently, we plot the distribution of the differences in weight of interactions fused by known false fusion

constraints and fusion constraints arising from known orthology.

doi:10.1371/journal.pcbi.1005157.g004
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conserved interactions between orthologous genes. We ran adaptive fusion to learn networks

for B. subtilis and B. anthracis, using these constraints along with those generated by known

orthology. We confirmed that our injected spurious fusion constraints were unfused at a

higher rate than those generated by known orthologs (see Fig 4b & 4c). Although it may seem

odd that a large fraction of fake constraints were left intact, we note that biological networks

tend to be sparse, so that many of the random fusion constraints are between coefficients with

near zero weight (and therefore near zero difference in weight) (Fig 4c). It is unclear to what

extent the relatively large fraction of fusion constraints between true orthologs that were

unfused reflects an inadequacy of the method, or a relatively high rate of neofunctionalizaton

in these organisms.

Single species applications. Although the approach we describe was developed with

cross-species network inference in mind, the framework of defining fusion constraints on TF-

gene interactions expected to be similar is quite general, and can be applied to data from a sin-

gle organism. Despite the many large-scale collaborations which attempt to make protocols as

uniform as possible for comparability between datasets generated by different labs [27, 28] and

several methods for removing batch effects [29, 30], there still exists technical and biological

variability between many experiments attempting to capture the same or similar experimental

conditions especially when experiments employ different experimental platforms. With the

advent of RNAseq, for example, microarray based technologies are no longer the dominant

assay for genome-wide expression, but a large body of accumulated legacy data remains useful

if it can be integrated with more modern techniques.

Currently, the most widely used approach to combining datasets for network inference is to

learn networks from disparate datasets separately, then rank combine the networks as in Mar-

bach et al [20]. We included, along with our main B. subtilis dataset, a previously published

dataset containing 269 samples covering 104 conditions, obtained using a different tiling

microarray (vs custom microarray) and different strain of B. subtilis [31]. We compared per-

formance when learning the networks separately and then rank combining (as in [2]) to learn-

ing the networks simultaneously using fusion regression, and we show improvement in

performance using our fused L2 approach (Fig 5a).

Our approach can also make use of forms of biological data other than RNA expression.

Information about the expected similarity of TF-gene interactions can come from knowledge

about the promoter region or the structure, for bacteria, of polycistronic transcripts. In bacte-

ria, genes within the same operon are typically under the control of the same promoter [32].

We posited, therefore, that genes within the same operon will be regulated similarly by the

same transcription factors. We applied fusion regression by creating fusion constraints

between a given transcription factor and genes within the same operon. We also used a subset

of the gold-standard as priors by relaxing the λR parameter for these interactions, as in [33],

and evaluated on the remaining set of priors. Incorporation of operon-derived fusion con-

straints in B. subtilis improved network recovery (Fig 5b).

Transcription factor activity estimation integrates into fusion regression

approach

We tested a combination of our fused regression approach with a method for estimating tran-

scription factor activities (TFA). Rather than modeling gene expression using transcription

factor mRNA abundance, we fit gene expression as a function of transcription factor activity,

as applied to B. subtilis by Arrieta-Ortiz et al [4]. TFA activity estimates transcription factor

activities that are modulated through mechanisms such as dimerization and interaction with

required factors. TFA activity estimates have been shown prior to be better predictors of TF

Multi-source Gene Regulatory Network Inference
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function than expression level alone in several contexts including similar network inference

tasks [34] [4]. We estimate TFA based on known regulatory interactions using network com-

ponent analysis [35]. To test the integration of this approach with our fused regression, we

assessed the combination of B. subtilis datasets, as in Fig 5a, with the incorporation of TFA esti-

mation. We randomly divided the prior known interactions in half, and used half to learn TFA

and to generate priors on network structure. The remaining interactions were reserved as a

gold standard for validation. As in previous studies, we observed a marked improvement in

network inference when using transcription factor activity (Fig 6). We also obtained AUPR

improvement when using fused regression alongside TFA; gains from sharing information

across datasets using fused regression were preserved and even enhanced by using TFA.

Methods

Statistical approach and background

Fused L2. We consider prediction and coefficient estimation problems with N observa-

tions of M dependent variables y1,1, y2,1, . . .yN,1, . . ., yN,2, . . ., yN,M and p features xi,j, i = 1, 2, . . .,

N, j = 1, 2, . . ., p. We begin with a standard linear regression model:

yi;k ¼
X

j

xijbj;k þ �i ð1Þ

with errors �i having mean 0 and constant variance, and predictors xij having mean 0 and unit

variance. We are interested in the case where p> N. Many methods have been proposed to deal

with the under-constrained case, and have been applied to genomic data [36, 37]. For example,

ridge regression penalizes the L2 norm of the coefficients βi,j in order to avoid overfitting [38],

and can be thought of as a mean-zero Gaussian prior on the coefficients. More complicated

Fig 5. Demonstration of the application of fused-L2 to intra-species network inference B. subtilis. In

each example, λR is optimized separately without fusion and 10-fold cross validation is used when fitting

networks (although, in A the gold-standard was not used in fitting the network and did not vary across folds) A.

We compared the performance of independently fitting our main B. Subtilis dataset with two methods for

incorporating data from another strain of B. subtilis. We evaluated performance on a gold-standard of known

interactions. Adaptive fusion outperforms both an independently fitting the first B. subtilis dataset and fitting

both B. subtilis datasets then rank-combining the results, as in Marbach et al. B We demonstrate the

application of a prior based on operon membership. We generated fusion constraints between pairs of

interactions for which both the TF and gene belonged to the same operon respectively. We then held out half

of the gold-standard and used it as a prior on individual interactions, as in [33]. We fit the B. subtilis network

with and without fusion, then evaluated on the remaining gold-standard. In this example, using fusion

constraints to enforce a prior based on co-regulation of genes in the same operon improved network inference

performance.

doi:10.1371/journal.pcbi.1005157.g005
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penalties have been developed to represent specific expected or desirable structure in a regres-

sion model’s coefficients. For example, Land and Friedman [39] proposed a fusion penalty (or a

penalty on the differences between certain interaction weights) which encourages smoothness

of the estimated parameter vector. Previous approaches have used fusion penalties to draw sta-

tistical strength across multiple regression tasks [40–44]. Price et al. and Bilgrau et al. use a

fused ridge estimator for jointly estimating multiple inverse covariance matrices [45, 46]. We

take a related approach to these prior works, adding an L2 penalty on the differences between

coefficients to the existing ridge penalty in order to incorporate prior knowledge about relation-

ships between input-output pairs:

arg min
b

X
jjXb � Yjj2 þ lRjjbjj

2
þ lS

X

bg;k�bh;l

jjbg;k � bh;ljj
2

ð2Þ

where X, Y, and β are matrices, and βg,k� βh,l denotes fusion between entries of β (enforcing

similarity between model weights across separate datasets). Note that, like ridge regression,

this penalty can be thought of as representing a Gaussian prior on the coefficients β. In the

case where β is a column vector, introducing this penalty is equivalent to assuming that β is

sampled from a multivariate Gaussian with inverse covariance matrix
P� 1

¼ lR þ
X

bg�bg

lSð1g;g þ 1h;h � 1g;h � 1h;gÞ, where I denotes the identity matrix and 1i,j a

matrix of zeros with 1 in its i, jth entry. In the case of a two-coefficient model with fusion

Fig 6. Demonstrates the integration of transcription factor activity (TFA) in fused network inference.

The procedure was identical to Fig 5a, except for the additional pre-processing step of transforming

transcription factor abundances into an estimate of their activity (see Methods). We then compared

performance on the main B. Subtilis strain with and without fusion to the second strain, and with and without

TFA. TFA outperforms both fused-L2 and unfused inference based on transcription factor abundance, but

TFA combined with fusion dramatically outperforms all three methods.

doi:10.1371/journal.pcbi.1005157.g006
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between the coefficients, for example, fused L2 is equivalent to assuming a prior with vari-

ance ðlR þ lSÞ=ðl
2

R þ 2lRlSÞ and covariance lS=ðl
2

R þ 2lRlSÞ.

Solving fused L2 problems using augmented matrices. We begin with the problem of

constructing a design matrix to map our problem to that of solving a fused L2 regression prob-

lem with a single response variable. We then go on to show that, although the vectorized solu-

tion involves solving an impractically large system of equations, under typical biological

conditions the structure of constraints allow the problem to be broken up into many smaller

subproblems. Key to this approach is the observation that ridge constraints can be incorpo-

rated into a least-squares regression problem by appending a scaled identity matrix to the

design matrix, and a corresponding number of zeros to the response vector. Similarly, a fusion

constraint λS(βi − βj)2 can be incorporated into a least-squares regression problem by append-

ing a row containing
ffiffiffiffi
lS

p
in the ith position, �

ffiffiffiffi
lS

p
in the jth position, and 0s elsewhere to the

design matrix, and zero to the response vector. In order to convert an optimization over multi-

ple response variables and multiple sources into an optimization with a single source and

response variable, we vectorize as follows: we construct a new design matrix by diagonally

concatenating design matrices from relevant regression problems, and create a new response

vector by concatenation of corresponding response vectors.

This is equivalent to the original problem due to the block structure of matrix multiplica-

tion. In an ordinary regression problem each response variable can be solved independently,

and vectorization is unnecessary. However, in fused regression, we append additional rows to

the design matrix that link entries of the interaction weight matrix associated with different

response variables (Fig 7). As a result, these linked response variables must be solved simulta-

neously through vectorization. Two response variables are linked if any of the regulatory

weights affecting those genes are linked by a fusion constraint. Two response variables must be

solved simultaneously if there is any chain of linked response variables connecting them. How-

ever, every other response variable can be solved separately. In biological terms, the regulators

of two genes (whether in the same species, or different species) must be solved together if there

is a fusion constraint linking those genes’ regulators, or if there is a chain of such constraints.

If the networks for a large number of genes are solved simultaneously, the system of equations

can quickly become intractable.

In order to avoid this difficulty, we use depth-first search to identify linked columns of each

TF expression matrix, then form design and response matrices through vectorization. We can

then incorporate fusion constraints as in the case of single-source single response-variable fused

regression. In most cases, we have found the direct solution using augmented matrices to be

adequate (possible due to the sparse structure of orthology links; only a small number of genes

must be solved at once). In the general case, the size of the design matrix is proportional to the

number of response variables that must be solved simultaneously. Because the scaling of this

algorithm has a complicated dependence on the constraint structure used, a general description

of its runtime is difficult. However, in the case of multi-species network inference with one-to-

one orthology, the network associated with each pair of orthologous genes requires solving a

linear system with approximately twice as many observations and unknowns as the single spe-

cies case. Linear systems of this size can be solved quickly using standard techniques, and run-

time using our bacterial datasets clocks in around thirty minutes. When the size of the groups

of genes linked by fusion constraints becomes large (when organisms have a number of many-

to-many orthologous blocks), however, the augmented design matrix approach becomes slower

and we discuss further optimizations to this scheme below to enable scaling to these regimes.

Solving fused L2 problems using iterative solver. To address scaling limitations when

many-to-many fusion constraint blocks occur, we developed an iterative solver that uses

Multi-source Gene Regulatory Network Inference
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coordinate-wise descent to solve for solutions corresponding to a sequence of values of fusion

penalty weights. As our fused L2 method uses a convex and differentiable penalty function,

this approach converges to a global minimizer. Although less efficient than the augmented

design matrix approach we developed for cases where fusion constraints are primarily one-to-

one or few-to-few, the iterative solver has the advantage of computing a solution path for λS
and scaling well across a wider range of biological applications.

On each iteration t the iterative solver computes

arg min
bS

X

S2f1;2g

jjXSb
S
ðtÞ � YSjj

2
þ lRjjb

S
ðtÞjj2 þ lS

X

ðg; kÞ 2 orth;

ðh; lÞ 2 orth

jjb
S
g;kðtÞ � b

S
h;lðt � 1Þjj

2
ð3Þ

Note that this is almost identical to eq 5, but now the network β is a function of the iteration

number t. On each step, we compute βs that minimize a penalized cost function where the

fusion penalties encourage similarity between a parameter and its fused-to parameter from the

previous iteration’s solution. This process is iterated until the estimated βs converge. Because

each iteration reduces the error between β(t) and β(t − 1), and because β(t) = β(t − 1) is the

globally optimal solution, this process must eventually converge to the same network as eq 2.

Although we have not produced bounds on the convergence rate, which also depends on the

structure of constraints, in practice a small number of iterations (*10) are necessary.

Fig 7. Schematic representation of design matrix construction. Here, the circles and hexagons

correspond to different species. Bidirectional arrows represent orthology information and dotted arrows

represent putative interactions between TFs and genes. Rectangles under “Data” represent TF × condition

matrices of gene expression values in species 1 (top row) and species 2 (bottom row), colored in

correspondence with the gene orthology diagram, with bidirectional arrows representing orthology between

the two species. Rectangles under “Weights” represent gene regulatory interactions in each species, with

lines linking coefficients that are fused due to the orthology information shown to the left. Networks associated

with genes in each species can be solved independently unless there exist a fusion constraint constraining

coefficients of each gene, or a path of such constraints. When a path does exist, these genes must be solved

simultaneously. In this example, genes B, C, and B0 must be solved simultaneously; the lower right corner

shows a representation of the design matrix necessary to solve the this fused regression problem.

doi:10.1371/journal.pcbi.1005157.g007
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Fusion and regularization path. Optimizing over both parameters, λR and λS, is compu-

tationally prohibitive and we opted to test a heuristic where we optimize the two parameters

separately. Our procedure first optimized λR with λS = 0, then optimized λS using this value of

λR. This procedure is guaranteed to achieve the best unfused solution in the case when λS is

constrained at 0. To optimize λR we use cyclical coordinate descent algorithms from the

‘glmnet’ package [47] to compute a ridge regularization path. We use cross validation to select

the optimal λR parameter from this path, selecting the λR which minimizes the average error of

prediction on a leave out set across cross validation folds. Following selection of λR, we search

for optimal λS by computing the solution path from the iterative solver (using the sequence of

successive model weights) again using cross validation to select the optimal parameter. Note

that both parameters are chosen without reference to the gold standard, which is used in a sep-

arate evaluation of network quality.

Adaptive fusion. Fusion constraints penalize dissimilarity between interactions thought

to be analogous based on a priori knowledge. For example, orthology can be used to predict

which interactions will be similar across species. With an L2 fusion penalty, interaction

weights which differ from each other by a large amount are excessively penalized, which effec-

tively ensures that fused interactions are assigned similar weights. This will be inappropriate

for interactions which are identified based on orthology as being analogous, but which are no

longer similar due to evolutionary changes. We propose a saturating penalty that is relaxed

once differences in weights grow beyond a certain point (interactions which appear to be very

different based on the data are effectively unfused). A related problem has been studied in the

context of LASSO regularization, where it was shown by Fan and Li that using a saturating

penalty retains many of LASSO’s desirable properties while removing its bias towards model

weights of 0 [21]. They further showed that, although the resulting loss-function is non-con-

vex, good results can be obtained with a local quadratic approximation of gradient descent.

Several saturating penalties, such as SCAD [21] and MCP [14], have been discussed in the con-

text of sparse regression. We introduce a modified form of MCP to the problem of penalizing

differences between fused coefficients. The principal difference between the penalty we adopt

and SCAD/MCP is that both of these penalties are L1 like at the origin, producing sparse solu-

tions. Some network inference approaches use L1 penalties to produce sparse networks, on the

basis that biological networks are thought to be sparse. However, as we are penalizing differ-

ences in interaction weights, rather than the weights themselves, there’s no reason to assume

that most differences will be exactly zero, and an L2 penalty—equivalent to an assumption that

the differences between fused coefficients are Gaussian distributed—may be more appropriate.

We use a penalty on the difference between fused coefficients θ which is L2 like at the origin

and saturates at θ = a. Written in terms of its derivative, the penalty p0
l;a

p0
l;aðyÞ ¼

ly if y � l

maxðlð2a � yÞ; 0Þ if y > a

(

ð4Þ

As in [21], we solve using iterative local quadratic approximation. Specifically, βS(t) is the

network on iteration t. For each fused BS1

g;k � BS2

h;l we define:

yð0Þ ¼ 0 ð5Þ

yðtÞ ¼ jBS1

g;k � BS2

h;lj ð6Þ

and introduce a fusion constraint l ¼
p0ðyðtÞÞ
2yðtÞ
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βS(t + 1) is obtained by fitting the ridge-fused model with fusion constraints given by the

above λS. This is useful because all our penalties can be treated as L2 and therefore retain the

properties of ridge regression, and can be solved using the fused L2 algorithm we develop.

Our adaptive penalty function introduces, in addition to regularization and fusion penalty

weights λR and λS, an unknown parameter a. We could employ grid search using cross-valida-

tion to search for the best parameters, but for many data sets, this can be computationally

expensive. Moreover, we are primarily interested in using this saturating penalty as a way of

testing the hypothesis that conservation in GRNs can be predicted based off of known similari-

ties between genes. Therefore, we propose setting a based on the distribution of differences

between fused weights from independently fit networks. These networks can be fit without

fusion, prior to the adaptive fusion procedure. The choice of which percentile of this distribu-

tion to use for a represents the working hypothesis for the fraction of fused interactions which

should be unfused.

Biological application

Although our approach is generalizable to a wide variety of multi-source network inference

problems, we begin with the concrete example of network inference in two related species.

Our approach to multi-species network inference is based on the hypothesis that gene regula-

tion in related species is governed by similar but not necessarily identical gene regulatory net-

works, due to conservation of function through evolution. We represent conservation of

network function by introducing constraints into the objective function for network inference

that penalize differences between the weights of regulatory interactions believed to be con-

served. These constraints favor the generation of similar networks for related species, and in

the generally under-constrained regime of network inference can improve the accuracy of net-

work recovery. We then go on to introduce a method to test the assumption of conserved net-

work structure, and to relax the associated constraints on pairs of interactions for which the

data does not support conservation. Finally, we demonstrate the flexibility of the method by

using fusion constraints based on operon membership to improve network inference

performance.

Approach overview. For a high-level view, we summarize our approach:

Algorithm 1 Network inference using fused regression

load expressiondata
load orthology
createpriorsand fusionconstraints
partitiongold standardinto trainingand leave-out
generateTFA matricesusing gold standardtrainingset
set a if using adaptivefusion
for k in folds do
partitionexpressiondata into trainingand leave-outset
λR parameterselectionusingtrainingset
λS parameterselectionusingtrainingset
run fusedregression
returnPRC and ROC curvesusingleave-outgold standard

end for
averagePRC / ROC curvesover folds

Gene regulatory network. We model the transcription rate of each gene as a weighted

sum of transcription factor expression, and seek to identify the identities and regulatory

weights of these TFs. This formulation matches that of the existing Inferelator algorithm,

which models the linear dynamics of gene expression [48]. Our primary data for learning gene
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regulatory networks is expression data, consisting of both time-series and steady state experi-

ments. The rate at which xi, the observed mRNA expression of gene i, changes, is governed by

degradation of existing transcripts with rate α plus a linear combination of transcription factor

(TF) expressions.

d
dt
xi ¼ � aixi þ

X
bi;jxj ð7Þ

where βi,j represents the weight of TF j on gene i, and α is the decay rate of gene i. We fix the

decay rate α for all genes, and set it assuming a time-constant of 10 minutes [49, 50], as in [33].

Let xi(t) be the expression of gene i at time t. Given time-series data on the expression of gene i
at timepoints tk and tk+1, we can approximate the rate of change of xi as x0iðtkÞ ¼

xiðtkþ1Þ� xiðtkÞ
tkþ1 � tk

. We

treat steady-state data as having a derivative of zero.

For timeseries conditions this gives us, for each gene i and time tk an equation

xiðtkþ1Þ � xiðtkÞ
tkþ1 � tk

þ aixiðtkÞ ¼
X

bi;jxjðtkÞ ð8Þ

where j 6¼ i
And for steady state conditions

aixiðtkÞ ¼
X

bi;jxjðtkÞ ð9Þ

Both kinds of conditions can be included in the set of equations to be solved. We can summa-

rize these equations in matrix form as

Y ¼ Xb ð10Þ

where Y is the gene expression matrix, X is the TF expression matrix, and β is the regulatory

weights we are interested in learning. We are interested in learning β, the matrix representa-

tion of the gene regulatory network, where the weight in a given position represents the regula-

tory weight of a TF on a gene. Positive weights represent activation, negative weights represent

repression, and 0 weights represent the absence of an interaction. The matrix β can be solved

using linear regression. Because there are typically far fewer conditions than possible regres-

sors (TFs), we introduce a ridge regularization constraint with weight λR and solve

arg min
b

jjXb � Y2jj
2
þ lRjjbjj

2
ð11Þ

This is similar to the formulation used in the Inferelator algorithm, except that we use an L2

penalty in place of the more standard L1 penalty. Although L1 penalties have the theoretical

appeal of sparsity—which matches our assumption of sparsity in biological networks—we are

primarily interested here in ranking interactions, rather than recovering a specific network.

Moreover, L2 penalized regression followed by thresholding can be competitive with L1 penal-

ized regression for support recovery [51]. Although our approach can be easily modified to use

an L1 penalty, we did not observe performance gains when doing so, and the version presented

here is in some ways conceptually simpler (with the combined penalty function being equiva-

lent to a multivariate Gaussian prior).

Because a transcription factor’s raw abundance is not always a good predictor of its influ-

ence on its gene targets’ expression, previous network inference methods have attempted to

estimate transcription factor activities prior to network inference. When there exists a set of

prior known interactions, we are able to estimate transcription factor activity (TFA) using
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network component analysis [35], as in [4, 34], and use TFA as explanatory variables instead

of transcription factor expression.

Fused gene regulatory networks. Information about the partially conserved structure of

gene regulation is introduced through the incorporation of constraints into the above regres-

sion formulation. These constraints penalize differences between interaction weights in the

networks of multiple species that are expected to be similar based on prior biological knowl-

edge. We can then solve the penalized regression problems simultaneously, in order to obtain

a gene regulatory network (GRN) for each species.

Consider the case of organisms A and B, governed by GRNs βA and βB (the following

approach applies equally well to more than two species—where the set of constraints is the

enumeration of all constraints between pairs of species). When TF gA in organism A and TF hB

in organism B are orthologs, and gene kA and lB are orthologs, then we expect that the gA! kA

interaction weight should be similar to the hB! lB interaction weight, and we introduce a

fusion constraint between these analogous interactions. This is shown schematically in Fig 1.

In terms of the above regression formulation, we expect that b
A
g;k � b

B
h;l, and include a penalty

term lSpðb
A
g;k � b

B
h;lÞ in the quantity being minimized in order to encourage similarity.

The function p(x) controls the shape of the penalty function, while scalar λS controls the

overall scaling of the penalization of differences between fused coefficients. λS controls the

tradeoff between fitting the expression datasets individually and producing a set of networks

that conform to evolutionary prior knowledge. This gives us the final equation to be mini-

mized:

arg min
bS

X

S2f1;2g

jjXSb
S
� YSjj

2
þ lRjjb

S
jj

2
þ lS

X

ðg; hÞ 2 orth;

ðk; lÞ 2 orth

pðbS1

g;k � b
S2

h;lÞ ð12Þ

where the second sum is over pairs of interactions with fusion constraints.

As an example of how this formulation allows pooling of data across multiple sources, con-

sider the case where there is a one-to-one orthology between the species being considered (ie

different cell-lines of the same organism). The choice of λS allows one to interpolate between

fitting each network independently (λS = 0) and pooling data together as if it came from one

source (λS = inf). In the case of cross-species network inference, there is unlikely to be a com-

plete one-to-one orthology. However, because we constraints the similarity of individual inter-

actions, rather than on the networks as a whole [52, 53], we can pool some information across

species even when a small fraction of genes have orthologs.

Simulated data. We generate simulated data to evaluate the ability of our fused L2

approach to learn the true network and to show that sharing information between similar but

not identical data sources results in more accurate network recovery. Generation of simulated

data begins with the production of random orthology mappings. We produce orthology by

pairing random genes until a specified fraction have been assigned orthologs. This process is

carried out separately for TFs and non-TF genes, so that TFs and non-TF genes are never

assigned to be orthologous. We then produce a pair of random networks (β1 and β2) as

follows: for each unfilled entry in β1 or β2, we enumerate the set C consisting of the entry

along with every entry in either matrix to which it is fused. We set a sparsity rate and with

probability equal to this sparsity rate, we assign every entry in C to be 0, otherwise we sample a

value v � N ð0; 1Þ and independently assign each entry in C to v þN ð0; s2
f Þ. σf is a parameter

that controls the distribution of differences in the values of fused coefficients, so that the non-

zero coefficients of β1, β2 are distributed as N ð0; 1þ s2
f Þ.
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Given a network β, we generate N samples of gene expressions at two timepoints. The con-

dition by gene expression matrix for timepoint one, YT1, is sampled randomly from a multivar-

iate Gaussian distribution with identity covariance matrix. XT1 is the TF expression sub-matrix

of YT1, and consists of columns of YT1 that correspond to TFs. Treating the decay rate as 0, the

gene expression matrix at timepoint two, YT2 is sampled as YT2 = YT1 + βXT1 + �, where � is a

Gaussian noise term. This process is carried out separately for each network. Following gener-

ation of simulated data, we may introduce error into the orthology mapping. This can take the

form of discarding a specified fraction of true orthologies (governed by a false-negative rate),

by introducing random false orthologies (governed by a false-positive rate), or by adding

Gaussian noise so that fused interactions are not identical (described above). For convenience,

the false-positive rate is specified in units of the number of true orthologs, and not the number

of possible orthologs. The list of priors can in a similar fashion be manipulated to include false

positives and false negatives.

Ranking regulatory hypotheses. In previous work, betas were rescaled as to form a

matrix of confidence scores S as follows

Si;j ¼
s2

full model for yj

s2
full model for yj without predictor i

ð13Þ

Computing residuals with respect to the data alone would disregard information gained

through fusion, because certain interactions may be large due to fusion, rather than their indi-

vidual explanatory power. Instead, we used an approximation

Si;j ¼
s2

full model for yj

s2
full model for yj

þ b
2

i;j � varðTFjÞ
ð14Þ

B. subtilis and B. anthracis data and orthology. We used a dataset collected for PY79, a

derivative of strain 168, available on GEO with accession number GSE67023, and a dataset

using BSB1, another derivative of strain 168, available at GEO with accession number

GSE27219. We used two datasets for B. anthracis, transcription profiling during iron starva-

tion (E-MEXP-2272 on ArrayExpress), and time series over the life cycle (E-MEXP-788 on

ArayExpress). We ran Inparanoid to obtain orthology mapping for B. subtilis and B. anthracis
[26] To evaluate our approach, we compare with a set of experimentally validated regulatory

interactions from SubtiWiki [54].

Discussion

Gene expression data, such as microarray or RNA seq, provide information about the relation-

ship between genes by allowing an experimenter to measure correlations in expression value

over time or across conditions. Many sources of information—such as the knowledge that two

genes are related through orthology or belong to the same operon—provide additional infor-

mation about the relationships between these gene-gene relationships. For example, two genes

that belong to the same operon are likely to have a similar set of regulators [32], but knowing

that two genes are members of a polycistronic transcript does little to inform the identity

(strength, sign) of those regulators. Meta-information about the structure of gene regulatory

networks, specifically which pairs of interactions are a priori likely to be similar to one another,

can provide a powerful set of constraints to improve network inference performance [10, 55].

We present a general framework for gene regulatory network inference that incorporates this

meta-information—termed fusion constraints—and apply the technique to the problem of
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simultaneous inference of regulatory networks in multiple species (B. subtilis and B. anthracis),
as well as to the problems of combining data from multiple experimental platforms and infor-

mation about operon structure.

A number of existing approaches have applied fused regression to related problems in net-

work inference. TreeGL applied fused LASSO to the problem of estimating partial correlations

of gene expression in a breast cancer dataset consisting of multiple cell types [52]. They

imposed fusion between the coefficients of models learned for different cell types whenever

there was an edge between those cell types in a genealogy graph describing the cancer cells’

development. A similar approach was recently applied to the problem of inferring TF to gene

regulatory weights from data sources describing multiple environmental conditions in E. Coli,
Mycobacterium tuberculosis, and Mus musculus [53]. In this formulation, networks associated

with each data source were fit simultaneously, with an L1 constraint on the similarity of (arbi-

trarily ordered) adjacent networks. In both of these approaches, fusion was restricted to be

between corresponding entries of the coefficient matrices. In terms of our formulation in the

cross-species case, this is equivalent to the constraints that would be generated by a one-to-one

orthology mapping between species, limiting to the (typical) case where orthology is partial or

not one-to-one. By optimizing a more general objective function—in which fusion constraints

can be placed on arbitrary pairs of coefficients associated with otherwise unrelated regression

tasks—we can extend this work to the cross-species case.

B. subtilis and B. anthracis are distantly related bacterial species with limited gene orthology.

Nevertheless we show that network recovery in B. subtilis can be improved through the inclu-

sion of expression data from B. anthracis. Many previous methods for cross-species network

inference operate on the conserved subset of orthologous genes [56]. This assumption may be

appropriate with very closely related species, but could not be applied in this domain, where a

large fraction (62% and 67%) of the B. subtilis and B. anthracis genomes do not have clear

orthologs. Our method, in contrast, can obtain improvements in network inference perfor-

mance even when the conserved subset of genes is small.

This approach is particularly interesting in light of the diversity of important model organ-

isms used in modern biology. Different model systems provide different advantages and disad-

vantages for experimental design [57], but in many cases work in less used systems is

hampered by lack of available data. Our intent is to provide a principled method for combin-

ing data from diverse sources, so that results in specialized systems can be integrated with data

from well studied organism.

Although it is important to take advantage of the similarities of related organisms for gener-

ating improved models of gene regulation, it is also critically important to understand how sys-

tems differ from one another. Existing approaches to the genome-wide testing of the

assumption that orthologous genes have similar regulators learn regulatory networks sepa-

rately, then compare to identify conservation [58]. Because network inference is typically

under-constrained, fitting a network that describes a particular set of experimental observa-

tions amounts to sampling a single network from a large set of networks that fit the data

equally (or almost equally) as well. As a result, the existence of a difference between corre-

sponding regulatory interactions in a pair of experimentally derived networks is weak evidence

that a difference truly does exist. Uncoupled global network inference algorithms are a very

weak tool for uncovering evolutionary divergence. Our method explicitly favors recovering

networks for which evolutionarily corresponding interactions are similar. As a result, the fail-

ure to obtain networks that confirm evolutionary conservation is much more direct evidence

that the networks have truly diverged.

Although fused regression allows more accurate identification of pairs of non-conserved

interactions, the weights obtained for these interactions will be biased towards one another.
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We have described a method—adaptive fusion—that attempts to address this bias by simulta-

neously learning the networks and constraint weights. This method is based on minimizing a

saturating penalty function on fusion constraints, similar to a class of penalties that have been

developed to minimize bias in regularized regression [14, 21]. The result of adaptive fusion is

both a network and a new set of fusion constraints, the weights of which can be interpreted as

describing conservation structure across the networks. For the multiple species case, relaxation

of fusion constraints represents orthologs which do not share similar interactions presumably

due to evolution of regulatory circuitry [59]. When jointly learning networks describing pro-

cesses in different cell lines, this may identify interesting context-specific behavior. Genes may

be fused together on the basis of similar binding sites or chromatin features, and the relaxing

of the fusion penalty indicates divergence of gene function.

Because our model shares its basic assumptions about the role of transcription factors in

gene expression dynamics with models developed for single-species network inference, we are

able to leverage techniques developed for the single-species estimation of transcription factor

activity [34]. The performance gains of this additional step in the cross-species case are signifi-

cant. Our approaches—fused L2 and adaptive fusion—represent a very general framework for

simultaneous network inference and the incorporation of structured biological priors. These

priors—incorporated into our method as fusion constraints—allow the use of rich sources of

biological knowledge, such as orthology and operon structure, which have informed experi-

mental design, but are typically not incorporated into genome wide network inference algo-

rithms. By accommodating the simultaneous inference of multiple related networks, we can

improve network inference performance by allowing the efficient reuse of data from similar,

but not necessarily identical, sources. A method for pooling data from multiple sources holds

the promise of vastly expanding the quantity of data available for analysis, particularly in less

commonly used model systems. At the same time these methods allow us to test our assump-

tions on how similar biological systems relate to one another, by allowing us to rule out conser-

vation in a principled way, and at the genome-wide scale.
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31. Nicolas P, Mäder U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, et al. Condition-dependent transcrip-

tome reveals high-level regulatory architecture in Bacillus subtilis. Science. 2012; 335(6072):1103–

1106. doi: 10.1126/science.1206848 PMID: 22383849

32. Lawrence JG. Shared strategies in gene organization among prokaryotes and eukaryotes. Cell. 2002;

110(4):407–413. doi: 10.1016/S0092-8674(02)00900-5 PMID: 12202031

33. Greenfield A, Hafemeister C, Bonneau R. Robust data-driven incorporation of prior knowledge into the

inference of dynamic regulatory networks. Bioinformatics. 2013; 29(8):1060–1067. doi: 10.1093/

bioinformatics/btt099 PMID: 23525069

34. Fu Y, Jarboe LR, Dickerson JA. Reconstructing genome-wide regulatory network of E. coli using tran-

scriptome data and predicted transcription factor activities. BMC bioinformatics. 2011; 12(1):233. doi:

10.1186/1471-2105-12-233 PMID: 21668997

35. Liao JC, Boscolo R, Yang YL, Tran LM, Sabatti C, Roychowdhury VP. Network component analysis:

reconstruction of regulatory signals in biological systems. Proceedings of the National Academy of Sci-

ences. 2003; 100(26):15522–15527. doi: 10.1073/pnas.2136632100 PMID: 14673099

36. Waldron L, Pintilie M, Tsao MS, Shepherd FA, Huttenhower C, Jurisica I. Optimized application of

penalized regression methods to diverse genomic data. Bioinformatics. 2011; 27(24):3399–3406. doi:

10.1093/bioinformatics/btr591 PMID: 22156367

37. Li C, Li H. Network-constrained regularization and variable selection for analysis of genomic data. Bioin-

formatics. 2008; 24(9):1175–1182. doi: 10.1093/bioinformatics/btn081 PMID: 18310618

38. Hoerl AE, Kennard RW. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Techno-

metrics. 1970; 12(1):55. doi: 10.1080/00401706.1970.10488634

39. Land SR, Friedman JH. Variable fusion: A new adaptive signal regression method. Department of Sta-

tistics, Carnegie Mellon University Pittsburgh; 1997. 656. Available from: http://scholar.google.de/

scholar?num=100&#38;hl=de&#38;client=firefox-a&#38;rls=com.ubuntu:en-US:unofficial&#38;hs=

2kf&#38;q=author:%22Land%22+intitle:%22VARIABLE+FUSION:+A+NEW+ADAPTIVE+SIGNAL

+REGRESSION+METHOD%22+&#38;um=1&#38;ie=UTF-8&#38;oi=scholarr.

40. Kim S, Xing EP. Tree-guided group lasso for multi-response regression with structured sparsity, with an

application to eQTL mapping. The Annals of Applied Statistics. 2012; 6(3):1095–1117. doi: 10.1214/12-

AOAS549

41. Land SR, Friedman JH. Variable fusion: A new adaptive signal regression method. Carnegie Mellon

University; 1997. Available from: http://cetus.stat.cmu.edu/tr/tr656/tr656.ps∖npapers2://publication/

uuid/1C25F7C0-A8DA-47B7-A898-75866283EFDF.

42. Chen X, Kim S, Lin Q, Carbonell JG, Xing EP. Graph-Structured Multi-task Regression and an Efficient

Optimization Method for General Fused Lasso. arXiv preprint. 2010; p. 1–21.

43. Petry S, Flexeder C, Tutz G. Pairwise Fused Lasso. University of Munich; 2011. 102.

44. Hebiri M, van de Geer S. The Smooth-Lasso and other ℓ 1 + ℓ 2 -penalized methods. Electronic Journal

of Statistics. 2011; 5:1184–1226. doi: 10.1214/11-EJS638

45. Price BS, Geyer CJ, Rothman AJ. Ridge Fusion in Statistical Learning. Journal of Computational and

Graphical Statistics. 2014; 1:00–00. doi: 10.1080/10618600.2014.920709

46. Bilgrau AE, Peeters CFW, Eriksen PS, Bøgsted M, van Wieringen WN. Targeted Fused Ridge Estima-

tion of Inverse Covariance Matrices from Multiple High-Dimensional Data Classes. arXiv preprint.

2015;.

47. Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate

Descent. Journal of statistical software. 2010; 33(1):1–22. doi: 10.18637/jss.v033.i01 PMID: 20808728

48. Bonneau R, Reiss DJ, Shannon P, Facciotti M, Hood L, Baliga NS, et al. The Inferelator: an algorithm

for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol-

ogy. 2006; 7(5):R36. doi: 10.1186/gb-2006-7-5-r36 PMID: 16686963

Multi-source Gene Regulatory Network Inference

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005157 December 6, 2016 22 / 23

http://dx.doi.org/10.1093/jamia/ocv047
http://www.ncbi.nlm.nih.gov/pubmed/26174866
http://dx.doi.org/10.1038/nature14248
http://www.ncbi.nlm.nih.gov/pubmed/25693563
http://dx.doi.org/10.1093/biostatistics/4.2.249
http://www.ncbi.nlm.nih.gov/pubmed/12925520
http://dx.doi.org/10.1093/biostatistics/kxj037
http://www.ncbi.nlm.nih.gov/pubmed/16632515
http://dx.doi.org/10.1126/science.1206848
http://www.ncbi.nlm.nih.gov/pubmed/22383849
http://dx.doi.org/10.1016/S0092-8674(02)00900-5
http://www.ncbi.nlm.nih.gov/pubmed/12202031
http://dx.doi.org/10.1093/bioinformatics/btt099
http://dx.doi.org/10.1093/bioinformatics/btt099
http://www.ncbi.nlm.nih.gov/pubmed/23525069
http://dx.doi.org/10.1186/1471-2105-12-233
http://www.ncbi.nlm.nih.gov/pubmed/21668997
http://dx.doi.org/10.1073/pnas.2136632100
http://www.ncbi.nlm.nih.gov/pubmed/14673099
http://dx.doi.org/10.1093/bioinformatics/btr591
http://www.ncbi.nlm.nih.gov/pubmed/22156367
http://dx.doi.org/10.1093/bioinformatics/btn081
http://www.ncbi.nlm.nih.gov/pubmed/18310618
http://dx.doi.org/10.1080/00401706.1970.10488634
http://scholar.google.de/scholar?num=100&#38;hl=de&#38;client=firefox-a&#38;rls=com.ubuntu:en-US:unofficial&#38;hs=2kf&#38;q=author:%22Land%22+intitle:%22VARIABLE+FUSION:+A+NEW+ADAPTIVE+SIGNAL+REGRESSION+METHOD%22+&#38;um=1&#38;ie=UTF-8&#38;oi=scholarr
http://scholar.google.de/scholar?num=100&#38;hl=de&#38;client=firefox-a&#38;rls=com.ubuntu:en-US:unofficial&#38;hs=2kf&#38;q=author:%22Land%22+intitle:%22VARIABLE+FUSION:+A+NEW+ADAPTIVE+SIGNAL+REGRESSION+METHOD%22+&#38;um=1&#38;ie=UTF-8&#38;oi=scholarr
http://scholar.google.de/scholar?num=100&#38;hl=de&#38;client=firefox-a&#38;rls=com.ubuntu:en-US:unofficial&#38;hs=2kf&#38;q=author:%22Land%22+intitle:%22VARIABLE+FUSION:+A+NEW+ADAPTIVE+SIGNAL+REGRESSION+METHOD%22+&#38;um=1&#38;ie=UTF-8&#38;oi=scholarr
http://scholar.google.de/scholar?num=100&#38;hl=de&#38;client=firefox-a&#38;rls=com.ubuntu:en-US:unofficial&#38;hs=2kf&#38;q=author:%22Land%22+intitle:%22VARIABLE+FUSION:+A+NEW+ADAPTIVE+SIGNAL+REGRESSION+METHOD%22+&#38;um=1&#38;ie=UTF-8&#38;oi=scholarr
http://dx.doi.org/10.1214/12-AOAS549
http://dx.doi.org/10.1214/12-AOAS549
http://cetus.stat.cmu.edu/tr/tr656/tr656.ps∖npapers2://publication/uuid/1C25F7C0-A8DA-47B7-A898-75866283EFDF
http://cetus.stat.cmu.edu/tr/tr656/tr656.ps∖npapers2://publication/uuid/1C25F7C0-A8DA-47B7-A898-75866283EFDF
http://dx.doi.org/10.1214/11-EJS638
http://dx.doi.org/10.1080/10618600.2014.920709
http://dx.doi.org/10.18637/jss.v033.i01
http://www.ncbi.nlm.nih.gov/pubmed/20808728
http://dx.doi.org/10.1186/gb-2006-7-5-r36
http://www.ncbi.nlm.nih.gov/pubmed/16686963


49. Hambraeus G, Wachenfeldt Cv, Hederstedt L. Genome-wide survey of mRNA half-lives in Bacillus sub-

tilis identifies extremely stable mRNAs. Molecular Genetics and Genomics. 2003; 269(5):706–714. doi:

10.1007/s00438-003-0883-6 PMID: 12884008

50. Selinger DW, Saxena RM, Cheung KJ, Church GM, Rosenow C. Global RNA Half-Life Analysis in

Escherichia coli Reveals Positional Patterns of Transcript Degradation. Genome Research. 2003; 13

(2):216–223. doi: 10.1101/gr.912603 PMID: 12566399

51. Jun Shao XD. Estimation in high-dimensional linear models with deterministic design matrices. The

Annals of Statistics. 2012; 40(2):812–831.

52. Parikh AP, Wu W, Curtis RE, Xing EP. TREEGL: reverse engineering tree-evolving gene networks

underlying developing biological lineages. Bioinformatics. 2011; 27(13):i196–i204. doi: 10.1093/

bioinformatics/btr239 PMID: 21685070

53. Omranian N, Eloundou-Mbebi JM, Mueller-Roeber B, Nikoloski Z. Gene regulatory network inference

using fused LASSO on multiple data sets. Scientific reports. 2016; 6. doi: 10.1038/srep20533 PMID:

26864687

54. Michna RH, Commichau FM, Tödter D, Zschiedrich CP, Stülke J. SubtiWiki–a database for the model

organism Bacillus subtilis that links pathway, interaction and expression information. Nucleic Acids

Research. 2014; 42(D1):D692–D698. doi: 10.1093/nar/gkt1002 PMID: 24178028

55. Pierson E, Consortium tG, Koller D, Battle A, Mostafavi S. Sharing and Specificity of Co-expression Net-

works across 35 Human Tissues. PLOS Comput Biol. 2015; 11(5):e1004220. doi: 10.1371/journal.pcbi.

1004220 PMID: 25970446

56. Dillman AR, Macchietto M, Porter CF, Rogers A, Williams B, Antoshechkin I, et al. Comparative geno-

mics of Steinernema reveals deeply conserved gene regulatory networks. Genome Biology. 2015; 16

(1). doi: 10.1186/s13059-015-0746-6 PMID: 26392177

57. Stolfi A, Christiaen L. Genetic and Genomic Toolbox of the Chordate Ciona intestinalis. Genetics. 2012;

192(1):55–66. doi: 10.1534/genetics.112.140590 PMID: 22964837

58. Aytes A, Mitrofanova A, Lefebvre C, Alvarez M, Castillo-Martin M, Zheng T, et al. Cross-Species Regu-

latory Network Analysis Identifies a Synergistic Interaction between FOXM1 and CENPF that Drives

Prostate Cancer Malignancy. Cancer Cell. 2014; 25(5):638–651. doi: 10.1016/j.ccr.2014.03.017 PMID:

24823640

59. Kellis M, Birren BW, Lander ES. Proof and evolutionary analysis of ancient genome duplication in the

yeast Saccharomyces cerevisiae. Nature. 2004; 428(6983):617–624. doi: 10.1038/nature02424 PMID:

15004568

Multi-source Gene Regulatory Network Inference

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005157 December 6, 2016 23 / 23

http://dx.doi.org/10.1007/s00438-003-0883-6
http://www.ncbi.nlm.nih.gov/pubmed/12884008
http://dx.doi.org/10.1101/gr.912603
http://www.ncbi.nlm.nih.gov/pubmed/12566399
http://dx.doi.org/10.1093/bioinformatics/btr239
http://dx.doi.org/10.1093/bioinformatics/btr239
http://www.ncbi.nlm.nih.gov/pubmed/21685070
http://dx.doi.org/10.1038/srep20533
http://www.ncbi.nlm.nih.gov/pubmed/26864687
http://dx.doi.org/10.1093/nar/gkt1002
http://www.ncbi.nlm.nih.gov/pubmed/24178028
http://dx.doi.org/10.1371/journal.pcbi.1004220
http://dx.doi.org/10.1371/journal.pcbi.1004220
http://www.ncbi.nlm.nih.gov/pubmed/25970446
http://dx.doi.org/10.1186/s13059-015-0746-6
http://www.ncbi.nlm.nih.gov/pubmed/26392177
http://dx.doi.org/10.1534/genetics.112.140590
http://www.ncbi.nlm.nih.gov/pubmed/22964837
http://dx.doi.org/10.1016/j.ccr.2014.03.017
http://www.ncbi.nlm.nih.gov/pubmed/24823640
http://dx.doi.org/10.1038/nature02424
http://www.ncbi.nlm.nih.gov/pubmed/15004568

