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Abstract
The human skin can be affected by a multitude of diseases including in-
flammatory conditions such as atopic dermatitis and psoriasis. Here, we
describe how skin barrier integrity and immunity become dysregulated
during these two most common inflammatory skin conditions. We summa-
rise recent advances made in the field of the skin innate immune system and
its interaction with adaptive immunity. We review gene variants associated
with atopic dermatitis and psoriasis that affect innate immune mechanisms
and skin barrier integrity. Finally, we discuss how current and future ther-
apies may affect innate immune responses and skin barrier integrity in a
generalized or more targeted approach in order to ameliorate disease in
patients.

1 | INTRODUCTION

1.1 | The skin barrier in healthy human
skin

The human skin is the largest and one of the most
important immunologically active organs.1,2 Due to its
location as the outer surface of the body, the skin must
be able to protect the body against all types of envi-
ronmental threats.

Structure—The skin can roughly be divided into
three layers: the epidermis—the outermost layer—
consisting mainly of keratinocytes in various differenti-
ation states, the dermis, where blood and lymphatic
vessels are found and the majority of immune cells

reside, and the inner layer containing the subcutaneous
fat.3,4

Physical Barrier function—Keratinocytes form the
epidermal skin layer and initially protect from threats,
such as UV irradiation, pathogen/allergen entry or wa-
ter loss. Starting from the inner epidermal layer, one
finds rapidly proliferating, undifferentiated keratino-
cytes. These basal keratinocytes play an important role
in the production of proteins and lipids, and later
differentiate to form the stratum spinosum, change their
shape and proliferate further.3 Reaching the stratum
granulosum, the keratinocytes are at their maximum
production of lipids and proteins. Keratinocytes prog-
ress through a terminal differentiation programme to
form the stratum corneum. The outermost layers of the
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stratum corneum consist of keratinocytes that are
reduced to anucleate cells without organelles (corneo-
cytes) and then shed through enzymatically controlled
desquamation.3–5 Here, corneocytes play a central role
in the skin barrier as they prevent external substances
such as pathogens and allergens from entering, and
water from leaving the skin, thus preventing water loss
(xerosis).3 A key molecule providing structure and
integrity here, is the filament‐aggregating protein
(filaggrin), a loss of which enhances inflammatory skin
conditions, such as atopic dermatitis (AD).6,7 The
importance of skin integrity in the pathogenesis of AD
was emphasised by the association of loss‐of‐function
mutations in the filaggrin gene (FLG) with AD.8 This
work indicated that epidermal barrier dysfunction is a
primary aetiological phenomenon in AD rather than a
consequence of disrupted immunology.8 A meta‐
analysis of studies on FLG mutations and atopic
dermatitis risk showed evidence that FLG mutations
have the strongest association with risk of atopic
dermatitis due to skin barrier deficiency in genetic var-
iants that have been investigated thus far.9

The skin‐intrinsic defence against pathogenic mi-
crobes is enhanced by the production of antimicrobial
peptides (AMPs) by keratinocytes in the deeper layer of
the epidermis.10 AMPs such as LL‐37, human beta‐
defensins (hBD) or S100 proteins show a broad
antimicrobial activity against bacteria and fungi. Inter-
estingly, interleukin (IL)‐26 produced by subsets of T
helper (TH) cells also shows antimicrobial features—
while being upregulated in psoriasis—and is thus
bridging innate and adaptive immunity.11,12 Interest-
ingly, a recent study indicates that self‐DNA is released
in AD skin lesions, which then binds to AMPs and re-
duces anti‐microbial activity.13 Thus, AMPs are func-
tionally altered during AD and psoriasis.

1.2 | Innate immune mechanisms in the
skin

The skin is populated with a complex array of blood‐
derived and tissue‐specific immune cells. Several im-
mune cell populations reside in the epidermis: primarily
Langerhans cells (LC; specialised epidermal dendritic
cells [DC]), monocyte‐derived LC‐like cells and inflam-
matory dendritic epidermal cells (IDECs),14 but also
tissue‐resident CD8+ T cells. LCs are among the first
line of defence, acting as immune sentinels, which
migrate to skin‐draining lymph nodes upon pathogen
encounter.15 While LCs and LC‐like cells are found in
the skin at healthy steady state, their numbers strongly
increase in inflammatory conditions whereas IDECs
only populate the skin under inflammatory circum-
stances. The majority of immune cells are found in the
dermis, where—similar to the epidermis—the cell

numbers are very low at steady state but show a strong
surge in inflammation. The specialised immune cells
here are plasmacytoid DCs, dermal DCs, tissue mac-
rophages, different subtypes of CD4+ T cells, such as T
helper type 1 (TH1) cells, TH2 cells, and regulatory T
cells (Treg), but also natural killer (NK) T cells and
different types of innate lymphoid cells (ILC).4 With re-
gard to their transcription factors and cytokine produc-
tion, type 1, 2 and 3 ILCs closely resemble the three
major TH1, TH2 and TH17 cell subpopulations, respec-
tively. Importantly, ILCs do not require traditional
adaptive immune receptor rearrangement and can thus
react to innate signals without antigen‐specificity.16

Similar to classical TH cells, an imbalance of cutaneous
ILCs enhances inflammatory skin disease manifesta-
tions.17,18 ILC1 are the least well characterised ILC
subset and their role in skin inflammation remains
elusive. Based on their cytokine profile it is hypoth-
esised that they are involved in allergic contact
dermatitis.19 ILC2 produce the cytokines IL‐5 and IL‐13
and have been implicated in AD, where they were found
to be highly enriched in lesional skin.20 In line with the
TH17‐resembling cytokine profile, ILC3 are increased in
blood and skin of psoriasis patients.21 More evidence
for their implication in the pathogenesis of psoriasis
stems from the observation that mice that lack adaptive
lymphocytes still develop psoriasiform inflammation
similar to wild‐type controls that possess TH17 cells.

22

Although mostly considered of structural importance
to the skin, keratinocytes play their part in the resident
skin (innate) immune system. They contribute to im-
mune surveillance by expressing a range of toll‐like
receptors (TLRs; TLR1‐6 and 9) and producing AMPs
like LL37.23 Most importantly, keratinocytes are
capable of producing a wide range of chemokines and
cytokines like CXCL8,24 chemokine (C‐C motif) ligand
20 (CCL20)25 and IL‐23.26 These chemokines and cy-
tokines can in turn attract immune cell and their regu-
lation is key to maintain a homoeostasis in healthy skin.

1.3 | Innate immune mechanisms in
Cutaneous diseases

1.3.1 | Psoriasis

Psoriasis is a common chronic inflammatory skin dis-
ease spanning a variety of skin phenotypes and is
linked to complex comorbidities including seronegative
arthritis, ischaemic heart disease, and metabolic syn-
drome.27–29 Histologically, a strikingly thickened
epidermis is found, together with deep epidermal ridges
reaching into the dermis.27 In psoriatic lesions, TH1 and
TH17 cells are predominantly found together with an
increased expression of IL‐17 and IL‐22.30 A key player
accountable for the thickened epidermis is IL‐22, which
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promotes proliferation of keratinocytes.31–33 Addition-
ally, an increased amount of IL‐23 and IL‐1β produced
by DCs drives TH17 cell differentiation and thereby
accelerates the progression of the psoriatic pheno-
type.34 While T cells and especially TH17 cells have
been seen the crucial culprits in the pathogenesis of
psoriasis, an increasing body of evidence shows the
role of the innate immune system.23,35 Reports hint
towards more influence of the adaptive immune system
in mild psoriasis, whereas severe psoriasis is more
influenced by actions of the innate immune system.36

An increasing role in the pathogenesis of the disease
has been attributed to ILC3 cells which are found
increased in psoriasis.21,37 Due to their ability to pro-
duce TH17‐cytokines such as IL‐17 and IL‐22, they
bridge adaptive and innate immunity. A recent study
has shown that quiescent‐like ILC2 in the skin can
transition into pathogenic ILC3‐like cells upon disease
initiation.38 ILC3 numbers in psoriatic skin are reduced
after therapeutic treatment with anti‐tumour necrosis
factor (TNF) antibody, indicating their contribution to
pathogensis.21 It has further been described that in
psoriasis, epidermal LC have impaired migratory ca-
pacity to skin‐draining lymph nodes and thus delayed
onset of cutaneous immune responses.39 Additionally,
the capacity of the structural keratinocytes to produce a
variety of chemokines and cytokines together with the
hyperproliferation seen in psoriasis leads to a vicious
cycle in the pathogenesis of the disease.23 The strong
upregulation of chemokine ligand CCL20 expression in
keratinocytes in presence of TH17‐derived IL‐17A leads
to further recruitment of T cells into psoriatic lesions.25

Additionally, IL‐17 is stimulating the proliferation of
keratinocytes and their secretion of AMPs thereby
contributing to the hyperproliferation phenotype.40

While the general action of IL‐17 in the pathogenesis of
psoriasis is known, further research is necessary to
elucidate cell‐specific contributions such as the role of
ILC3‐derived IL‐17.

1.3.2 | Atopic dermatitis

AD, also known as atopic eczema, is a chronic inflam-
matory skin disorder characterised by severe pruritus,
dry and scaly skin, as well as raised, red lesions in the
bends of arms and legs.41–44 The prevalence is approx.
10%–20% in developed countries and in approximately
60% of the cases, onset of disease is in the first year of
life.45 In contrast to psoriasis, AD is a disease with a
type 2‐biased phenotype with increased expression of
IL‐13 and IL‐5.46 Chronic AD, however, also displays
IFN‐γ, the signature cytokine for TH1 cells and type 1
responses.47,48 In line with TH2 cells, ILC2s have also
been reported, to be highly enriched in lesional AD
skin.49–51 Skin ILC2 do not rely on IL‐33 signalling but
instead on thymic stromal lymphopoietin (TSLP).20

TSLP is strongly increased in AD, leads to the pro-
duction of the TH2 cell attracting chemokine CCL17,52

and considered to be a trigger factor in the initial stages
of the disease.53 Furthermore, TSLP has been reported
to stimulate cutaneous neurons to promote itch and
provoke itching.54 The scratching in response to itching
sensation will break down skin barrier functions leaving
AD patients largely unarmed against skin infections. It
is therefore not suprising that up to 90% of AD patients
are colonised with Staphylococcus aureus and are also
prone to viral infections caused by herpes simplex vi-
rus.43,55–57 Although AD patients with higher S. aureus
abundance show significantly higher excoriations and
sleep loss, a correlation between (patient reported) itch
intensity and S. aureus concentration is not evident.58 A
reason for this might be the lower levels of AMPs (e.g.
LL37 and hBD2) in AD compared to psoriasis.59,60 This
reduced AMP expression by keratinocytes is partly
caused by the inhibitory effects of the TH2 cyokines IL‐4
and IL‐13,61 as well as IL‐1062 and TSLP.63

2 | MODULATION OF SKIN BARRIER
FUNCTION

2.1 | Single nucleotide polymorphisms
(SNPs) affecting skin barrier integrity and
innate immunity in AD and psoriasis

Both AD and psoriasis are multifactorial diseases with a
complex origin. Comparison of SNPs or genetic vari-
ants, between healthy controls and persons suffering
from AD or psoriasis revealed distinct sets of mutations
associated with either disease64 (Figure 1). These
genome‐wide association studies lay the groundwork
for the design of novel therapeutic options as they help
to dissect the molecules and mechanisms involved in
pathogenesis. Relevant genetic variants associated
with AD span genes—and their products—involved in
the initiation of immune responses, effector cytokines
and chemokines, signalling molecules, and, impor-
tantly, proteins involved in the maintenance of skin
barrier integrity. Important genes and the disease‐
associated genetic variants are listed in Table 1.
Detailed reviews on the genetics of AD and psoriasis
were also recently published by Martin et al.65 and
Ogawa and Okada,66 respectively.

The keratinocyte‐derived so‐called ‘alarmin cyto-
kines’ are important inducers of skin immune re-
sponses. The −26999 G/A mutation in the distal
promoter of IL1RL1 (the receptor for IL‐33; ST2) leads
to the increased expression of soluble ST2 (IL‐33
decoy receptor), preferential activation of TH2 cells,
high total IgE, and an increased odds ratio (1.87) to
develop AD.67 SNPs in TSLP and its receptor
(TSLPR), have also been correlated to the develop-
ment of AD.68 Studies in animal models have
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confirmed a pathogenic role for TSLP, as its over-
expression in keratinocytes leads to the development
of AD‐like inflammation. SNPs in IL18 are also
associated with AD.69,70 In psoriasis, IL‐18 is
produced by activated keratinocytes and can act on
DC and promote type‐1 and type‐3 responses. In
AD, IL‐18 can act in concert with IL‐12 to drive type‐
1 responses or promote type‐2 responses together
with TSLP. Recently, it was found that IL‐18 can
activate ILC2, which may contribute to skin
inflammation through their production of IL‐13.71

These SNPs highlight the importance of molecules
that signal the presence of potentially harmful events
as they are generally released upon tissue damage.

The functional characterisation of IL‐25, IL‐33 and
TSLP in the outset of the cutaneous inflammation
has led to the development of biologics targeting
each cytokine or their cognate receptor for AD and
indeed other allergic disorders.

In psoriasis, alarmins do not seem to play such a
prominent role in the initiation phase of the immune
response. Instead, human leucocyte antigen (HLA)‐
related gene variants correlate with an increased odds
ratio to develop psoriasis.72 The PSORS1 locus maps to
the major histocompatibility complex (MHC) region and
spans nine genes. For example, a variant of HLA‐C
(HLA‐Cw6)73 can—in addition to conventional anti-
gens—present autoantigens to CD8 T cells. Activation
of pro‐inflammatory pathways is also involved in the
pathogenesis of psoriasis, including TNFAIP3, NFKBIA
and CARD14.74 Here, the immunoregulatory or inhibi-
tory functions of TNFAIP3 and IkB are decreased and
promote pro‐inflammatory NFkB activation. Similarly,
gain‐of‐function mutations in CARD14 increase NFkB
activation. Mutations in the gene encoding for IL‐36 re-
ceptor antagonist (IL36RN) are associated with the
development of generalised pustular psoriasis, raising
potential for targeting IL‐36—a member of the IL‐1
family—in psoriasis.75 Indeed, targeted deletion of IL‐
36R on keratinocytes led to decreased expression of
pro‐inflammatory cytokines.76

Downstream of the initiation of an immune
response, SNPs in the signalling cascade of cytokines
—mainly the respective JAK‐STAT pathway—are
associated with AD. Here, the divergent nature of AD
(type‐2‐biased) and psoriasis (type‐1/3‐biased) be-
comes apparent. IL‐12B is a subunit of the cytokine
IL‐12 that promotes the differentiation of TH1 cells.
Genetic variations in IL12B are associated with psori-
asis in a cohort of Danish patients,77 while SNPs in
IL12B decrease the risk of developing AD.78 Similarly,
IL‐21 can drive TH17 differentiation in psoriasis,

79 with
higher levels of IL‐21 reported in lesional skin of pso-
riatic patients. The genomic region (4q27) including the
IL21 gene is associated with psoriasis and SNPs in this
locus are associated with higher IL‐21 levels in other
inflammatory disorders.80 In addition to TH17 and TH1
activation, IL‐21 can cause epidermal hyperplasia.
While increased levels of IL‐21 are found in acute
lesions of AD patients,81 the implication for AD patho-
genesis requires further study. In mouse models of
AD‐like inflammation, lower levels of the IL‐17‐induced
TH2‐recruiting chemokine CCL17 have been
observed,82 and a protective role for the IL‐17RA in AD
has been described.83 Certain SNPs in IL6—required
for balancing TH17/TREG cells

84—are associated with a
decreased risk to develop psoriasis,85 while it may in-
crease the risk for AD86 and disruption of IL‐6‐receptor
signalling improved AD.87

Opposed to the pro‐inflammatory type‐1 and type‐3
responses, IL‐4 is the main cytokine driving TH2

F I GURE 1 Schematic representation of skin and
underlying processes during steady state, psoriasis and
atopic dermatitis. In psoriatic lesions increased cell proliferation
occurs in the epidermis and elevated production of anti‐microbial
peptides (AMPs), while during AD the skin barrier is impaired,
which leads to increased allergen penetration, reduced natural
moisturising factor (NMF) and may affect AMP abundance or
activity. Both diseases are characterised by changes in
microbiome composition. During psoriasis pro‐inflammatory TH1
and TH17 cells dominate the affected skin. In contrast, type 2‐
associated cells, including TH2 cells, eosinophils, basophils and
ILC2 can increase during AD. GWAS analysis (publicly available
databases: GWAS database, https://www.ebi.ac.uk/gwas/; GWAS
Central, https://www.gwascentral.org/; accessed 15.11.2021;
filtered for psoriasis and atopic eczema traits) of the most common
SNPs associated with psoriasis (Pso) and atopic dermatitis (AD)
are summarised in the Venn diagram
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TABLE 1 Selected SNPs associated with AD and/or psoriasis

Gene Reference SNP cluster ID Reference

Atopic dermatitis

IL1RL1 rs3917265, rs1861246, rs13015714, ‐26999A [67, 172–174]

TSLP/R rs111267073, rs10043985, rs2289276, rs1898671, rs11466749,
rs2416259, rs1837253, rs3806932, rs2289278, rs36139698,
rs36177645, rs36133495

[68, 175–179]

IL18R rs13015714, rs6419573, rs13015714, rs1861246 [172, 173]

IL21 rs17389644 [64, 172, 180]

IL6R rs2228145, rs12126142, rs4576655, rs12730935 [172, 173, 181]

IL4/R rs2107357, rs143021546, ‐590 C/T [88, 176, 182]

STAT6 rs1059513, rs3024971 [175, 183]

STAT3 rs4796793, rs17881320, rs12951971 [172, 184, 185]

FLG rs558269137, rs6661961, rs3126085, 2282del4, rs61816761,
rs150597413, rs138726443

[65, 89, 173, 175, 181]

TMEM79 rs6694514 [98]

EMSY rs7130588, rs2212434, rs7110818, rs7927894, rs2155219,
rs34455012

[64, 89, 172, 173, 180–182, 186]

CLDN1 rs893051 [187]

LCE3E rs10888499, rs61813875 [64, 172]

LCE5A rs6661961, rs11205006, rs471144, rs12144049, rs12081541 [64, 89, 184, 188]

SPINK5 rs2303063, rs2303067 [189, 190]

Psoriasis

PSORS1 region (including
HLA‐C)

rs6913137, rs2853950, rs3130573, rs7756521, rs9263717,
rs2233959, rs2524096, rs12199223, rs1265078, rs2249742,
rs2853961, and many more

[191, 192]

TNFAIP3 rs582757, rs610604, rs6933987, rs643177 [181, 193–196]

NFKB1A rs8016947 [193, 196]

IL36RN rs387906914, rs397514629 [75, 197, 198]

LCE3B rs4845454, rs11205044, rs1581803 [64, 199, 200]

LCE3D rs4085613, rs4112788, rs6677595 [193, 194, 201]

AD and psoriasis

HLA‐A/B AD: rs148203517, rs4713555, rs28752924, rs28383323,
rs200291258, rs9405068, rs4713555, rs2251396; Pso:
rs4406273, rs2523619, rs17728338, rs75851973, rs76956521,
rs1960278, rs12212594, rs4959062, rs4349859, rs10484554

[64, 80, 172, 173, 181, 191, 193, 196, 202]

CARD14 AD: rs535171797; Pso: rs11652075 [193, 203]

IL12B AD: rs3212227, rs393548, rs436857; Pso: rs2082412, rs3212227,
rs3213094, rs2546890, rs12188300, rs12188300, rs6887695

[78, 193–195, 204–206]

IL13 AD: rs848, rs1295686, rs847, rs1295685, rs20541, rs12188917;
Pso: rs20541, rs1295685, rs847

[64, 89, 172, 173, 175, 180, 181, 193, 196,
199, 207]

MGMT rs80312298 [64]

PRR5L rs2592555, rs12295535, rs11033603, rs2218565 [64, 172, 173, 180]

KPNA3 rs3736830 [64]

R3HCC1L rs11189494 [64]

STEAP‐AS2 rs7798970 [64]

PELI2 rs17761563 [64]
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polarization and is associated with allergic diseases
including AD.88 IL‐13, another hallmark cytokine of type
2 immune responses, is also associated with AD.89 In
contrast, IL‐4 is not directly associated with psoriasis
but repeated IL‐4 application in psoriatic patients can
divert the pro‐inflammatory type‐1/‐3 response towards
type‐2.90 Both IL‐4 and IL‐13 signal through STAT6,
which is also linked to AD pathogenesis,91 and mice
that express a constitutively active form of STAT6 were
shown to develop AD‐like lesions.92

Genes involved in the skin barrier are linked to AD
and psoriasis. In the PSORS4 region, more than 60
genes that control keratinocyte differentiation are
encoded.93 Deletion of LCE3B and LCE3C (late corni-
fied envelope proteins) is associated with psoriasis.94

Importantly, variants of genes involved in the mainte-
nance of the skin barrier are strongly associated with
AD. Among the most important affected genes are FLG
(encoding for filaggrin), TMEM79 (mattrin), and EMSY.
First described in 2006, filaggrin is one of the most
prominent proteins, in which a SNP can cause ich-
thyosis vulgaris95 and predispose for AD.8 To date,
more than 50 mutations in FLG in all human pop-
ulations studied around the globe (>1% allele fre-
quency) are reported, suggesting an evolutionary
benefit of a mildly leaky barrier. Loss‐of‐function of
filaggrin leads to increased abnormal structure and
physiology of the skin, increased trans‐epidermal water
loss (TEWL) and dry skin, as natural moisturising factor
(NMF) is a catabolic product of filaggrin.96 Similarly,
Tmem79 mutations were found to increase barrier
leakage and AD‐like inflammation in mice.97,98

Recently, a possible function of EMSY in maintaining
the skin barrier was described. Using skin organoids, it
was found that EMSY acts as a transcriptional regulator
in keratinocytes.99 In skin biopsies of AD patients,
EMSY located in the nucleus, actively repressing gene
expression.99 Furthermore, De Benedetto et al. showed
that genetic variants in the tight junction gene CLDN1
are associated with AD.100 The strong associations of
the described SNPs with AD and psoriasis highlights
the necessity of an intact barrier to maintain tissue
homoeostasis. Despite the recent advances in the field
of 3D‐organ cultures, skin‐on‐a‐chip models and in
silico‐prediction models, functional studies on the
identified loci are required to work towards novel ther-
apeutics. Thus, animal models of skin disease and
clinical studies are still essential for scientific progress.

2.2 | Keratinocytes recruit immune cells

Keratinocytes are important central modulators of im-
mune responses in the skin. They are not only capable
of producing AMPs that act as a first line of defence but
can also release chemotactic factors. In psoriasis,
keratinocytes release chemokines CXCL9, ‐10, ‐11

and ‐20, as well as CXCL‐1 and ‐8, attracting LC and
neutrophils to the skin, respectively. Keratinocytes are
also able to sense microbial patterns via TLRs. As a
consequence of TLR signalling, keratinocytes can
release pro‐inflammatory cytokines, such as IL‐1β and
IL‐18, both of which are cleaved via the NLRP‐inflam-
masome into the active form. IL‐1β can upregulate
ICAM‐1 on dermal endothelial cells and may facilitate
entry of leukocytes into the skin.101 In AD, keratinocytes
synthesise increased amounts of chemokines, such as
CSF‐2, RANTES/CCL5 and MCP‐1/CCL2, promoting
the infiltration of eosinophils, dendritic cells and
monocytes, as well as T cells into the skin.102 In order
to counteract the loss of the skin's barrier function, the
stratum corneum increases in thickness. Hyperkerato-
sis is a hallmark of chronic AD and palmoplantar hy-
perkeratotic psoriasis and develops from an imbalance
of protease–protease inhibitors interactions.103 While
kallikrein‐(KLK)7 protein levels were increased during
AD, its activity was not elevated. Instead the increased
levels of lymphoepithelial Kazal‐type‐related inhibitor
(LEKTI, encoded by SPINK5) were thought to prevent
corneodesosome degradation by KLK7. Similarly, un-
regulated KLK5 activity in the absence of LEKTI led to
the development of AD‐like inflammation in mice.104

Thus, regulation of proteolytic pathways contribute to
skin barrier function and pathogenesis of inflammatory
skin disease.

2.3 | Innate cells can regulate skin
barrier function

Innate immune cells in the skin are the first responders
to tissue damage and invading pathogens. Innate cells
are potent producers of an array of cytokines. The
predominant cytokines linked to skin diseases are IL‐
17, IL‐4, and IL‐13. IL‐17A can be produced by γδ T
cells, iNKT and ILC3, and IL‐17 can activate the release
of AMP.105 Keratinocytes are a major source of
AMPs.106 Defective function of these AMPs, such as
cathelicidin or β‐defensins may contribute to AD.107

Interestingly, decreased AMP production is associated
with predisposition to AD, while high AMP expression is
observed in psoriatic lesions.61,108 LL‐37, a member of
the cathelicidin family, which was increased during
atopic eczema,109 has an essential role in angiogenesis
and wound healing110 and is released in response to
injury.111

IL‐4 and IL‐13 are produced by both innate and
adaptive immune cells. For example, basophils can
release large amounts of IL‐4 upon engagement of the
Fcε receptor by IgE crosslinking. Eosinophils are also a
significant source of IL‐4 and can be activated by IL‐33
or CSF‐2 as well as TLR and interferons. ILC2 can
produce large amounts of IL‐13 and IL‐5, but also—
depending on the context—IL‐4. IL‐4 has been shown
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to massively alter barrier function.92 In IL‐4‐deficient
animals, expression of skin barrier proteins, such as
loricrin, involucrin and transglutaminase‐3, was two‐ to
three‐fold increased. Importantly, IL‐4‐deficiency also
increased filaggrin expression in the skin. Indeed, ker-
atinocytes decrease expression of filaggrin, loricrin,
involucrin, and hornerin in response to IL‐4 and IL‐13,
while the peptidase KLK7 was induced. Thus, IL‐4
leads to skin desquamation through degradation of
corneodesmosomal proteins. In a recent study, baso-
phil‐derived IL‐4 was also shown to reduce IL‐1 and IL‐
23 production from keratinocytes that impaired γδ T cell
activation and thus promoted S. aureus colonisation.112

IL‐13 signals also through the IL‐4Rα chain (hetero-
dimeric receptor with IL‐13Rα1) and probably exerts
similar functions, although they are still under
debate.113 In addition, the second receptor, IL‐13Rα2,
functions as a decoy receptor scavenging IL‐13
ameliorating skin barrier defects and cutaneous
inflammation.114 However, it was also recently shown
that homoeostatic IL‐13 from ILC2 in healthy skin—
while fostering a noninflammatory skin environment –
may predispose for allergic sensitisation through the
activation of TH2‐priming dermal DC2 subsets.115

Interestingly, IL‐33 was shown to disturb skin barrier
integrity independently of mast cell and TH2‐cell‐
derived cytokines.116 Whether IL‐33 directly modulates
keratinocyte‐function, which increase expression of
ST2 in AD lesions117 or via the activation of ILC2118

remains to be determined.
Pruritus is a major cause for the breakdown of the

skin barrier and the crosstalk of innate immune cells
with the nervous system is an emerging field. The
alarmins TSLP and IL‐33 can induce itch by acting
directly on sensory neurons,54 activation of ILC2 and
basophils,119 IL‐31 release from T cells, reducing skin
barrier protein expression,116,120 or histamine release
from mast cells.121 Histamine and serotonin release
from mast cells activated by IgE‐crosslinking of the
FcE‐receptor causes histaminergic itch. Recently, it
was discovered that mast cells are also activated by
PAMP9‐20, a peptide released by various cell pop-
ulations, including keratinocytes, acting on Mrgprb2 in
mice or MRGPRX2 in humans. Mast cells then only
secrete small amounts of histamine and serotonin but
instead release tryptase and thereby trigger non‐
histaminergic itch.122 The release of IL‐4 and IL‐13
by mast cells, eosinophils and basophils may also
directly contribute to scratching behaviour as it has
been demonstrated that IL‐4 injection induces
scratching via signalling through IL‐4Ra and JAK1.123

Confirmation of IL‐4Ra‐JAK pathways mediating itch
was provided with Dupilumab124 and JAK inhibitors125

both improving pruritus in treatment of AD for
patients.126

Taken together, the release of cytokines by immune
cells during psoriasis and AD alters both the

composition and function of the skin barrier and further
may aggravate disease through neuronal circuits. Tar-
geting cytokines and the signalling pathways of the skin
neuro‐inflammatory network with monoclonal anti-
bodies and inhibitors have become promising areas of
research to develop novel therapies.

3 | EFFECTS OF THERAPEUTIC
APPROACHES ON THE INNATE IMMUNE
SYSTEM

In this section, we will highlight novel developments in
the treatment of AD and psoriasis that affect mecha-
nisms related to innate immunity and barrier function of
the skin.

3.1 | Topical and systemic therapies

Emollients and topical barrier treatments are used in
AD and psoriasis to maintain the skin barrier function,
combined with avoidance of detergents. Improvement
of the barrier in skin barrier deficiency seen in AD, via
disease‐specific, barrier corrective topical treatments
such as ceramide‐dominant mixtures with barrier lipids,
down‐regulates pro‐inflammatory signalling mecha-
nisms involved in barrier repair. The ingress of further
haptens, which drive TH2‐type responses are increas-
ingly blocked by skin barrier improvement. A lipid
mixture gives an acidic pH on the skin surface adding to
the barrier function and blocking the activation of
proinflammatory serine proteases.10 Itch is a feature of
some dermatoses that are associated with skin barrier
deficiency. The inclusion of anti‐pruritic ingredients in
emollients can supplement the barrier restorative fac-
tors of the emollient by decreasing itch, which is a factor
in skin barrier deficiency.103,127

Topical corticosteroids (TCS) accompanied by
emollients have been the mainstay of the treatment of
AD since their introduction in the 1950s.128 The anti‐
inflammatory effect of TCS is mediated through a
cytoplasmic glucocorticoid receptor (GCR) in target
cells.42 One feature of how innate immunity influences
anti‐inflammatory effects with TCS is after ligand bind-
ing, when the corticosteroid/GCR complex translocates
to the nucleus. Various transcription factors including
nuclear factor κB (NF–κB), inhibit the transcriptional
activity of genes encoding cytokines such as IL‐1, IL‐4,
IL‐5, IL‐13, TNF as well as chemotactic proteins and
adhesion molecules.42 While this immunosuppression
limits skin inflammatory processes, TCS therapy is
associated with skin atrophy and leads to an impaired
skin barrier. Thus, emollients are used in combination
to promote barrier restoration.

A similar mode of action is observed when treating
psoriasis with TCS. Immune cells and pro‐inflammatory
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cytokines are repressed by signalling via the GCR.
Corticosteroids commonly repress maturation and dif-
ferentiation of DC and macrophages, thereby further
reducing pro‐inflammatory type‐1 and type‐3 re-
sponses. In addition, TCS has antimitotic properties
reducing the hyperproliferation but also lead to skin
atrophy. The impaired skin barrier facilitates TCS
penetration and promotes systemic adverse events.
Additional treatment with Vitamin D analogues, which
corrects epidermal hyperproliferation and induces
apoptosis in inflammatory cells, can prevent some of
the adverse effects of TCS.129 Vitamin D affects the
production of AMPs, which are involved in maintenance
of the skin barrier, decreased levels of which can re-
sults in exacerbations of AD, particulary infective flares
of inflammation.105,130

Topical calcineurin inhibitors (TCIs), such as
tacrolimus or pimecrolimus, act as steroid‐sparing
agents.131 They inhibit inflammatory cytokine tran-
scription in activated T cells and other inflammatory
cells through inhibition of calcineurin.131 With this anti‐
inflammatory activity, topical calcineurin inhibitors help
to allow the skin barrier to be restored.106,132 Topical
calcineurin inhibitors do have the potential for local
immunosuppression, however, clinical trials have
shown no increase in systemic or local skin infections.
Yet, TCI treatment impairs skin barrier function through
decreasing epidermal lipid synthesis, suppression of IL‐
1α and reducing AMP synthesis.136 While TCIs are
approved in the treatment of mild‐to‐moderate AD, they
show limited efficacy in psoriasis.137 Psoriasis that af-
fects facial skin or genital skin can show improvement
with the use of TCIs.

Traditional systemic therapies: Despite the usual
success of topical therapies at gaining control of a pa-
tient's AD, there is a minority of patients for whom
systemic therapy is a necessary next step in AD man-
agement.128 Systemic medications include azathio-
prine, methotrexate, cyclosporine as discussed in
Table 2, which act as steroid‐sparing immunosuppres-
sants,138–140 which are also indicated in moderate‐to‐
severe psoriasis.

Advanced therapeutics in AD including biologic
agents and small molecule inhibitors.

3.2 | Advanced therapeutics in AD
including biologic agents and small
molecule inhibitors

Biologic agents allow specific targeting of molecules,
which can be further upstream in inflammatory path-
ways. As discussed above, targeting key proteins in the
initiation (TSLP, IL‐18), effector phase (IL‐4, IL‐13) or
the crosstalk to neurons (IL‐31) may interfere with the
innate‐adaptive interaction, relieve symptoms and
restore barrier integrity. Some have been used in

Dermatology more than two decades for other inflam-
matory cutaneous disorders141 and especially to great
effect for treating psoriasis. However the development
of this line of therapeutics for AD has been slower.142

Reasons for this slower development for AD include the
complex heterogeneity of acute and chronic inflamma-
tion seen in AD, the multiple as yet poorly characterised
endotypes and the multifactorial causes and exacer-
bators of AD, including bacterial, viral and fungal
dysbiosis.

TSLP: Proinflammatory stimuli generate TSLP. TH2
cytokine production by DCs is induced by TSLP, which
is upstream from IL‐4, ‐5 and ‐13. Tezepelumab is a
human IgG monoclonal antibody that binds TSLP and
stops further interactions with the receptor complex. A
phase 2b, clinical study showed that there was a trend
of improvements in clinical scorings for patients treated
with tezepelumab and topical corticosteroid versus
placebo; however, significance was not reached.143

Considering that TSLP is a driver of one of the path-
ways that innate immunity influences the downstream
inflammation that occurs in AD and other parts of the
atopic march such as asthma and allergic rhinitis,
further investigations may demonstrate how influencing
the inflammatory pathway at an earlier stage can
reduce the range of severity of acute and chronic atopic
inflammation.

PDE4: Studies have shown that phosphodiesterase
(PDE) inhibitors altered inflammatory pathways stimu-
lated in AD and could be considered as a therapeutic
target for a non‐steroid based topical treatment for
AD.144–146 Crisaborale is a topical PDE4 inhibitor which
has been authorised for the treatment of atopic
dermatitis in the US and the European Union. Proin-
flammatory cytokine responses arise from the conver-
sion by PDE4 of intracellular messenger cyclic
adenosine monophosphate (cAMP), into adenosine
monophosphate. In AD there is up‐regulation of PDE4
with over‐expression of cytokines such as IL‐4, ‐13, ‐31,
released by both innate and adaptive immune cells.145

IL‐4/IL‐13: Dupilumab, now licenced for AD treat-
ment in the United States, Europe, China and Japan is
a fully human anti‐IL‐4 receptor alpha monoclonal
antibody, which inhibits IL‐4 and IL‐13.147 Both cyto-
kines are potently produced by cells of the innate im-
mune system and act on innate and adaptive immune
cells. Thus the cell‐specific contribution of IL‐4RA‐
blockade remains to be determined. Considerable de-
creases in clinical scores and pruritus of AD were seen,
and no systemic side effects were noted, but conjunc-
tivitis incidence was increased.148 Importantly, dupilu-
mab therapy reduced type 2 inflammation, reversed
AD‐induced epidermal abnormalities and increased
gene expression of barrier‐associated proteins.126,149

IL‐13: A clinical trial by Wollenberg et al. showed
that inhibiting IL‐13 in adults with moderate to severe
AD, led to significant clinical improvements in Eczema
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Area and Severity Index (EASI) and Dermatology Life
Quality Index scoring.150 Tralokinumab is a fully human
IgG4 monoclonal antibody, which targets IL‐13 and was
administered in a phase 2b randomised study with
concomitant topical glucocorticoids. The safety profile
in this trial was in line with those of previous trials of
tralokinumab in patients with asthma. None of the
adverse events reported were associated with the study
drug.150 Similarly, lebrikizumab, developed for the
treatment of asthma, selectively targets IL‐13 and ap-
pears to be effective in moderate‐to‐severe AD.151,152

Because ILC2 are implicated in AD pathogenesis and
can produce large amounts of IL‐13, future research
should include the identification of strategies to interfere
with ILC2 function.

IL‐18: IL‐18 contributes to the change from an
acute TH2‐driven AD endotype towards TH1 polariza-
tion in chronic disease.153 The receptor for IL‐18
signals via the innate inflammatory MyD88‐pathway
and can activate TH1 cells, basophils, NK cells, mast
cells.154 Hu et al. reported that serological IL‐18 and
IL‐18 binding protein was found in increased amounts
—specially during worsening pathology—n patients
with AD. In a murine model of eczema increased mast
cells in lesional skin and elevated levels of IL‐18BP+

mast cells in lesional skin were found.154 Allergen
challenge resulted in amplified expression of IL‐18,
IL‐18BP and IL18 R mRNA. This study suggested that
IL‐18 inhibitor agents may be a therapeutic option
for AD.154

TABLE 2 Advanced therapeutics for atopic dermatitis and psoriasis

Compound proprietary
name Target Details References

Atopic
dermatitis

Dupilumab IL‐4Rα IL‐13/IL‐4 inhibitor, monoclonal antibody [124, 148,
208]

Topical crisaborale Phosphodiesterase 4 (PDE4)
enzymes

Phosphodiesterase 4 inhibitor, small
molecules

[144–146,
209]

Oral apremilast

Tofacitinib JAK/STAT pathway JAK inhibitors, small molecules [161, 162]

Baricitinib

Upadacitinib

Ruxolitinib

Nemolizumab IL‐31Rα IL‐31 inhibitor, monoclonal antibody [210]

Tralokinumab IL‐13 IL‐13 inhibitor, monoclonal antibody [150]

Lebrikizumab

Tezepelumab TSLP TSLP inhibitor, monoclonal antibody [143]

Etokimab IL‐33 IL‐33 inhibitor, monoclonal antibody [159]

Fezakinumab IL‐22 IL‐22 inhibitor, monoclonal antibody [211, 212]

Psoriasis Adalimumab TNFα TNF inhibitor, monoclonal antibody [213–216]

Certolizumab pegol

Golimumab

Infliximab

Etanercept TNFα TNF inhibitor, fusion protein decoy
receptor

[217]

Brodalumab IL‐17A IL‐17A inhibitor, monoclonal antibody [218–223]

Ixekinumab

Secukinumab

Guselkumab IL‐23 IL‐23 inhibitor, monoclonal antibody [224–226]

Risankizumab

Tildrakizumab

Ustekinumab IL‐12/IL‐23 IL‐12/IL‐23 inhibitor [227]

Spesolimab IL‐36R IL‐36 receptor inhibitor, monoclonal
antibody

[167]
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IL‐31: IL‐31 is associated with pruritus that occurs
with AD and plays a pathogenic role in the progress of
inflammation. Nemolizumab is an IL‐31RA humanised
monoclonal antibody which blocks the effects of
IL‐31.155 Ruzicka et al. highlighted the potential for
looking at the IL‐31 pathway as treatment option in AD
when significant improvements were seen in pruritus
scoring in a phase 2, randomised, double‐blind, pla-
cebo‐controlled clinical trial. No specific safety signals
were noted however the authors discuss that limited
size of a trial precludes clear conclusions about po-
tential side effects of nemolizumab.155 Thus, interfer-
ence with the immune cell‐neuron‐crosstalk may be an
important step to break the itch‐scratch‐inflammation
cycle and restore the physical skin barrier.

IL‐33: IL‐33 is an inflammatory cytokine associated
with innate immunity and can activate ILC2s.156 IL‐33 is
overexpressed in keratinocytes of AD patients.157,158

The activation of ILC2s may contribute to IL‐33‐driven
AD‐like inflammation in mice with increases in IL‐5
and IL‐13.156 Initial studies on the efficacy of etoki-
mab targeting IL‐33 in human moderate‐to‐severe AD
showed moderate but sustained improvement in dis-
ease severity.159 While this improvement is associated
with reducing innate inflammatory pathways by inhibit-
ing IL‐33, basophils can also activate ILC2s induced by
IL‐33, which work via IL‐4 in AD‐like inflammation in
mouse models.119 IL‐33 has been shown to decrease
the expression of filaggrin in the stratum corneum,
which decreases the barrier function of the
epidermis.116 Markers that are only expressed on hu-
man ILC2s have not been established. By inhibiting IL‐
33 the impact on AD of innate and acquired immunity
can be modified.

JAK‐STAT: The JAK‐STAT pathway mediates
translation of cytokine stimulation into cellular effector
function. Recent studies have delivered evidence for
the use of JAK inhibitors in treating alopecia areata,
psoriasis, vitiligo and AD.160,161

Both topical and oral formulations of JAK inhibitors
have been assessed in clinical trials. Topical tofacitinib
—targeting JAK1 and JAK3, which are downstream of
the receptors for IL‐2, IL‐7, IL‐4, IL‐13, IL‐6, IL‐21, type I
and II interferons, and others—was shown to bring
about a reduction in EASI versus placebo at week 4
(p < 0.001) as well as significant results in physician
global assessment (PGA), body surface area (BSA)
and pruritus scores.162 A pilot study of oral tofacitinib
showed a decrease in the scoring of AD during treat-
ment for AD.163

The nature of broad inhibition of cytokine signalling
increases the risk of infections as innate and adaptive
immune responses are effectively inhibited. Indeed,
infections of the upper respiratory tract are among the
most common adverse events. Whether inhibition of
JAKs will improve barrier function remains to be
determined.

3.3 | Advanced therapeutics in
psoriasis

TNF: Etanercept (TNF inhibitor), infliximab (chimaeric
TNF‐neutralising antibody), adalimumab (anti‐TNFα),
certolizumab pegol (pegylated anti‐TNF‐Fab fragment)
interfere with the actions of TNF during moderate‐to‐
severe psoriasis. As TNF downregulates filaggrin and
loricrin, inhibition of TNF can help to restore skin barrier
integrity.164

PDE4: As discussed above, inhibiting PDE4 works
in an anti‐inflammatory action rather than immunosup-
pressant activity. Proinflammatory cytokines are
decreased allowing greater expression of anti‐
inflammatory mediators by intracellular inhibition of
cAMP degradation and increased levels of cAMP at the
intracellular level.165

IL‐12/IL‐23: Ustekinumab binds the p40‐subunit
shared by IL‐12 and IL‐23 and inhibits binding to their
receptors, thus interfering with the polarization of T cells
by innate immunity but increasing the risk of infections
as innate immune cells cannot polarise T cells towards
TH1. Guselkumab, tildrakizumab and risankizumab bind
the p19‐subunit of IL‐23 and prevents the TH17‐
polarization of T cells, and subsequently epidermal
hyperproliferation, keratinocyte activation and
inflammation.

IL‐17: Interference with the IL‐17‐mediated inflam-
mation is achieved by treatment with secukinumab
(anti‐IL‐17A), ixekizumab (anti‐IL‐17A), and brodalu-
mab (anti‐IL‐17RA). As IL‐17 can downregulate filag-
grin expression in keratinocytes,166 inhibition of the
IL‐17‐pathway alleviates psoriatic symptoms and facil-
itates skin barrier restoration.

IL‐36R: Targeting the IL‐36 pathway may pose a
novel treatment option for generalized pustular psoria-
sis.167 A single dose of BI655130/Spesolimab improved
skin symptoms in study participants within two
weeks.167 Mechanistically, IL‐36R expressed by IL‐
17A‐activated keratinocytes may be blocked by Spe-
solimab, which may break the pro‐inflammatory cycle
during chronic psoriasis and GPP.168

3.4 | Gene polymorphisms and
prediction of response to biologicals and
other therapies

Similar to the role of gene polymorphisms with regard to
disease susceptibility, these polymorphisms also play
an important role in the response to therapy. Two
extensive reviews of how and which gene poly-
morphisms influence the efficiency of different therapies
for psoriasis have been published by Linares‐Pineda
et al.169 and more recently by Membrive Jiménez
et al.170 Additionally, Prieto‐Perez and co‐workers
reviewed anti‐TNF‐treatment efficacy in psoriasis with

10 of 17 - HAWERKAMP ET AL.



a focus on related autoimmune disorders, such as
rheumatoid arthritis.171

The majority of the described gene polymorphisms
are in relation to TNF and its intracellular signalling,
which is probably attributable to the fact that anti‐TNF
treatments were first approved and the most prescribed
biologic treatments for psoriasis. Even though there are
some studies on the association of gene poly-
morphisms with treatment response to other biologicals
(e.g. IL‐12/23 inhibitor ustekinumab), this field requires
more in‐depth research to clearly elucidate the roles of
different SNPs on the efficacy of advanced treatment
options. Currently, there is a lack of research on the
influence of SNPs in treatments for diseases other than
psoriasis and thus limiting the potential of gene poly-
morphisms as useful biomarkers in personalised
medicine.

4 | CONCLUSION

The global research effort to advance our under-
standing of inflammatory skin diseases, such as pso-
riasis and AD, led to the recognition of the importance
of immunological processes underlying pathogenesis
(Figure 1). The realisation that skin barrier integrity
can be modified by immunological factors unlocked a
new perspective on the genesis of AD. Thus, resto-
ration of an intact functional skin barrier needs to be
one of the main objectives in successfully ameliorating
AD. The advent of novel treatments targeting single
components or shared pathways involved in genesis
of skin inflammation will allow us to tailor therapies to
the patient across the AD to psoriasis disease
spectrum.
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