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Abstract
Dengue is the most prevalent mosquito-borne viral disease worldwide. Yet, there are no

vaccines or specific antivirals available to prevent or treat the disease. Several dengue vac-

cines are currently in clinical or preclinical stages. The most advanced vaccine is the chime-

ric tetravalent CYD-TDV vaccine of Sanofi Pasteur. This vaccine has recently cleared

Phase III, and efficacy results have been published. Excellent tetravalent seroconversion

was seen, yet the protective efficacy against infection was surprisingly low. Here, we will de-

scribe the complicating factors involved in the generation of a safe and efficacious dengue

vaccine. Furthermore, we will discuss the human antibody responses during infection, in-

cluding the epitopes targeted in humans. Also, we will discuss the current understanding of

the assays used to evaluate antibody response. We hope this review will aid future dengue

vaccine development as well as fundamental research related to the phenomenon of anti-

body-dependent enhancement of dengue virus infection.

Introduction
The genus Flavivirus of the family Flaviviridae comprises over 50 closely related viruses, in-
cluding dengue virus (DENV), Japanese encephalitis virus (JEV), yellow fever virus (YFV),
tick-borne encephalitis virus (TBEV), and West Nile virus (WNV) (Fig 1). Flaviviruses are ar-
thropod-borne pathogens, and transmission occurs by ticks (TBEV) or mosquitoes (e.g., JEV
and DENV). Flaviviruses are present worldwide, ranging from the tropics (JEV and DENV), to
moderate climates (DENV and WNV), to near-arctic climate (TBEV) [1].

Infection with a flavivirus can cause a wide range of clinically overt symptoms [1,2], poten-
tially resulting in death. For example, JEV is the leading cause of viral encephalitis in Asia, with
a 30%–40% case fatality rate [2]. Dengue is the most common arthropod-borne viral infection
occurring worldwide, with an estimated 360 million infections and 96 million symptomatic
cases in 2010 [3]. On average, 500,000–1 million individuals develop severe disease, including
hemorrhage and plasma leakage, resulting in 25,000 deaths [4].

Currently, there are vaccines available for YFV, TBEV, and JEV. Yet, there is no vaccine
available for the closely related DENV [5]. This is in part due to the existence of four genetically
and antigenically distinct DENV serotypes (Fig 1). There is approximately 40% divergence be-
tween the amino acid sequences of the serotypes (Fig 1) [6,7] and up to�9% mismatch within
a serotype (Fig 1) [8]. The diversity of the genotypes of JEV, WNV, and TBEV is much less,

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003749 June 11, 2015 1 / 18

OPEN ACCESS

Citation: Flipse J, Smit JM (2015) The Complexity of
a Dengue Vaccine: A Review of the Human Antibody
Response. PLoS Negl Trop Dis 9(6): e0003749.
doi:10.1371/journal.pntd.0003749

Editor: Cameron P. Simmons, Oxford University
Clinical Research Unit, VIETNAM

Published: June 11, 2015

Copyright: © 2015 Flipse, Smit. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Funding: JF and JMS acknowledge funding of the
Dutch Organization for Scientific Research (NWO
Vidi grant to JMS). The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0003749&domain=pdf
http://creativecommons.org/licenses/by/4.0/


with�4.1%,�2%, and�5.6% difference, respectively [9,10]; therefore, no distinct serotypes
exist.

Another factor for the complexity of the DENV vaccine lies in the severity of disease. All
four DENV serotypes can cause symptoms ranging from acute febrile illness to severe manifes-
tations as hemorrhage or organ impairment. Severe disease is most often seen during second-
ary, heterotypic reinfections [11,12]. The incidence of severe disease during secondary,
heterologous infection relative to primary infection can be 20-fold to 80-fold higher [12–15].
The observation that disease can be more severe during secondary infections severely ham-
pered the development of a vaccine, as it implies the need to simultaneously induce immunity
to all four existing DENV serotypes over a prolonged period [16,17].

Multiple vaccine formulations are currently being tested in preclinical and clinical stages,
and these have been reviewed before [18]. Here, we will focus on the Sanofi Pasteur live

Fig 1. Close relationship between several flaviviruses (left) and within the species of dengue virus (right). The phylogenetic tree is based on the
amino acid sequence of the envelope glycoproteins. The methodology and National Center for Biotechnology Information (NCBI) IDs of all used genotypes
for the flaviviruses and dengue viruses are provided in S1 Dataset. The table denominates the percentage of consensus between the serotypes based on the
envelope amino acid sequences. Sequence identities were calculated using the Sequence Identity and Similarity (SIAS) calculator (http://imed.med.ucm.es/
Tools/sias.html). Scale bar of 0.1 (flaviviruses) or 10 (dengue virus) denotes 0.1 or 10 (silent) substitutions per amino acid for the flavivirus and dengue
sequences, respectively.

doi:10.1371/journal.pntd.0003749.g001
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attenuated vaccine since this is the most advanced vaccine with known efficacy results. The re-
sults of the trials will be reviewed and discussed within the context of the host immune re-
sponse and the assays used to understand and evaluate both the vaccine and the host
immune response.

Sanofi Trials
Sanofi Pasteur developed a tetravalent chimeric YFV/DENV vaccine (CYD-TDV). The vaccine
was based on the backbone of the attenuated YFV strain 17D in which the structural genes en-
coding for the premembrane (prM) and envelope (E) proteins of YFV were replaced with those
of DENV [19]. YFV/DENV chimeric viruses were made from all four DENV serotypes. The re-
sulting viruses thus have the attenuated replication machinery of YFV and the outer structure
of a DENV serotype. Hence, the vaccine induces CD4+ T cell and antibody responses against
the DENV structural proteins and CD8+ T cell responses against the YFV nonstructural (NS)
proteins [20–22]. Preclinical in vitro assays showed genomic stability and no toxicity (reviewed
in [19]) and induction of antiviral responses in human dendritic cells [23].

Subsequently, clinical studies were performed using a three-dose regimen containing 105

CCID50 of each YFV/DENV chimeric virus. The Phase I and II trials showed that the vaccine is
safe and tolerable in humans [19,24], which was the primary end point. Additionally, the au-
thors of the Phase II trials also determined the seroconversion and the efficacy against virologi-
cally confirmed DENV. In one study, excellent tetravalent seroconversion against DENV was
noted, as 95%–100% of the individuals seroconverted [25]. Yet, in the same study, the efficacy
was surprisingly low, being 30%, whilst another study reported near 64% efficacy (Table 1).
These Phase II trials were conducted with relatively low numbers of participants. Next, large
Phase III trials were conducted in Asia and Latin America to determine the efficacy of the vac-
cine. However, the recent reports of these trials were quite enigmatic. The Phase III studies in
Southeast Asia and South America reported an efficacy range of 51.1%–79% and 31.3%–77.5%,
respectively. Overall, the vaccine was shown to be efficacious, as the 95% CI was higher than
25% (primary end point). It should be noted, however, that the reported efficacies varied per

Table 1. An overview of the results from the CYD-TDV vaccine trials.

Reference Age Range
(years)

Area Efficacy Baseline
Immunity

(%)

Effect of Baseline
Immunity

Post Third Dose: Overall (95%
CI).Serotype-Specific, DENV1/
2/3/4

Hosp. DHF DENV Flavi

[25] 4–11 Thailand 30.2%(-13.4 to 56.6),55.6/9.2/
75.3/100 †

69.9 91

[26] 9–16 Honduras, Colombia,
Mexico, and Puerto Rico

63.9% (1.5 to 87.4). † 76 79.3 Flavi+ > naïve (tetravalent:
97.6% versus 77.9%)

[27] 4–11 Indonesia, Malaysia,
Philippine, Thailand, and
Vietnam

56.5% (43.8 to 66.4).50/35/78.4/
75.3

67.2 80.8 67.6 78.2 DENV+ > DENV-

(efficacy: 74.3% versus
35.5%)

[28] 9–16 Colombia, Brazil, Mexico,
Puerto Rico, and Honduras

60.8% (52.0 to 68.0).50.3/42.3/
74/77.7

80.3 90.0 79.4 DENV+ > DENV-

(efficacy: 83.7% versus
43.2%)

95% CI, 95% confidence interval; Hosp., hospitalization; DHF, dengue hemorrhagic fever.
† Study was a Phase II clinical trial, with a relatively low number of participants.

doi:10.1371/journal.pntd.0003749.t001

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003749 June 11, 2015 3 / 18



country and per study. Additionally, when the serotype specific efficacy was calculated, the
lowest efficacy was consistently seen for DENV2 (Table 1).

Strikingly, the vaccine cohort had significantly lower incidence of dengue hemorrhagic fever
(80%–90% efficacy) and hospitalization (67%–80% efficacy) [27,28]. Baseline immunity seems
to be beneficial in terms of developing tetravalent seroconversion and overall efficacy against
symptomatic DENV (Table 1).

While the protection against hemorrhagic fever is encouraging, these trials also taught us
that seroconversion alone does not predict protective efficacy. Clearly, more research is re-
quired to identify the correlate of protection [29]. Furthermore, it showed us that we need to
have a better understanding of the immune response to DENV infection. Hence, below we will
discuss what is known about the function of T and B cells in immunity against DENV. Most at-
tention has been directed towards the role of antibodies in immunity against DENV, and there-
fore, these will be the primary focus of this review.

Human Immune Response and Disease
After a primary DENV infection, individuals are protected against disease upon reinfection
with the homologous serotype. Cross-protection against other serotypes is limited and exists
only for 1–2 months post–primary infection, while disease severity was found to be alleviated
for 2–9 months thereafter [30,31]. Recent information suggests that cross-protection against
severe disease lasts up to 2 years [32–35]. Intriguingly, after the cross-protective period, indi-
viduals are at risk of developing more severe dengue upon secondary infection with a hetero-
typic serotype. Moreover, the chance to develop severe disease increases with the time between
the primary and the secondary infection [33,34].

The increased chance of severe disease can be explained by original antigenic sin, a phenom-
enon in which the human immune system preferentially activates memory T and B cells
against the original antigen rather than instructing naïve T and B cells against the current anti-
gen [36,37]. Indeed, it was found that upon a secondary heterotypic DENV infection, the acute
T cell response is mostly directed towards the previous infecting serotype [38,39]. Over time,
the T cells against conserved, cross-reactive epitopes are preferentially expanded, resulting in a
DENV-broad [20,38,40] and potentially flavivirus-broad response [39,41]. As for B cells, a pre-
dominant monotypic response with high avidity against the infecting serotype is observed 6–9
days after disease onset [42,43]. Yet, within 6 months of infection, a broad cross-reactive B cell
repertoire is seen [43]. Indeed, cross-reactive B cells are predominantly present at the time of
secondary infection [42]. These cells have been speculated to contribute to enhanced severity
of dengue disease severity [44] (discussed below). After a secondary heterotypic infection, sta-
ble populations of DENV-broad cross-reactive B cells are seen [42,43], and these cells secrete
high levels of high-avidity antibodies [42,45,46].

Antibodies are suggested to be more important than T cells in triggering the onset of severe
disease. This was suggested because infants born to dengue immune mothers were noted to
have a higher risk for severe disease development during primary infection [47]. Halstead and
others found that waning antibody titers can enhance DENV infectivity in vitro and in vivo
[48–50] and developed the theory of antibody-dependent enhancement (ADE) of disease
[48,51]. During ADE, the pre-existing cross-reactive antibodies bind to the newly infecting
DENV serotype and specifically target the immune complexes to Fc-receptor-expressing cells,
cells that are highly permissive to DENV. The high viral burden triggers the immune system,
which at the end is responsible for the onset of severe signs like plasma leakage [51–53].

Thus, in case of dengue, antibodies have a paradoxical role: antibodies induced during a pri-
mary infection are believed to confer lifelong protection against the infecting serotype, whereas
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upon reinfection with another DENV serotype, these antibodies can contribute to severe dis-
ease development. Hence, we wished to gather information on the human antibody epitopes
and their relative contributions to the human antibody repertoire after DENV vaccination and
infection. Although we primarily focus on antibody epitopes, we also included a brief descrip-
tion of the role of T cells in connection with the CYD vaccine.

Human Antibody Responses
We first reviewed the antibody responses in the sera of primary and secondary DENV cases
(S1 Table). The majority of antibodies are raised against the E protein, and a small fraction tar-
get the prM and the NS proteins. This is not very surprising as E and prM are exposed on the
viral surface and soluble NS1 is secreted by infected cells [54]. The higher fraction of E protein
antibodies suggests that the human antibody response predominantly targets DENV particles
(structural proteins) rather than NS1-positive cells, i.e., infected cells or cells having bound
soluble NS1 [55,56]. Interestingly, we see that during secondary infection the antibody reper-
toire broadens as higher responses against the prM and NS1 proteins are seen. This implies
that antibodies against E, prM, and NS1 are differentially induced between primary and sec-
ondary infection (discussed further below). A detailed insight in the specific antibody reper-
toire may therefore help us to better understand the contribution of distinct epitopes to
infection neutralization.

Indeed, several elegant studies have used immortalized B cells from human blood samples
to generate monoclonal antibodies of these cultures. Unfortunately, the studies conducted so
far show considerable variability in numbers and epitopes of antibodies isolated from individu-
al patients (S2 Table). This is likely due to differences in donor backgrounds and immortalizing
method used. Therefore, we next focused on those studies in which primary and secondary an-
tibody responses or acute and convalescent samples are compared (Table 2). Even then, the re-
sults are highly variable: e.g., the prM response strongly expands in two studies but decreased
in one study. The latter study also showed a stable E response between primary and secondary
responses, while the others reported a reduction thereof. Yet, when we looked at both sera and
monoclonals (S1 and S2 Tables), overall, the E antibodies are dominant during the primary re-
sponse. The results for secondary responses are more variable (Table 2), but in sera prM and
NS antibodies are particularly detected in secondary cases (S1 Table).

Table 2. Temporal evaluation of human B cell-derivedmonoclonal antibodies against DENV.

Reference Stage # Donors # mAbs NS1 prM E As % of Total E

EDI/DII EDIII

[57] 1st, convalescent 3 49 8.0% 5.7% 80.5% 72.6% 27.4%

2nd, convalescent 2 29 0.0% 2.6% 94.8% 75.0% 25.0%

[58] 1st 6 28 n.d. 14.3% 85.7% 82.8% 17.2%

2nd 6 9 44.4% 55.6%

[59] 2nd acute 4 121 3.3% 6.6% 81.8%

2nd, convalescent 5 15 53.3% 13.3% 13.3%

To generate the monoclonal antibodies (mAbs) listed in this table, peripheral blood mononuclear cells (PBMCs) had been taken after primary (1st) and

secondary (2nd) infection or between the acute and convalescent phases. Note to table: in reports in which multiple donors had been used, all

percentages were first calculated as % per donor and then averaged over all donors. Hence, some percentages in this table can differ from those in the

reports in which the value is reported as the % of experiment rather than per donor. Not all antibodies were characterized; hence, values may be lower

than 100%. n.d.: not determined. EDI/DII and DIII refer to the structural domains within the E ectodomain.

doi:10.1371/journal.pntd.0003749.t002
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Furthermore, since binding of one epitope can enhance or diminish binding of antibodies
against other epitopes [60–62], it would be interesting to see whether shifts in these ratios influ-
ence neutralization of DENV particles by antibodies against specific epitopes. Based on the ta-
bles, we tried to estimate the balance between the various targeted epitopes. For primary
convalescent sera, a ratio of approximately 3 E antibodies to 1 prM antibody was found. In sec-
ondary convalescent cases, this was near 1 on 1.

Furthermore, the E protein consists of three ectodomains (D): E DI–DIII. In humans, DI
and DII are immunodominant domains relative to DIII, as 3-fold more antibodies target DI/III
than DIII. However, given the large variability, more studies are required to validate the results.

Although a significant proportion of antibodies target the NS proteins, DNA-vaccine trials
suggest that these are not pivotal for neutralization of infection [63,64]. Yet, the NS1 antibodies
may aid in clearance of infected cells [65]. Here, we will focus on the antibodies that directly
bind to the virus and discuss the clinical relevance of these antibodies.

PrM Antibodies
We and others showed that prM antibodies are poorly neutralizing and highly enhancing [66–
70]. Moreover, infection enhancement was seen over a broad range of concentrations, whereas
neutralization occurred in a very narrow range and is incomplete [67–70]. Therefore, prM anti-
bodies have been postulated to contribute primarily to antibody-dependent enhancement of
dengue infection and severe disease development. Recent analysis, however, showed that al-
though there is a robust prM response (20%–30%) during acute secondary DENV2 infection,
there is no difference in the level of prM antibodies between mild and severe cases [71]. Fur-
thermore, prM antibody levels are increased during secondary, tertiary, and quaternary infec-
tions (Table 2, S2 Table, and references therein), whereas severe disease is most often
associated with secondary infection [72]. Indeed, subsequent functional analysis did not show
a specific correlation between the neutralization/enhancement profile of the sera towards prM-
containing particles and the onset of severe disease [71]. This suggests that prM antibodies are
not a discriminating factor but act as a cofactor in disease development. Yet, given the weakly
neutralizing properties of prM antibodies, it is advisable to avoid the presence of prM
in vaccines.

E Antibodies
Many studies have been done to link neutralization to certain epitopes or structural domains of
the E protein (Table 2). Most of the antibodies were found to be directed against dengue EDII
fusion loop (FL) (Table 2, S1 Table, and references therein). Furthermore, Lai and colleagues
found a correlation between serum EDII FL antibodies and the potency of the serum to neu-
tralize heterotypic DENV [46]. The relevance of these human EDII FL antibodies in protection
was further strengthened by elegant tests using prM-E proteins or virus-like particles bearing
mutations in the FL [46,73,74].

Based on mouse models, the EDIII was initially considered a major antigen for the induc-
tion of serotype-specific neutralizing antibodies [75,76]. Surprisingly, quite low fractions of an-
tibodies targeting EDIII were found during human infection [37,77], and similar low fractions
were found after infection with other flaviviruses [78–80]. Moreover, depletion of EDIII-reac-
tive antibodies showed that these are not absolutely required for neutralization [37,78,81,82].

This suggests that the neutralization potency is predominantly facilitated by antibodies
against EDI, DII, and the FL. However, and importantly, some monoclonal antibodies could
not bind to monomers of E or prM but still bound the whole virion [57,58,68,81,83]. These an-
tibodies may interact with quaternary structures [83–85] and effectively freeze the virus particle
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as it inhibits changes within the E protein that are required for fusion. An example of such qua-
ternary structure is the EDI/DII hinge region, and recently, antibodies targeting this region
were found to be serotype-specific and neutralizing [69,84,85]. Antibodies that bind to viral
particles but not to protein monomers are potently neutralizing [58,69,83] but appear to be
rare [66]. A recent report, however, showed that near 40% of the isolated monoclonal antibod-
ies (mAbs) bind to quaternary structures [83]. To conclude, we see that the DENV E domains
I/II are more immunodominant than the EDIII in terms of induction of antibodies in humans.
Importantly, both EDI/II and EDIII antibodies were found to possess a similar neutralization
potency [86], and the most neutralizing antibodies against flaviviruses appear to target quater-
nary structures [78,80,83,86], These findings argue for preservation of quaternary structures in
DENV vaccines.

T Cells
The role of T cells in immunity against dengue infection has been extensively reviewed by oth-
ers [52,87], and we will briefly discuss recent findings regarding the role of T cells in immunity
and pathogenesis. Whereas the CD4+ T cell response contributes to protection by instructing B
cell responses against the virus [21], the importance of cytotoxic (CD8+) T cells for protection
is still under debate since low T cell responses are seen during acute stages of DENV infection
[36]. After peak viremia, peaks in both T cell response and cytokines are seen [36,88], suggest-
ing that cross-reactive CD8+ T cells contribute to pathogenesis rather than protection. Further-
more, during secondary infection, T cells (like B cells) suffer from original antigenic sin
[22,36,89]. The cross-reactive T cells during acute secondary infection have an altered cytokine
responses consisting of low interferon gamma (IFN-γ) and high tumor necrosis factor alpha
(TNF-α) [88,90]. This profile has been associated with severe disease [52]. The phenomenon of
original antigenic sin might be less persistent in T cells than in B cells [20], as a recent manu-
script showed that multifunctional CD8+ T cells can be associated with protection against dis-
ease in a Sri Lankan population [22].

Clearly, in naïve individuals, the CYD-TDV vaccine does not induce CD8+ T cell responses
to the NS proteins of DENV. The participants in the CYD trials, however, had high baseline
immunity, implying that T cell responses were already present and potentially boosted by the
vaccine [20,39,41]. Thus, we cannot conclude whether or not it is important to include T cell
immunity for protection and if this should be induced by a vaccine. Yet, the trials had quite
low efficacy results despite high antibody titers. Mouse models indicated that protection re-
quires both B and T cells [91] and that CD8+ T cells significantly contribute to disease allevia-
tion, even under conditions of ADE [92]. Thus, CD8+ T cells likely contribute to clearance of
infection when antibodies have failed to prevent infection. Hence, T cells might be more im-
portant for DENV immunity than previously appraised.

Assays for Vaccine Development
Seroconversion upon vaccination is measured with various assays based on either quantifica-
tion of DENV-binding antibodies (ELISA) or bioassays measuring neutralization of infection
[93]. Currently, the WHO considers the plaque reduction neutralization test (PRNT), which is
validated to industrial standards, as the gold standard for DENV [93]. In case of the latter,
DENV is mixed with serially diluted sera and added to a monolayer of cells. After incubation,
an overlay is placed on top of the cells and plaques develop over time. The neutralization po-
tency of the sera is defined as the dilution that neutralized 50% or 90% of the added virions.
For JEV, the correlate of protection is 50% neutralization at a dilution of 1:10 or lower
(PRNT50 titer of�10), and similar correlates of protection have been defined for TBEV and
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YFV [94]. For DENV, the exact cutoff is unknown but was expected to be similar to the viruses
mentioned above.

Based on these criteria, the CYD-TDV trials showed good seroconversion rates, yet for
DENV2 a particularly low clinical efficacy was seen (Table 2). This shows that the PRNT assay
or its interpretation requires further fine tuning in order to find the true correlate of protection.
Many parameters can be adjusted [95–97], such as (I) the cell line, (II) the challenge virus
strain, and (III) the defined cutoff for seropositivity. Other parameters include incubation tem-
perature [98,99] and virus source [83].

The current PRNT assay employs the Vero cells, an Fc-receptor (FcR)-negative cell line.
FcR-negative cells are inclined toward neutralization, as virus-antibody complexes are only in-
ternalized via interaction with FcR. Conversely, FcR-positive cells typically show ADE with
poor neutralization [50]. Primary myeloid cells are a natural host cell of DENV and support in-
fection in the absence and presence of antibodies, and they could be an alternative to cell lines
[100]. As a start, it would be interesting to investigate if neutralization assays performed with
PBMCs of vaccinees gives a better correlate of protection than that of Vero cells. It is unlikely
that primary cells will be applied in an industrial setting; yet, the above studies will guide future
assay development.

Second, distinct DENV genotypes can give significant shifts in the reported seropositivity,
giving e.g. 50% reduction [72]. This is not surprising given the 9% variation within a serotype
(Fig 1). More robust correlates of protection against a serotype could be found by including
multiple genotypes reflecting the breadth within the serotype.

Third, the threshold chosen for seropositivity was a PRNT50 of 10. Yet, the threshold of 50%
reduction may not be optimal in terms of variability [97], and different thresholds may be
needed according to the serotype [101]. Indeed, in case of the JEV vaccines, the PRNT50 values
were found to differ between the existing genotypes [102]. The DENV vaccine cohorts now
provide excellent opportunities to conduct mathematical studies to find better correlates of
protection using more stringent criteria for the neutralization threshold and/or serum dilution.

Overall, there is a poor correlation between the current cutoff for seropositivity (PRNT50

�10) and clinical efficacy of a DENV vaccine [25,103]. Since Sanofi will continue to monitor
the vaccine participants for the next 4 years [19,27,28], the present vaccine trials now offer new
prospects for studies to define the best assay and criteria that predict which vaccinees have de-
veloped protective immunity. Future studies will also benefit from the lesson of these trials, i.e.,
that too few participants were bled to allow for thorough correlative analysis between the anti-
body response and individual protection [28].

Challenges for Future Dengue Vaccines
In this review, we briefly summarized the outcome of the CYD-TDV vaccine trials. The trials
showed us that seroconversion of vaccinees does not necessarily correlate to clinical efficacy
against symptomatic disease. This stressed how little we actually know about the human adap-
tive immune responses towards DENV infection. Most attention had been paid to the human
antibody response, and the components thereof have been reviewed above (Table 2 and S1
Table). Based on the Sanofi trials and the reports on the human antibody response, some chal-
lenging questions are discussed below.

Better Responses after Flavivirus Priming?
The CYD-TDV trials reported higher antibody titers in individuals who were flavivirus-posi-
tive at baseline than in naïve individuals [20,26,104]. Also, priming apparently gives higher
chance on tetravalency [20,26] and better efficacy [27,28]. The better efficacy results in primed
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individuals suggests that the immune response is different in naïve and primed individuals. In
naive individuals, only the DENV antibody response is triggered by CYD-TDV, while in
primed individuals, B and T cell responses are boosted, the latter likely through flavivirus-
broad conserved epitopes. Yet, the lower antibody levels in flavivirus-naïve individuals could
not be compensated for by repeated vaccination [26]. This raises the question of whether the
vaccine preferentially expands pre-existing (cross-reactive) immunity and weakly induces de
novo immunity. If so, the vaccine may be less beneficial for young children in endemic coun-
tries and travelers.

Absolute Requirement for Tetravalency?
The current dogma is that vaccination should induce serotype-specific antibodies against all
four DENV serotypes. Pierson and colleagues suggested that all antibodies that can bind and
neutralize DENV can also promote enhancement of infection, irrespective of the epitope [105].
If all antibodies support ADE and neutralization, high titers of cross-reactive antibodies may
be sufficient for protection. Yet, a recent study showed that inapparent and apparent dengue
cases have similar DENV–immunoglobulin G (IgG) titers but can be distinguished based on
whether the sera shows heterotypic neutralizing capacity or not [106]. Future studies should
address whether protection of infection depends on the balance of monotypic antibodies and
heterotypic antibodies and/or the cumulative titer of all DENV antibodies.

Why Low Efficacy towards DENV2?
The CYD-TDV showed excellent seroconversion but did not result in high efficacy against
symptomatic DENV2. The lack of CD8+ T cell responses has been suggested as an option [22].
Recently, there is also growing awareness about the role of the genotype used within the vac-
cine. Various genotypes of the same serotype can co-currently circulate within endemic areas
[107,108]. A mismatch in the genotypes can significantly reduce the affinity of the sera to neu-
tralize infection [72] or may even lead to ADE [7,8]. The low efficacy against DENV2 in the
Thai Phase IIb trial was suggested to have occurred because of a mismatch in the vaccine geno-
type and the circulating genotype [25,109]. If mismatches are indeed important, close surveil-
lance and prediction of the circulating genotypes is crucial. Annual reformulation may be
beneficial for protection.

Vaccine Formulation
The formulation and administration regime of the ideal vaccine is a challenging topic. Subunit
vaccines with monomer proteins are safe and can be easily reformulated. However, subunit
vaccines also induce antibodies against epitopes that are inaccessible on virus particles due to
protein-protein interactions [110] and lack quaternary structures, which are currently the most
potent epitopes for neutralization [58,69]. Induction of antibodies against quaternary struc-
tures could be facilitated by using whole inactivated viruses, attenuated virus strains, or
chimeric viruses.

These three options have their pros and cons. Inactivated vaccines are noninfectious and
may induce lower titers of neutralizing antibody compared with vaccines or infection [66,78],
likely since different gene expression patterns are induced [23,111]. Lastly, attenuated virus
strains mimic the actual pathogen as closely as possible, have the desired quaternary structures,
and can induce high antibody titers. Yet, the chimeric vaccine lacks DENV-specific CD8+ T
cell responses. Moreover, attenuated vaccines can mutate after administration and potentially
become virulent, causing health risks, e.g., as seen in polio virus vaccines [112,113]. So far, the
results of the Sanofi trials show that the attenuated CYD vaccine is very safe, with no evidence
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of ADE. Follow-up monitoring of these and future cohorts is important to show that the vac-
cine is safe over prolonged time periods [19]. The paradox of a DENV vaccine is thus that a
vaccine should be sufficiently virulent to induce high antibody titers yet still be attenuated to
be safe.

In summary, the recent Phase III trials showed safety and excellent seroconversion [24], al-
though seroconversion did not necessarily imply good efficacy, as shown by DENV2. A major
challenge for the future would be to define what assay and criteria predict successful immuni-
zation and clinical efficacy. Still, the CYD-TDV offers promise to prevent hospitalization and
severe dengue hemorrhagic fever, which is encouraging news. These CYD-TDV trials offer
plenty of clues to gain more knowledge about the human response against DENV, the cross-re-
activity with and potential cross-protection against flaviviruses, and the interpretation of anti-
body-based neutralization assays. Knowledge on this will aid future vaccine development
against other viruses and pathogens than DENV.

Key Learning Points
• Vaccines should preferably induce antibodies against quaternary structures.

• Distinct antibody repertoires are seen for primary and secondary infections.

• The CYD-TDV trials offer possibilities for retrospective analysis to identify correlates
of protection.

• To find correlates of protection, further validation and standardization of neutraliza-
tion assays is required.

• T cells could be more important in DENV immunity than previously appreciated.
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Lancet 380: 1559–1567.

In these reports, the efficacies of the CYD-TDV vaccines are reported for the first time,
based on large cohorts in Asia and Latin America. Although the efficacy against
DENV2 is quite enigmatic, the overall efficacy against severe disease and hospitaliza-
tion offers perspective.
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of Human Neutralizing Antibodies That Bind to Complex Epitopes on Dengue Viri-
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Here, the authors show that potently neutralizing antibodies appear to be directed to-
wards quaternary structures, thus providing insight on the requirements of a dengue
vaccine.

• Zellweger RM, Miller R, Eddy WE, White LJ, Johnston RE, et al. (2013) Role of Hu-
moral Versus Cellular Responses Induced by a Protective Dengue Vaccine Candidate.
PLoS Pathog 9: e1003723.

This paper shows the importance of T cells in immunity against dengue virus infections,
clearly advocating against a focus on antibodies alone.
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et al. (2014) Variability in Dengue Titer Estimates from Plaque Reduction Neutraliza-
tion Tests Poses a Challenge to Epidemiological Studies and Vaccine Development.
PLoS Negl Trop Dis 8: e2952

The translation from in vitro plaque reduction neutralization assays to in vivo protec-
tion has been seriously hampered by the lack of uniformity in the assays and controls.
With this paper, the authors are providing insight on the variance of the assays and def-
initions of neutralization.Moreover, clear solutions are suggested for the standardiza-
tion thereof.
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