
*For correspondence:

chenting@nibs.ac.cn

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 18

Received: 14 October 2019

Accepted: 03 January 2020

Published: 03 January 2020

Reviewing editor: Valerie

Horsley, Yale University, United

States

Copyright Lu et al. This article

is distributed under the terms of

the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Hair follicle stem cells regulate retinoid
metabolism to maintain the self-renewal
niche for melanocyte stem cells
Zhiwei Lu1,2, Yuhua Xie2, Huanwei Huang2, Kaiju Jiang2, Bin Zhou3,
Fengchao Wang2, Ting Chen2,4*

1Peking Union Medical College, Beijing, China; 2National Institute of Biological
Sciences, Beijing, China; 3Institute of Biochemistry and Cell Biology, Shanghai
Institutes for Biological Sciences, University of Chinese Academy of Sciences,
Beijing, China; 4Tsinghua Institute of Multidisciplinary Biomedical Research,
Tsinghua University, Beijing, China

Abstract Metabolites are major biological parameters sensed by many cell types in vivo,

whether they function as signaling mediators of SC and niche cross talk to regulate tissue

regeneration is largely unknown. We show here that deletion of the Notch pathway co-factor RBP-J

specifically in mouse HFSCs triggers adjacent McSCs to precociously differentiate in their shared

niche. Transcriptome screen and in vivo functional studies revealed that the elevated level of

retinoic acid (RA) caused by de-repression of RA metabolic process genes as a result of RBP-J

deletion in HFSCs triggers ectopic McSCs differentiation in the niche. Mechanistically the increased

level of RA sensitizes McSCs to differentiation signal KIT-ligand by increasing its c-Kit receptor

protein level in vivo. Using genetic approach, we further pinpointed HFSCs as the source of KIT-

ligand in the niche. We discover that HFSCs regulate the metabolite RA level in vivo to allow self-

renewal of neighboring McSCs.

Introduction
The concept of a ‘SC niche’ was first proposed by Schofield (1978), even though there was no direct

evidence that such a niche actually existed at that time. Since then, large strides have been made

towards understanding the cellular and molecular composition of SC niches in multiple experimental

systems (Crane et al., 2017; Sailaja et al., 2016; Chen et al., 2016). Now it’s widely accepted that

niche space plays dominant roles in SC fate establishment, maintenance, activation and SC related

disease initiation (Xu et al., 2015; Scadden, 2007; Clevers et al., 2014). Recently several studies

have revealed that SCs themselves actively organize the very niche space they occupy in vivo. For

example during early zebra fish development, the arrival of hematopoietic SCs triggers dynamic

remodeling of the perivascular niche (Tamplin et al., 2015). In medaka, neural SCs induce the forma-

tion of their physical niche during organogenesis (Seleit et al., 2017). However, less is known about

the role SCs might play in regulating the niche signaling environment, beyond their demonstrated

capacity to passively receive signaling inputs.

Mouse dorsal skin HFs regenerate continuously. Their cyclical bouts of growth (anagen), regres-

sion (catagen) and rest (telogen) are driven by the proliferation and stepwise differentiation of

HFSCs residing in the bulge area. McSCs also reside in the bulge, and the secondary hair germ

(sHG) located below the bulge (Nishimura et al., 2002). Both types of SCs remain undifferentiated

in their shared niche space and are coordinately activated at the onset of anagen to generate a pig-

mented hair shaft. Studies have identified numerous signaling inputs received by HFSCs and McSCs

respectively or collectively in their shared niche space. For example, BMPs and FGF18 are essential
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to maintain HFSCs in a dormant state (Hsu et al., 2011). TGF-b signaling is required to suppress

McSC proliferation and differentiation, while active Notch signaling via Hes1 is required for McSCs

survival (Moriyama et al., 2006; Nishimura et al., 2010). At the onset of anagen, the dynamic

changes of multiple signaling molecules activate hair regeneration (Greco et al., 2009). Among

them, Wnt signaling coordinates the activation of both HFSCs and McSCs (Rabbani et al., 2011);

KIT-ligand is necessary for McSC mobility and differentiation (Nishikawa et al., 1991); Nfib/Edn sig-

naling can regulate the differentiation of McSCs in collaboration with KIT or Wnt signaling

(Chang et al., 2013; Takeo et al., 2016). Compared to these well-studied morphogens, whether

metabolites can influence SC fate during tissue regeneration in vivo is still largely unknown.

Retinoic acid (RA) is the major product of carotenoid oxidation pathway and it can also be trans-

formed from Vitamin A (Marill et al., 2003). As a small molecule, RA can diffuse freely through cell

membrane and is essential for normal regulation of a wide range of biological processes including

development, differentiation, proliferation and apoptosis (Zile, 2004; Li et al., 2012; Glover et al.,

2006; Maden, 2006; Kelley et al., 1994; Niederreither et al., 2001). In skin, RA has long been

used as additive in makeup or acne cream (Orfanos et al., 1987). There are lots of studies about RA

and keratinocytes or fibroblasts. In makeup, RA is used to increase collagen synthesis

(Schwartz et al., 1990) and reduce keratinocyte differentiation (Yaar et al., 1981). In acne cream,

RA acts mainly as comedolytics, but anti-inflammatory actions have also been suggested

(Chivot, 2005). However, there are much fewer reports about how RA regulates melanocytes, espe-

cially in vivo.

RBP-J is a Notch pathway co-factor. When Notch signaling is inactive, RBP-J binds its target

genes and recruits repressive transcription factors (TFs) that silence gene transcription. Once a

Notch ligand (either Dll1-4 or Jag1-2) binds to a Notch receptor (mainly Notch1-3 in skin), the recep-

tor is then cleaved, and the intracellular domain (ICD) translocates into the nucleus and binds to

RBP-J. Subsequently, instead of recruiting repressive TFs, the complex starts to activate the tran-

scription of downstream genes (Borggrefe and Oswald, 2009). Previously, it has been reported

that Notch pathway is essential for skin epidermal cell differentiation, HF formation, dermal papillar

niche function and crosstalk between the epidermis and the HF (Lin et al., 2000; Kopan et al.,

2002; Lee et al., 2007; Rangarajan et al., 2001; Blanpain et al., 2006; Hu et al., 2010).

Unexpectedly, we found here that during normal homeostasis, the Notch pathway co-factor

RBP-J functions in HFSCs to suppress retinoid metabolic process genes. The increased level of RA

resulted from loss of RBP-J in HFSCs elevates the c-Kit protein level on McSCs and sensitizes them

towards KIT-ligand normally present in the niche. This reveals that beyond the SCs demonstrated

capacity to passively receive signaling inputs, they also play an essential role of safeguarding the dif-

ferentiation refractory niche environment by regulating metabolite level in vivo. The fact RA is the

messenger mediating the crosstalk between two types of SCs in a shared niche, reveals the previ-

ously unknown role of metabolites in regulating SC function during tissue regeneration and possibly

disease development in vivo.

Results

Specific ablation of RBP-J in HFSCs results in ectopic differentiation of
neighboring McSCs in the shared niche
Our previous studies discovered that the niche environment plays a dominant role in HFSC fate

establishment during morphogenesis (Xu et al., 2015). Since maintaining the undifferentiated state

is a defining feature of SCs, we decided to address the key question of how niche helps maintain

SCs stay undifferentiated. Based on our previous transcriptome and signaling pathway analysis

(Xu et al., 2015), we used Sox9-CreER to conditionally knock out (cKO) the canonical Notch pathway

co-factor gene Rbpj. First the labeling specificity of Sox9-CreER was determined by using the Sox9-

CreER::Ai14 mice. Ai14 allele was used to mark all Sox9-CreER expressing cells as RFP+. Tamoxifen

treatment from postnatal (P) day 1 to 4 results in specific labeling of HF epithelial cells including the

HFSCs, but not the McSCs (Figure 1A). Efficient RBP-J ablation by Sox9-CreER::Rbpj <fl/fl> in HF

epithelial cells was confirmed by RBP-J staining at the first telogen (Figure 1B).

Loss of RBP-J in HF epithelial cells does not lead to immediate loss of HFSC markers CD34 and

Sox9 (Figure 1B and Figure 1—figure supplement 1A), nor does the overall morphology of the
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telogen bulge change. But unexpectedly, we noticed the bulge region in the Sox9-CreER::RBP-J

cKO HFs show ectopic pigmentation at the telogen to anagen transition stage, which is not

observed in the WT HFs (Figure 1C and Figure 1—figure supplement 1B,C). This is very peculiar

because the McSCs, which also reside in the bulge region, are supposed to be undifferentiated, and

only their downstream progenies located in the lower HF bulb region undergo terminal differentia-

tion to help generate pigmented hair shaft during anagen. Based on melanin specific Masson-Fon-

tana staining and quantification, more than 60% of the Sox9-CreER::RBP-J cKO HFs start to show

ectopic pigmentation in the bulge region at telogen to anagen transition stage. This is even more

obvious in early anagen when about 90% of the bulge become pigmented, in comparison less than

20% of the WT HFs show pigmentation in the bulge region (Figure 1C).

This hair cycle-dependent ectopic differentiation of McSCs revealed a crosstalk between the HF

epithelial cells with McSCs. But the broad expression pattern of Sox9-CreER in all HF epithelial cells

cannot pinpoint the specific responsible cell type for this phenotype. Additionally, we also observed

aberrant terminal differentiation and total degeneration of the HF structure in the first anagen after

morphogenesis ablation of RBP-J in Sox9-CreER::RBP-J mice (Figure 1—figure supplement 1D,E).

This is consistent with previous publication that as the main co-factor of the canonical Notch path-

way RBP-J is required for HFSC downstream progenies terminal differentiation (Demehri and

Kopan, 2009). The degenerated HF structure prevents further dissection of the underlying cellular

and molecular mechanisms mediating the crosstalk between epithelial cells and McSCs in the shared

niche environment.

Figure 1. Ablation of Notch pathway effector RBP-J in bulge epithelial cells causes McSCs ectopic differentiation in the niche. (A) Representative

immunofluorescence images and quantification of Tamoxifen induced Sox9-CreER::Ai14 mice indicating efficient labeling of bulge epithelial cells but

not McSCs. DCT is a melanocyte marker. Tamoxifen was injected on P1-4 at anagen, dorsal skin samples were taken on P20 at telogen. (B)

Representative immunofluorescence images and quantification of CD34 and RBP-J in the bulge of WT and Sox9-CreER::RBP-J cKO HFs in dorsal skin.

Note the efficient ablation of RBP-J in both HFSCs (marked by CD34) and the inner layer CPLs in cKO compared to WT bulge. (C) Representative tail

skin wholemount melanin specific Masson-Fontana staining images and quantification of ectopic pigmentation in the bulge of WT and Sox9-CreER::

RBP-J cKO HFs at the telogen to anagen transition stages. Tamoxifen was injected on P1-4 at anagen, tail skin samples were taken on P14(catagen),

P15(telogen) and P16(anagen). All data are expressed as mean ± SD � 20 follicles are quantified each mouse. N = 3 at each time point. (*) p<0.05.

Scale bars = 10 mm.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. HF phenotype in Sox9-CreER::RBP-J cKO mice.
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To solve these problems, we generated a Krt6-CreER knockin mouse line to specifically KO RBP-J

in telogen CD34+ HFSCs but not the sHG cells, which proliferate and generate downstream proge-

nies undergoing differentiation in lower anagen HFs (Greco et al., 2009). To this end, we used

CRISPR/Cas9 to insert the IRES-CreER cassette after the Krt6a exon9 (Figure 2A). The resulting suc-

cessful insertion was confirmed by genotyping and sequencing. The labeling specificity of Krt6-

CreER was determined by using the Krt6-CreER::Ai6 mice. Ai6 allele marks all the Krt6-CreER

expressing cells as GFP+. When tamoxifen was injected during the second telogen, we found that

CD34+ HFSCs and Krt6+ companion layer cells (CPL) are efficiently labeled in close to 100% of the

HFs, but only less than 10% of HFs contain occasionally labeled cells in the sHG (Figure 2B and Fig-

ure 2—figure supplement 1A). FACS analysis indicates that ~80% of HFSCs in dorsal skin are

labeled using our Krt6-CreER line (Figure 2—figure supplement 1B).

To specifically ablate RBP-J in bulge cells but not sHG cells, Krt6-CreER::RBP-J mice were treated

with tamoxifen during the second postnatal telogen, which lasts several weeks (Figure 2—figure

supplement 1C). Restricted loss of RBP-J in HFSCs and CPL cells but not sHG cells was confirmed

by RBP-J staining at telogen (Figure 2C, Figure 2—figure supplement 1D). When cKO follicles

enter anagen, cells in the lower HF generated by telogen sHGs cells are all RBP-J positive, while the

upper HF bulge cells are all RBP-J negative (Figure 2D). Consequently, anagen follicles in the first

round are normal in the Krt6-CreER::RBP-J mice. This allows us to carry out in-depth cellular and

molecular study of the McSC phenotype observed. McSCs do not express Krt6 and the number of

McSCs in the bulge and their downstream progenies located in the bulb of anagen HFs are normal

following telogen cKO of RBP-J in Krt6-CreER::RBP-J mice (Figure 2—figure supplement 1E). Con-

sistent with the observed hair cycle dependent bulge pigmentation phenotype in Sox9-CreER::RBP-J

mice, we did not observe ectopic pigmentation or McSC abnormal differentiation in the telogen

bulge after RBP-J ablation in Krt6-CreER::RBP-J mice (Figure 2—figure supplement 1G,H). Only

when hair follicles spontaneously enter anagen can pigmentation be observed in cKO HFs (Fig-

ure 2—figure supplement 1I). Because the RBP-J cKO HFSCs generate the sHG cells and the even-

tual downstream progenies in later rounds of hair cycles, we observed abnormal terminal

differentiation and total degeneration of the HF structure in Krt6-CreER::RBP-J mice at later time

points (Figure 2—figure supplement 1F). The eventual HF degeneration in mutant skin precludes

the long-term observation of McSC ectopic differentiation phenotype.

To pinpoint if RBP-J null HFSCs are solely responsible for causing the McSCs ectopic differentia-

tion phenotype, we used wax to remove hair shaft and the attached CPL cells (Figure 2E). HF wax at

telogen only removes the club hair and the attached Krt6+ CPL cells but not the HFSCs (Figure 2F).

Consequently, the only RBP-J cKO cells left in HF are the HFSCs, and the RBP-J cKO CPL cells are

removed from the equation. Removal of CPL cells at telogen also triggers anagen entry (Chen et al.,

2012) (Figure 2G). This allows us to follow the hair cycle dependent ectopic differentiation of McSCs

in a temporally controlled fashion.

Cell apoptosis and proliferation are the same in bulge area between WT and cKO follicles

(Figure 2H and Figure 2—figure supplement 1J). After HF wax induced anagen entry, the cKO HFs

start to show ectopic pigmented in bulge at the telogen to anagen transition stage (Figure 2I,J).

Starting at D3 post wax, 90% of the cKO HFs contain pigmented bulge, compared to less than 20%

of WT HFs with the same phenomenon (Figure 2I). We also detect increased Tyrp1 levels in McSCs

of the cKO HFs starting at D2 post wax when the HFs are still in telogen, while in WT HFs the

expression of Tyrp1 is restricted to differentiated melanocytes located in the bulb of anagen HFs

(Figure 2J). Since the phenotype occurs after removal of the CPL cells, we conclude that McSCs are

influenced in a paracrine fashion by loss of RBP-J specifically in HFSC. It reveals an essential role of

HFSCs in maintaining a differentiation refractory niche environment for the neighboring McSCs.

RBP-J functions as a repressor in HFSCs to suppress retinoid metabolic
process genes
To understand the molecular mechanism mediating the crosstalk between HFSCs and McSCs in a

shared niche, we first characterized the expression pattern of RBP-J and its Notch pathway co-fac-

tors in HFs. We found RBP-J is expressed by most cells in HFs from the beginning of morphogenesis

to adult telogen (Figure 3A). In contrast, the active form of Notch1 ICD (N1ICD) is only detected in

the terminally differentiated cells in the pre-cortex cells of anagen HFs or CPL cells in telogen HFs,

but not in the HFSCs (Figure 3B). To examine the expression patterns of other Notch receptor ICDs
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Figure 2. Loss of RBP-J specifically in HFSC causes hair cycle dependent McSCs ectopic differentiation in the shared niche. (A) Schematic diagram of

CRISPR/Cas9-mediated knockin of CreER in the 3’ UTR of Krt6a locus. sgRNA targets downstream of Krt6a stop codon. Two pair of indicated primers

spanning the junctions of both homologous arms and the target sequences were used to validate correct insertion. (B) Representative

immunofluorescence image of Krt6-CreER::Ai6 labeling HFSCs in telogen bulge. Tamoxifen was injected on P55 at the second telogen, dorsal skin

Figure 2 continued on next page
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and active canonical Notch pathway downstream genes, we used FACS to isolate HFSCs and the dif-

ferentiated matrix cells of anagen HFs using Nfatc1-CreER::Ai14::Krt14H2BGFP mice (Figure 3—fig-

ure supplement 1A–C). Tamoxifen was injected at P12 to label HFSCs as Ai14+ cells in upper HFs.

HFSCs are isolated as Sca1-GFP+RFP+ cells. Sca1-GFPlow cells are sorted as matrix cells due to their

frequent cell division that dilutes H2BGFP signals. Specificity of the isolated cells were confirmed by

marker expression using Q-PCR: Nfatc1 and Sox9 for HFSCs; SHH, Hoxc13, Axin2 and Lef1 for

matrix cells (Figure 3D). Western blot analysis of these sorted cells revealed little or no expression

of N1ICD and N2ICD in the HFSCs, compared to high level of these two proteins in the matrix cells

(Figure 3C). No N3ICD was detected in either cell population. We then checked the expression pat-

tern of canonical Notch downstream target genes Hes1 and Hey1 using qPCR. Consistent with our

western blot results, they are much lower in HFSCs compared to differentiated matrix cells

(Figure 3D). In addition to anagen HFs, we also used FACS to isolate HFSC and the differentiated

CPL cells from telogen HFs using Krt6-CreER::Ai6 mice (Figure 3—figure supplement 1D,E). Simi-

larly, active Notch receptor ICDs and canonical Notch downstream targets are lower in HFSCs com-

pared to the differentiated CPL cells (Figure 3E,F). All these results indicate active Notch signaling

is absent in HFSCs and RBP-J serves as a repressor in them.

We next used FACS to isolate WT and cKO HFSCs from Krt6-CreER::RBP-J mice at D2 after wax

to profile their transcriptome difference using RNA-seq. Since RBP-J serves as a repressor in HFSCs,

we mainly focused on genes that were up regulated >1.5 fold (p<0.05) in cKO compared to WT

HFSCs (Supplementary file 1). Based on our Gene Ontology_Biological Process (GO_BP) analysis of

RNA-seq results and previous known factors that regulate melanocyte differentiation, we systemati-

cally examined the significantly enriched biological processes or signal pathways (Figure 3G). The

top category of our GO_BP analysis is lipid metabolic process. Using maker staining or western blot

analysis we found no difference in lipid deposition or organelles with lipid rich membrane structures

between WT and Krt6-CreER::RBP-J cKO HFs (Figure 3—figure supplement 2A–E). Another highly

ranked category is positive regulation of cell death. Since cell death and DNA damage have previ-

ously been reported to cause melanocyte differentiation (Inomata et al., 2009), we examined differ-

ent forms of cell death and DNA damage commonly related to cell death. We found no difference in

sensitive DNA damage marker gH2Ax, apoptosis marker cleaved Caspase3, or necrosis marker

p-MLKL between WT and cKO HFs (Figure 3—figure supplement 2F–H).

The hair cycle dependent ectopic differentiation of McSCs indicates signals involved in telogen to

anagen transition might play a role. Since Wnt signaling has been reported to mediate both HFSCs

and McSCs activation at this stage (Rabbani et al., 2011; Chang et al., 2013), we specifically

checked the level of Wnt signaling. RNA-seq results showed that Wnt3(~5X) and Axin2(~1.5X) were

Figure 2 continued

samples were taken two days later at telogen for analysis. Note the high labeling efficiency of both HFSCs (marked by CD34) and the inner layer CPLs

in telogen bulge. SG, sebaceous gland; Bu, bulge; sHG, secondary hair germ. (C) Representative immunofluorescence images of RBP-J in telogen

bulge of WT and Krt6-CreER::RBP-J cKO HFs. Tamoxifen was injected on P50-52 at telogen, samples were taken on P58 at telogen. Note the efficient

ablation of RBP-J in both layers of cells in the bulge of cKO compared to WT HF. (D) Representative immunofluorescence images of RBP-J in anagen

bulge of WT and Krt6-CreER::RBP-J::Ai14 cKO HFs. Note in all RFP+ cells RBP-J is ablated, while matrix is not affected. (E) Schematic diagram of wax

induced removal of CPL cells and subsequent telogen to anagen transition. (F) Representative immunofluorescence images of waxed hair shaft. Note

the presence of Krt6+ CPL cells, but not the CD34+ HFSCs. (G) Representative immunofluorescence images of HFs before and at 3 days (D3) after wax.

Krt6+ CPL cells are completely removed from the HF after wax, but CD34+ HFSCs remain intact. At D3 after wax HFs have entered anagen. (H)

Representative immunofluorescence images and quantification of Cleaved-Caspase3 at indicated time points of before and after wax. Catagen follicle

is used as positive control for staining. (I) Representative dorsal skin Masson-Fontana staining images and quantification of ectopic pigmentation in the

bulge of WT and Krt6-CreER::RBP-J cKO HFs at the telogen to anagen transition stages. Tamoxifen was injected on P50-52 at telogen, then CPL cells

were removed by wax on P54 to induce anagen entry. Dorsal skin samples were taken at indicated time points of before (D0) and after (D2/3/4) wax.

HFs were counter-stained by neutral red. Brackets indicate the bulge region where McSC ectopic differentiation is quantified. (J) Representative

immunofluorescence images and quantification of percentage of HF with Tyrp1+ McSCs. McSC located in the bulge area indicated by brackets were

labeled with DCT staining. Melanocyte differentiation marker Tyrp1 in DCT+ McSCs located in the bulge indicates ectopic differentiation. Percentage

of HFs with Tyrp1+ McSCs in WT and Krt6-CreER::RBP-J cKO HFs of dorsal skin were quantified. All data are expressed as mean ± SD � 15 follicles are

quantified each mouse. N = 3. Scale bars = 10 mm.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. HF phenotype in Krt6-CreER::RBP-J cKO mice.
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Figure 3. RBP-J functions as a repressor in HFSC and downregulates retinoid metabolic process genes. (A) Representative immunofluorescence images

of RBP-J demonstrate broad expression pattern in HF epithelial cells at all stages of hair cycle from morphogenesis to adult. Krt14 is a basal epithelial

cell marker. (B) Representative immunofluorescence images of Notch1 intracellular domain (N1ICD) show restricted pattern in differentiated cells

instead of HFSCs at different hair cycle stages. N1ICD activates canonical Notch signaling. (C) Western blot of N1ICD and N2ICD in FACS isolated

HFSCs and differentiated matrix cells from anagen HFs. Expression levels were normalized to Actin. (D) QPCR analysis of active canonical Notch

signaling downstream genes Hes1 and Hey1 in FACS isolated HFSC and matrix cells from anagen HFs. HFSC marker genes Nfatc1 and Sox9; matrix

cell marker genes Shh, Hoxc13, Axin2 and Lef1 were used to validate the correct cell populations used for analysis. (E) Western blot of N1ICD in FACS

isolated HFSCs and CPL cells from telogen bulge. Expression levels were normalized to Actin. (F) QPCR analysis of active canonical Notch signaling

downstream genes Hes1 and Hey1 in FACS isolated HFSC and CPL cells from telogen bulge. HFSC marker genes CD34 and Lgr5; CPL cell marker

genes BMP6 and FGF18 were used to validate the correct cell populations used for analysis. (G) Gene Ontology analysis of upregulated genes in

HFSCs of Krt6-CreER::RBP-J cKO compared to WT. HFSCs were isolated using FACS from dorsal skin at D2 after wax. Retinoid metabolic process

category is marked in red. (H) GSEA results showing enrichment of retinoid metabolic process genes in HFSCs of Krt6-CreER::RBP-J cKO compared to

WT. (I) QPCR analysis of retinoid metabolic process genes in FACS isolated HFSCs from WT and Krt6-CreER::RBP-J cKO HFs at D2 after wax. (J) QPCR

analysis of retinoid downstream targets genes in FACS isolated HFSCs from WT and Krt6-CreER::RBP-J cKO HFs at D2 after wax. All data are expressed

as mean ± SD. N � 3. (*) p<0.05; (**) p<0.01. Scale bars = 10 mm.

Figure 3 continued on next page

Lu et al. eLife 2020;9:e52712. DOI: https://doi.org/10.7554/eLife.52712 7 of 22

Research article Cell Biology Developmental Biology

https://doi.org/10.7554/eLife.52712


up-regulated in cKO HFSCs compared to WT (Supplementary file 1). We also found significant

increases in the level of nuclear b-catenin staining in McSCs of cKO HFs from Krt6-CreER::RBP-J

mice compared to WT, indicating higher Wnt signaling levels (Figure 3—figure supplement 2I). To

functionally test the relevance of Wnt signaling, we used the Wnt inhibitor LGK974 to inhibit the

total Wnt level in the niche (Figure 3—figure supplement 2I). We found after LGK974 administra-

tion, hair cycle was arrested in telogen and active Wnt signal marker nuclear b-catenin was dramati-

cally decreased (Figure 3—figure supplement 2I), indicating efficient blocking of Wnt signaling.

However, ectopic differentiation of the McSCs still persisted in the cKO HFs after LGK974 treatment

(Figure 3—figure supplement 2J). The number of McSCs also remains the same in WT and cKO tel-

ogen bulge after LGK974 treatment (Figure 3—figure supplement 2K). These results rule out ele-

vated Wnt signaling as the reason behind the observed phenotype.

Finally our GO_BP analysis revealed retinoid metabolic process genes as an unexpected category

up regulated in cKO HFSCs compared to WT (Figure 3G). Gene set enrichment analysis also showed

differences in retinoid metabolic process related genes between WT and cKO HFSCs (Figure 3H).

This result is confirmed by qPCR using FACS isolated HFSCs from cKO and WT telogen skin. Reti-

noid metabolic process genes such as ADH1, RBP2 and RDH1 are expressed at 3 ~ 4 fold higher in

HFSCs from Krt6-CreER::RBP-J cKO compared to WT HFs (Figure 3I). To examine whether RA level

is indeed higher in the cKO niche compared to WT, first we used qPCR to examine the expression

level of RA downstream genes in FACS isolated HFSCs. Several of them such as Cdkn1a, Crabp2,

Hbegf, and Lefty are statistically significantly higher in RBP-J cKO compared to WT HFSCs

(Figure 3J). We also measured the level of RA directly using ELISA assay. WT HFs contain ~50 pg

RA per million HFSCs, while the cKO HFs contain ~90 pg RA per million HFSCs (Figure 5B). These

results revealed that RBP-J functions as a repressor in HFSCs to suppress retinoid metabolic process

genes and consequently the level of RA in the niche shared by HFSCs and McSCs.

Chromatin states of target genes are changed in RBP-J cKO HFSCs
To delve deeper into the mechanism of how loss of RBP-J affects retinoid metabolic process genes

expression in HFSCs, we performed Assay for Transposase-Accessible Chromatin using sequencing

(ATAC-seq) using FACS isolated HFSCs from WT and Krt6-CreER::RBP-J cKO HFs. About 6000 in

95,000 peaks were more accessible in cKO HFSCs compared to WT HFSCs (Figure 4A). Relative to

the mouse genome, regions with similar accessibility in WT and cKO HFSCs were enriched at 5’ -

UTRs and exons. In contrast, regions with more accessibility in cKO HFSCs compared to WT were

enriched for promoter, which fits putative RBP-J binding regions (Figure 4B,C).

Next we examined closely at specific genes, particularly those that demonstrate increased expres-

sion in cKO HFSCs compared to WT. We found for canonical Notch signal downstream gene Hes1,

keratinocyte differentiation gene Krt10, and retinoid metabolic process gene Adh1, their promoters

and 5’ -UTRs were more accessible in cKO HFSCs compared to WT (Figure 4D). The DNA regions

that demonstrate changed accessibility also overlap with putative RBP-J binding motif based on

published RBP-J CHIP-seq analysis (Meredith et al., 2013; Castel et al., 2013). In contrast, genes

that do not show differential expression such as HFSC marker CD34 demonstrates similar accessibil-

ity in its promoter, 5’ -UTR and the whole gene region in cKO HFSCs compared to WT. To quantify

these differences, we used statistical analysis of normalized ATAC-seq reads from 3.5 kb upstream

to 3.5 kb downstream of indicated genes between WT and cKO: differences in ATAC-seq reads

were observed in Adh1, Krt10 and Hes1, but not in CD34 (Figure 4E).

To directly test whether RBP-J functionally suppress the expression of retinoid metabolic process

genes Adh1, we cloned the promoter region of ADH1 gene to drive the expression of luciferase. We

found overexpression of RBP-J significantly decreased the relative Adh1 promoter driven luciferase

level, but co-transfection of both RBP-J and N1ICD increased the relative Adh1 promoter driven

luciferase level (Figure 4F). These results prove that the promoter region of Adh1 is suppressed by

Figure 3 continued

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. FACS sorting strategy for HFSCs, CPL cells and matrix cells.

Figure supplement 2. Signal pathways that do not affect McSCs ectopic differentiation triggered by RBP-J loss in HFSCs.
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RBP-J, and the finding is consistent with the in vivo results. Taken together, after RBP-J ablation, the

chromatin states of some RBP-J targeted genes were changed and became more open and resulted

in higher transcriptional activity.

Figure 4. Chromatin accessibility change after loss of RBP-J in HFSCs. (A) ATAC-seq signal comparison between FACS isolated HFSCs from WT and

Krt6-CreER::RBP-J cKO HFs at D2 after wax. Each dot represents an ATAC-seq peak. Regions with more accessibility in cKO than in WT cells (red) vs.

more accessibility in WT than in cKO cells (blue) are indicated. (B) Pie chart showing the classification of ATAC-seq peaks from (A) compared with the

mouse genome (mm10). (C) Log2-fold enrichment of the genomic classes shown in (B) relative to the whole genome. (D) ATAC-seq track signals at four

representative loci (Adh1, Krt10, Hes1 and CD34). RBP-J putative binding motifs are highlighted by pink (strong) and green (weak) boxes. (E) Statistic

analysis of normalized ATAC-seq reads from 3.5 kb upstream to 3.5 kb downstream of indicated genes between WT and cKO. Data are showed in box-

whisker from min to max. (*) p<0.05; (**) p<0.01. (F) In vitro luciferase assay for Adh1 promoter activity with or without RBP-J or N1ICD using cultured

mouse keratinocytes. N = 3 and data are mean ± SD. (*) p<0.05.

Lu et al. eLife 2020;9:e52712. DOI: https://doi.org/10.7554/eLife.52712 9 of 22

Research article Cell Biology Developmental Biology

https://doi.org/10.7554/eLife.52712


Increased retinoic acid from RBP-J null HFSCs promotes ectopic
differentiation of McSC in the niche by elevating c-Kit protein level of
McSCs
To functionally test whether RA is involved in promoting McSC ectopic differentiation in the niche,

we used the RA synthesis inhibitor WIN18446 to treat WT and Krt6-CreER::RBP-J cKO skin

(Figure 5A). After treatment, RA level in cKO HFs was decreased from ~90 pg RA per million HFSCs

to ~30 pg RA per million HFSCs, as measured by ELISA assay using FACS isolated HFSCs

(Figure 5B). RA levels in other cell types (CPL, HG and matrix) are also examined and no significant

difference was observed (Figure 5—figure supplement 1A–C). The ectopic pigmentation in cKO

bulge was efficiently rescued by WIN18446 treatment, but not vehicle treatment (Figure 5C). Com-

pared to ~80% of cKO HFs showing ectopic pigmentation in the bulge, only about 20% of cKO HFs

did after treatment with WIN18446. Then we examined the mRNA level of melanocyte marker genes

of FACS isolated McSCs from WT and Krt6-CreER::RBP-J cKO skin with WIN18446 or vehicle treat-

ment (Figure 5D). We found that even though McSC markers such as DCT and c-Kit levels were simi-

lar in all four groups examined, melanocyte lineage master regulator MITF and melanocyte

differentiation marker Tyrp1 was significantly down regulated in McSCs isolated from cKO HFs after

RA synthesis inhibitor WIN18446 treatment, consistent with the ectopic pigmentation change. This

result revealed that RA is necessary to induce ectopic McSC differentiation in the aberrant niche of

Krt6-CreER::RBP-J cKO HFs.

To test whether RA along is sufficient to trigger McSC differentiation in a WT niche at the telogen

to anagen transition stage, we treated C57 WT dorsal skin with different amounts of RA and

observed a dosage dependent effect (Figure 5E). At 2 nM ~200 nM RA dosage,~50% of dorsal skin

HFs show ectopic pigmentation in the bulge at D4 after wax. Considering other cell types may also

be affected by RA topical treatment in vivo, we FACS isolated primary telogen McSCs and cultured

them in vitro and treated them with different concentration of RA (Figure 5—figure supplement

1D–F). We found that at 6 hr timepoint, 1 to 100 nM RA is sufficient to induce higher c-Kit and

Tyrp1 level but at 12 hr timepoint, this induction is diminished (Figure 5F). This demonstrates RA

can induce McSCs differentiation in a time and dosage dependent manner. Together these results

indicate that elevated level of RA is both necessary and sufficient to induce ectopic McSC pigmenta-

tion in the niche in hair cycle dependent fashion.

During our FACS isolation of McSCs from telogen skin, we noticed a consistent pattern of

increased c-Kit levels on McSCs isolated from the Krt6-CreER::RBP-J cKO and Sox9-CreER::RBP-J

cKO mice compared to WT. Since c-Kit is the receptor of the KIT-ligand and plays an essential role

in melanocyte maturation and differentiation (Ito et al., 1999), we used FACS to quantify the c-Kit

protein level on McSCs (Figure 5—figure supplement 1D–F). We found that although percentage

of total c-Kit+ McSC is not changed (Figure 6—figure supplement 1A), the percentage of c-Kithigh

cells among the c-Kit+ cells increased 2-fold in the Krt6-CreER::RBP-J cKO and Sox9-CreER::RBP-J

cKO mice compared to WT (Figure 6A, Figure 6—figure supplement 1B). It has been reported

that RA can increase c-Kit protein level by influencing its translation in testes tissue (Busada et al.,

2015). Since RA synthesis inhibitor WIN18446 can efficiently rescue the ectopic pigmentation pheno-

type in cKO, we then asked whether or not the increased level of c-Kit on McSCs from cKO skin was

due to the changed RA level in vivo. After WIN18446 treatment, the percentage of c-Kithigh/c-Kit+

did not change in WT skin, but the increased percentage of c-Kithigh/c-Kit+ from Krt6-CreER::RBP-J

cKO skin was dramatically decreased to level slightly lower than WT (Figure 6A). The numbers of

McSCs remain the same in WT and cKO telogen bulge after WIN18446 treatment (Figure 6—figure

supplement 1C). Then we tested whether RA is sufficient to enhance c-Kit protein level. In vivo, we

quantified c-Kit RFI(Relative Fluorescence Intensity) by immunofluorescence after topical RA treat-

ment and found significant increase (Figure 6B). The effect of RA on c-Kit level in vivo was not due

to change in transcription level because based on our qPCR result, the c-Kit mRNA levels were simi-

lar in FACS isolated McSCs from WT and Krt6-CreER::RBP-J cKO skin (Figure 5D). Mechanistically

we found that when we over-expressed c-Kit 5’UTR-GFP fusion protein under the control ubiquitous

promoter CMV in 293 t cells, GFP level is repressed if we co-expressed RA receptor RARa, and this

repression can be released when 1 mM RA is added into the medium (Figure 6C) (Poon and Chen,

2008). To test whether or not the increased level of c-Kit on McSCs can lead to differentiation, we

used in vitro assay to overexpress c-Kit in cultured primary melanocytes and analyzed melanocyte
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Figure 5. Increased RA from RBP-J null HFSCs causes McSCs to differentiate abnormally in the niche. (A) Schematic diagram of retinoic acid synthesis

inhibitor treatment experiment. Tamoxifen was injected on P50-52 at telogen to induce ablation of RBP-J in Krt6-CreER::RBP-J mice, then CPL cells

were removed by wax on P55 to induce anagen entry. Retinoic acid synthesis inhibitor WIN18446 or vehicle was administered from P53 to P58 spanning

the telogen to anagen transition stage. HFSCs were harvested at P57 telogen for RA ELISA detection and dorsal skin samples were taken at P59 for

Figure 5 continued on next page
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differentiation marker Tyrp1 by qPCR (Figure 6D). The culture medium of melanocytes mandates

addition of the KIT-ligand SCF. In the presence of ligand, overexpression of c-Kit in melanocytes

resulted in about two fold increase in the Tyrp1 mRNA level, which is similar to the level of increase

observed in the FACS isolated McSCs from cKO skin. Taken together, these results show that

increased level of RA from the RBP-J null HFSCs leads to increased level of c-Kit protein on McSCs

and the ectopic pigmentation phenotype in the mutant niche.

Hair cycle dependent increase of HFSC secreted SCF induces aberrant
differentiation of RA sensitized McSC in the shared niche
To directly test whether the increased level of c-Kit on McSCs is responsible for the ectopic differen-

tiation phenotype in vivo, we blocked the downstream signaling pathways of c-Kit using inhibitors.

There are two major pathways that function downstream of c-Kit: the MEK pathway and the mTOR

pathway, which can be efficiently blocked by PD0325901 and rapamycin respectively (Barrett et al.,

2008; Edwards and Wandless, 2007). The mTOR pathway inhibitor rapamycin can effectively arrest

HFs in telogen as reported before (Kellenberger and Tauchi, 2013). But the ectopic pigmentation

phenotype still persisted in Krt6-CreER::RBP-J cKO bulge after rapamycin treatment (Figure 7—fig-

ure supplement 1A). On the other hand, we observed higher MEK downstream pERK signaling in

McSCs in cKO follicles (Figure 7A), and also found treatment of MEK pathway inhibitor PD0325901

efficiently rescued the ectopic pigmentation phenotype in mutant skin (Figure 7B). The number of

McSCs remains the same in WT and cKO telogen bulge after PD0325901 treatment (Figure 7—fig-

ure supplement 1B). Notably, the PD0325901 treat can also significantly diminish the differentiation

of melanocyte in the matrix of anagen HFs, which is consistent with the known function of c-Kit for

melanocyte terminal differentiation (Ito et al., 1999). So, together these results confirmed that the

increased level of c-Kit on McSCs is required for the ectopic differentiation of McSCs via the c-Kit-

MEK pathway.

The SC niche is often considered to be devoid of differentiation signals that might impair the self-

renewal of SCs. So we were curious about where the source of the KIT-ligand would be for the

McSC c-Kit receptor to get activated and initiate the ectopic differentiation program. The hair cycle

dependent ectopic differentiation of McSCs peaks at D3 post anagen initiation. At this stage the

HFs are elongated with the matrix and dermal papilla far away from the bulge region where the

ectopic pigmentation occurs. Considering the distance between the matrix and bulge at this time

point, we turned our focus to the closest neighbor of McSCs: the HFSCs. First we did qPCR analysis

of KIT-ligand SCF in FACS isolated HFSCs from WT and Krt6-CreER::RBP-J cKO dorsal skin at both

telogen and anagen. At both hair cycle stages we did detect SCF expression in the HFSCs but there

was no difference between the WT and cKO. However, when HFSCs transitioned from telogen to

anagen, there were significant increase in the level of SCF mRNA in both WT and cKO (Figure 7C).

To functionally test whether or not the observed increase of KIT-ligand SCF in HFSCs at the telo-

gen to anagen transition stage is the source of differentiation signal that triggers the hair cycle

dependent ectopic differentiation of McSCs in the mutant niche, we genetically ablated SCF

together with RBP-J to see if this can rescue the phenotype. When compared to Krt6-CreER::RBP-J

cKO, the Krt6-CreER::RBP-J::SCF cKO completely rescued the McSC ectopic differentiation pheno-

type in the bulge area without affecting terminal differentiation of melanocytes in the matrix

Figure 5 continued

analysis. (B) ELISA assay to measure the level of retinoic acid in FACS isolated HFSCs from WT and Krt6-CreER::RBP-J cKO dorsal skin after different

treatments. (C) Representative dorsal skin Masson-Fontana staining images and quantification of ectopic pigmentation in the bulge of WT and Krt6-

CreER::RBP-J cKO HFs after different treatments as indicated in (A). (D) Schematic diagram and qPCR analysis of melanocyte lineage or differentiation

related genes in FACS isolated McSCs from WT and Krt6-CreER::RBP-J cKO HFs after indicated treatments. (E) Representative dorsal skin Masson-

Fontana staining images and quantification of ectopic pigmentation in the bulge of WT HFs after topical treatment with indicated amount of RA

treatment. CPL cells were removed by wax on P55 to induce anagen entry. Retinoic acid was administered from P53 to P58 spanning the telogen to

anagen transition stage in WT mice. Dorsal skin samples were taken at P59 for analysis. (F) QPCR analysis of c-Kit and Tyrp1 expression level on

cultured primary McSCs isolated from telogen HFs after treatment of RA with indicated dosage and time. All data are expressed as mean ± SD >= 15

follicles are quantified each mouse. N >= 3. (*) p<0.05; (**) p<0.01; (***) p<0.001. Scale bars = 10 mm.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. FACS sorting strategy, validation and quantification of McSCs and other cell types.
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(Figure 7D). Furthermore, the expression of melanocyte differentiation marker Tyrp1 was also down

regulated in the Krt6-CreER::RBP-J::SCF cKO HFs (Figure 7E). This genetic rescue experiment con-

firms that it is the KIT-ligand originated from HFSCs that activates the c-Kit-MEK pathway to induce

McSC ectopic differentiation in the mutant niche. We also checked SCF level in rapamycin treated

mice and found although hair cycle is delayed after rapamycin treatment, SCF level is still increased

in HFSCs comparing to that in telogen (Figure 7—figure supplement 1C), which can explain the

occurrence of ectopic pigmentation. It’s worth emphasize that the level of KIT-ligand SCF in HFSCs

was not changed between WT and Krt6-CreER::RBP-J cKO skin (Figure 7C). So this striking rescue

effect by ablation of SCF revealed that the McSCs niche environment is not devoid of differentiation

signals. McSC maintain self-renewal ability by expressing low level of c-Kit to remain insensitive to

Figure 6. RA from cKO HFSCs enhances c-Kit protein level on McSCs that leads to abnormal differentiation. (A) Schematic diagram, FACS profiles and

quantification of c-Kit+ McSCs in telogen HFs from WT and Krt6-CreER::RBP-J cKO mice after indicated treatments. Tamoxifen was injected on P50-52

at telogen to induce ablation of RBP-J in Krt6-CreER::RBP-J mice, then CPL cells were removed by wax on P55 to induce anagen entry. Retinoic acid

synthesis inhibitor WIN18446 or vehicle was administered from P53 to P56. Dorsal skin samples were taken at P57 at telogen for analysis. c-Kithigh

population was further gated from c-Kit+ population and quantified by c-Kithigh/c-Kit+ percentage. (B) Representative immunofluorescence images and

quantification of c-Kit RFI (Relative Fluorescence Intensity) after indicated topical RA treatments on C57 WT mice. (C) Western blot and quantification of

GFP or UTR-GFP protein level with or without RARa and RA. (D) QPCR analysis of Tyrp1 mRNA level in cultured primary melanocytes with or without

overexpression of c-Kit. All data are expressed as mean ± SD � 15 follicles are quantified each mouse. N = 3. (*) p<0.05; (**) p<0.01; (***) p<0.001.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Quantification of c-Kit level on McSCs and numbers of melanocytes.
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Figure 7. Hair cycle dependent increase of HFSC secreted SCF induces aberrant differentiation of RA sensitized McSC in the shared niche. (A)

Representative immunofluorescence images and quantification of pERK+ McSCs in WT and Krt6-CreER::RBP-J cKO HFs. (B) Representative dorsal skin

Masson-Fontana staining images and quantification of ectopic pigmentation in the bulge of WT and Krt6-CreER::RBP-J cKO HFs after treatment with

vehicle or MEK inhibitor PD0325901. (C) QPCR analysis of SCF mRNA in FACS isolated HFSCs from WT and Krt6-CreER::RBP-J cKO dorsal skin at both

Figure 7 continued on next page
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the differentiation signals. While their neighboring HFSCs are not just passive receiver of signaling

inputs from the niche, they actively suppress differentiation-sensitizing signals in the niche, such as

RA level, to help maintain a differentiation refractory niche environment (Figure 7F).

Discussion
Fate determination of normal and malignant epidermal cells can be influenced by RA level in culture

(Kopan et al., 1987; Kopan and Fuchs, 1989), but it is not known whether endogenous RA can reg-

ulate skin SC function in vivo. Here we uncovered an unexpected role of HFSC regulating the RA

level in vivo by RBP-J suppressed retinoid metabolic process genes. The increased endogenous level

of RA emanating from HFSCs as a result of RBP-J loss disrupts the self-renewal of McSCs in the

same niche space. The fact a metabolite, RA, is the messenger mediating the cross talk of two types

of SCs in a shared niche, revealed the previously unknown function of metabolite as a signaling mol-

ecule in vivo. Next it would be essential to probe more broadly into whether physiological variations

of other metabolite levels could impact on SC fate choices and function during tissue regeneration

and disease development, as indicated by recent finding in hematopoietic system

(Agathocleous et al., 2017). Previous studies have revealed that Nfib/Edn signaling can regulate

the differentiation of McSCs in collaboration with KIT or Wnt signaling (Chang et al., 2013;

Takeo et al., 2016). In our RNA-seq, Nfib expression is the same in Ctrl and cKO HFSCs (232.198

v.s. 203.073). In the Nfib mutants mice the melanocyte number is increased in bulge that is not

observed in our RBP-J mutants. Edn family genes are either not expressed or shows decreased

expression in cKO HFSCs. (Edn1: 0.237 v.s. 0.155; Edn2: 4.10 v.s. 1.75; Edn3: 0.073 v.s. 0). We have

also functionally ruled out Wnt playing a role in the phenotype. Besides the well-studied morpho-

gens, we discover that metabolites represent an entirely new realm of signaling molecules that medi-

ates SC and niche cross talk, and their potential functions warrant further studies in the other

systems under homeostasis and pathological conditions.

Given the current understanding that niche plays dominant roles in SC fate determination, main-

tenance, and even disease initiation (Xu et al., 2015; Scadden, 2007; Clevers et al., 2014), SCs are

often perceived as passive recipients of the niche signaling and act as they were told. Recent reports

started to emerge that in some cases SCs actually play instructive roles in the physical niche forma-

tion during morphogenesis (Tamplin et al., 2015; Seleit et al., 2017). Whether these are exceptions

rather than the rule, and whether after the niche has been established, SCs can also regulate the

niche signaling environment are less clear. Unexpectedly, we found here that the niche shared by

HFSCS and McSCs is not devoid of differentiation signal. In fact the HFSCs secreted KIT-ligand is

sufficient to induce the differentiation of neighboring McSCs in the niche, when the c-Kit protein

level on McSCs is elevated by increased RA levels in the niche. During normal homeostasis, the

Notch pathway co-factor RBP-J functions in HFSCs to suppress the retinoid metabolic process

Figure 7 continued

telogen and anagen. (D) Representative dorsal skin Masson-Fontana staining images and quantification of ectopic pigmentation in the bulge of WT,

Krt6-CreER::RBP-J, Krt6-CreER::SCF and Krt6-CreER::RBP-J::SCF cKO HFs at the telogen to anagen transition stage. Tamoxifen was injected on P50-52

at telogen, then CPL cells were removed by wax on P54 to induce anagen entry. Dorsal skin samples were taken at D4 after wax. HFs were counter-

stained by neutral red. Brackets indicate the bulge region where McSC ectopic differentiation is observed. (E) Representative immunofluorescence

images and quantification of percentage of HF with Tyrp1+ McSCs. McSC located in the bulge area indicated by brackets were labeled with DCT

staining. Melanocyte differentiation marker Tyrp1 in DCT+ McSCs located in the bulge indicates ectopic differentiation. Percentage of HFs with Tyrp1+

McSCs in WT, Krt6-CreER::RBP-J, Krt6-CreER::SCF and Krt6-CreER::RBP-J::SCF cKO HFs in dorsal skin were quantified. (F) Schematic diagram of HFSC

expressed RBP-J regulates retinoic acid metabolic process to maintain the differentiation refractory niche for neighboring McSC. During telogen to

anagen transition the SCF ligand emanating from HFSCs increases, but co-occupant McSCs in the shared niche do not respond to the differentiation

signal due to their low c-Kit protein level. In the absence of RBP-J in HFSCs, retinoic acid is increased after de-repression of retinoid metabolic process

genes such as Adh1. Increased retinoic acid from HFSCs enhances c-Kit protein level in McSC and sensitizes them to the increased SCF level in bulge

at the telogen to anagen transition stage. This results in defect in McSC self-renewal and ectopic differentiation in the niche. All data are expressed as

mean ± SD � 15 follicles are quantified each mouse. N = 3. (*) p<0.05; (**) p<0.01.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Effect of Rapamycin or RA treatments on McSCs.
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genes. This reveals that HFSCs play an instructive role in maintaining a differentiation refractory

niche environment for the neighboring McSCs.

Retinoid is a common ingredient in daily makeup or cream for acne treatment. If RA can induce

McSC differentiation and possible stem cell loss later on, it will become a concern. To test if McSCs

will lose their number, we treated C57 WT mice with topical RA and followed McSC number after

one hair cycle (Figure 7—figure supplement 1D). We found that under concentration (1 mg) similar

to daily use (1 ~ 5 mg), there is no obvious difference of McSC number comparing to vehicle group,

which means RA is safe and will not lead to McSC loss during our daily care. Interestingly, when we

treated with lower concentration (1 ng), there is a slight but significant increase in McSC number.

This may result from some compensational mechanism between stem cells and possibly could be

used to restore melanocyte number in natural hair graying process and diseases that result in mela-

nocyte loss.

Materials and methods

Mice and animal treatment
Sox9-CreER (Xu et al., 2015) and Krt6-CreER were generated by the NIBS transgenic center. We

generated the Krt6-CreER mice by integrating IRES-CreERT2-SV40pA cassettes into the 3’ UTR of

the endogenous mouse Krt6a gene via Cas9/RNA mediated gene targeting in zygotes. The insertion

site is before the tgctcagagccccgagttcaggg sequence. RBP-J flox mice were kindly provided by Dr.

Tasuku Honjo (Oka et al., 1995). Nfatc1-CreER mice were generated and provided by Dr. Bing

Zhou (Tian et al., 2017). K14-H2BGFP mice were kindly provided by Dr. Elaine Fuchs. SCF flox mice

have been described previously (Ding et al., 2012). cKO was achieved with intraperitoneal injection

with 10 mg/mL tamoxifen (Sigma) in sunflower oil (Sigma) (1 mg per 10 g body weight every time)

from P1 to P4 during morphogenesis or from P50 to P52 during homeostasis. Wax was performed

at P54 without specification. For Wnt inhibitor treatment, LGK974 was formulated 5 mg/mL in 0.5%

MC/0.5% Tween 80 and administered by oral gavage at 3 mg/kg body weight every time from P54

to P57. Dorsal skin was harvested at P58. For RA synthesis inhibitor treatment, WIN 18446 was sus-

pended in 1% gum tragacanth and administered orally 100 mg/g body weight each time from P53 to

P58. Dorsal skin was harvested at P59. For mTOR inhibitor treatment, 10 mg/ml rapamycin in etha-

nol was diluted in a solution of 5% Tween 80 and 5% PEG-400 in sterile water and then injected

intraperitoneally 0.5 mg/g body weight each time from P53 to P58. Dorsal skin was harvested at P59.

For MEK inhibitor treatment, PD0325901 was formulated in a solution of 30% PEG 400 and 5%

Tween 80 in sterile water and administered orally 20 mg/kg body weight from P54 to P57. Dorsal

skin was harvested at P58. All mice were maintained in an SPF facility, and the procedures used

were consistent with the National Institute of Biological Sciences guide for the care and use of labo-

ratory animals.

Histology and immunofluorescence
Whole-mount tails were treated with 50 mM EDTA to separate the epidermis from the dermis. Mela-

nin staining was performed using a Fontana–Masson stain kit (Junrui biotech Inc) according to the

product instructions. For frozen sections, tissues were embedded in O.C.T compound and frozen.

Sections (15–30 mm) were fixed in 4% paraformaldehyde (PFA) for 10 min, washed, and blocked for

1 hr in blocking buffer (2% normal donkey serum, 1% BSA, 0.3% Triton in PBS). MOM Basic kit (Vec-

tor Laboratories) was used for blocking when primary antibodies were generated from mouse. Pri-

mary antibodies were diluted in blocking buffer and incubated at 4˚C O/N. Samples were washed in

PBS and incubated with 2nd antibody for 1 hr at RT. Samples were then washed and mounted with

DAPI in 50% glycerol for imaging. Immunofluorescence images were taken with Nikon A1-R confocal

microscope and analyzed with ImageJ. N1ICD, RBP-J, and b-catenin were amplified with ABC kit

(vector) according to the manufacturer’s protocols. The antibodies used were as follows: anti-DCT

(homemade), anti-CD34 (ebioscience), anti-RBP-J (active motif), anti-Tyrp1 (homemade), anti-b-cate-

nin (Sigma), anti-Krt14 (homemade), anti-Sox9 (homemade), anti-Krt6 (homemade), anti-cleaved

Notch1(CST), anti-P-cad (R and D), anti-cleaved caspase 3 (CST), anti-yH2Ax (CST) and anti-pERK1/2

(CST).
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Isolation of cells and FACS
For isolation of anagen cells, skins were first incubated in 0.25% collagenase (Sigma) in HBSS

(GIBCO) at 37˚C for 1–2 hr to digest the dermis. Next, the digested tissues were centrifuged and

resuspended in 0.25% Trypsin (GIBCO) and incubated at 37˚C for 20 min with gentle shaking. Sin-

gle-cell suspensions were obtained by pipetting gently and filtering through 70 mm strainers, fol-

lowed by 40 mm strainers. Staining buffer (PBS with 5% FBS treated with Bio-Rad Chelex to remove

calcium) was added to inactivate trypsin, and cells were collected by centrifugation for 5 min at

300 � g. Cell suspensions were incubated with the appropriate antibodies diluted in staining buffer

for 15 min at 4˚C. For the isolation of telogen cells, subcutaneous fat was removed from skins with a

scalpel. Skins were placed on 0.25% trypsin at 37˚C for 30 min with the dermis side facing down.

Skins were then gently scalped from the epidermis to isolate epidermal cells and filtered, centri-

fuged, and stained as above. The following antibodies were used: CD34–Alexa 660 (eBioscience),

a6–phycoerythrin (eBioscience), Sca1–PE-Cy7 (eBioscience), and c-Kit-APC (eBioscience).

Western blot analysis
Denatured protein extracted from isolated cells was loaded on a 10% SDS-PAGE gel, electrophor-

esed, and then transferred onto a PVDF membrane. PVDF membranes were blocked with 5% fat-

free milk, and the membranes were then probed with anti-N1CD (CST), anti-N2ICD (CST), anti-

Actin-HRP (MBL), anti-Flag (Abmart), anti-RARa (Santa Cruz) and anti-mouse-p-MLKL (Abcam) at 4˚C

O/N. Blots were then incubated with secondary antibody. Peroxidase activity on the membrane was

visualized on X-ray film using the ECL western blotting detection system.

RNA isolation and quantitative PCR
Total RNA was isolated from FACS-purified cells lysed with Trizol (GIBCO) followed by extraction

using a direct-Zol RNA mini prep kit (Zymo research). An equal amount of RNA was added to a

reverse-transcriptase reaction mix (Vazyme). Expression levels were normalized to PPIB. Quantitative

PCR was conducted using a CFX96TM Real-Time system (Bio-RAD) with SYBR FAST qPCR Master

Mix (2X) (Kapa). All primer pairs were designed for the same cycling conditions, which were: 3 min at

95˚C; 40 cycles of 5 s at 95˚C, 30 s at 60˚C. qPCR primers are listed in Supplementary file 2.

ELISA
HFSCs and other cell types are isolated as mentioned above and 0.5 million cells are harvested and

washed three times with ice cold PBS to remove serum. Cells are resuspended in 100 mL RIPA buffer

(50 mM Tris pH8.0, 150 mM NaCl, 1.0% NP40, 0.5% DOC, 0.1% SDS) and lyse with interval vortex

on ice for 30 min. After centrifugation, supernatant is transferred into a new tube to detect RA with

Mouse Retinoic Acid ELISA kit (Cusabio). ELISA follows instructions on the website of Cusabio (www.

cusabio.com). Minimal light exposure is ensured during whole process.

In vitro luciferase reporter assay
Adh1 promoter sequence (5 kb upstream of TSS site) is cloned into luciferase reporter vector. Kerati-

nocytes are transfected with indicated plasmids by lipofectamine 3000. 48 hr later transfected cells

are lysed to detect luminescence with Bright-Glo luciferase assay system from Promega.

In vitro RARa and c-Kit 5’UTR interaction assay
293 t cells are transfected with pcDNA-RARa and 24 hr later transfected with pcDNA-GFP or

pcDNA-UTR-GFP. 3 hr post GFP transfection, vehicle or 1 mM RA is added for 3 hr and cells are har-

vested and lysed for western blot.

ATAC-seq
ATAC-seq is performed with freshly FACS isolated HFSCs according to Omni-ATAC protocol

(Corces et al., 2017). Briefly, 50,000 live cells are harvested and resuspended in 50 mL ATAC-Resus-

pension Buffer (RSB) containing 0.1% NP40, 0.1% Tween-20, and 0.01% Digitonin and incubate on

ice for 3 min. The lysis is washed out with 1 mL cold ATAC-RSB containing 0.1% Tween-20 and invert

tube three times to mix. Spin to pellet nuclei and resuspend in 50 mL of transposition mixture by

pipetting up and down six times. Transposition mix = (25 mL 2x TD buffer, 2.5 mL transposase (100
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nM final), 16.5 mL PBS, 0.5 mL 1% digitonin, 0.5 mL 10% Tween-20, 5 mL H2O). Incubate reaction at

37˚C for 30 min in a thermomixer with 1000 RPM mixing. The transposed DNA was recovered with

Zymo DNA clean and concentrator-5. Library was prepared with Nextera DNA library Prep Kit. PE-

150 was chosen as sequencing method.

Sequencing data analysis
RNA samples from FACS-purified cells were submitted to the Biodynamic Optical Imaging Center of

Peking University for quantification, RNA-seq library preparation, and sequencing. The libraries were

sequenced on the Illumina HiSeq 2500 platform using the Pair-End 2 � 100 bp sequencing strategy.

For analysis, data were mapped to the mouse genome (GRCm38/mm10), using TopHat (v2.0.13)

with the default settings. Genes with significantly differential expression (p�0.05 and FC > 1.5) were

chosen for further analysis. Gene ontology (GO) analysis of genes was done using DAVID (Database

for Annotation, Visualization, and Integrated Discovery). For gene set enrichment analysis (GSEA,

Broad Institute), FPKM values (RNA-seq) were compared to the curated gene sets (C2), and the

gene ontology gene sets (C5) of the Molecular Signature Database (MsigDB) using the Signal2Noise

metric and 1000 gene set-based permutations. ATAC-seq reads were aligned to the mouse genome

(mm10) using Bowtie2 (Langmead and Salzberg, 2012). Mitochondrial reads were excluded from

downstream analysis. Data tracks were visualized by Integrative Genomics Viewer (IGV). Peak calling

was performed by MACS2 (Zhang et al., 2008). ChIP-seq data were obtained from previous paper

(Castel et al., 2013; Meredith et al., 2013). RBP-J binding motif was discovered with Homer2 de

novo motif analysis. Core binding motif discovered was GTG(G/A)GAA (strong), GCG(G/A)GAA

(weak) according to previous paper (Bartels et al., 2011).
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