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ABSTRACT Forward Wright–Fisher simulations are powerful in their ability to model complex demography
and selection scenarios, but suffer from slow execution on the Central Processor Unit (CPU), thus limiting
their usefulness. However, the single-locus Wright–Fisher forward algorithm is exceedingly parallelizable,
with many steps that are so-called “embarrassingly parallel,” consisting of a vast number of individual
computations that are all independent of each other and thus capable of being performed concurrently.
The rise of modern Graphics Processing Units (GPUs) and programming languages designed to leverage
the inherent parallel nature of these processors have allowed researchers to dramatically speed up many
programs that have such high arithmetic intensity and intrinsic concurrency. The presented GPU Optimized
Wright–Fisher simulation, or “GO Fish” for short, can be used to simulate arbitrary selection and demo-
graphic scenarios while running over 250-fold faster than its serial counterpart on the CPU. Even modest
GPU hardware can achieve an impressive speedup of over two orders of magnitude. With simulations so
accelerated, one can not only do quick parametric bootstrapping of previously estimated parameters, but
also use simulated results to calculate the likelihoods and summary statistics of demographic and selection
models against real polymorphism data, all without restricting the demographic and selection scenarios that
can be modeled or requiring approximations to the single-locus forward algorithm for efficiency. Further, as
many of the parallel programming techniques used in this simulation can be applied to other computa-
tionally intensive algorithms important in population genetics, GO Fish serves as an exciting template for
future research into accelerating computation in evolution. GO Fish is part of the Parallel PopGen Package
available at: http://dl42.github.io/ParallelPopGen/.
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The GPU is commonplace in today’s consumer and workstation com-
puters and provides themain computational throughput of themodern
supercomputer. A GPU differs from a computer’s CPU in a number of
key respects, but the most important differentiating factor is the num-
ber and type of computational units. While a CPU for a typical con-
sumer laptop or desktop will contain anywhere from two to four very
fast, complex cores, GPU cores are in contrast relatively slow and

simple. However, there are typically hundreds to thousands of these
slow and simple cores in a single GPU. Thus, CPUs are low latency
processors that excel at the serial execution of complex, branching
algorithms. Conversely, the GPU architecture is designed to provide
high computational bandwidth, capable of executing many arithmetic
operations in parallel.

The historical driver for the development of GPUs was increasingly
realistic computer graphics for computer games. However, researchers
quickly latched on to their usefulness as tools for scientific computation,
particularly for problems that were simply too time consuming on the
CPU due to sheer number of operations that had to be computed but
where many of those operations could in principle be computed
simultaneously. Eventually programming languages were developed
to exploit GPUs as massive parallel processors and, over time, the
GPUhardwarehas likewise evolved tobemorecapable forbothgraphics
and computational applications.

Population genetics analysis of single nucleotide polymorphisms
(SNPs) is exceptionally amenable to acceleration on the GPU. Beyond
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thestudyofevolution itself, suchanalysis isacriticalcomponentofresearch
in medical and conservation genetics, providing insight into the selective
and mutational forces shaping the genome as well as the demographic
history of a population. One of the most common analysis methods is
the site frequency spectrum (SFS), a histogram where each bin is a count
of how many mutations are at a given frequency in the population.

SFS analysis is based on the precepts of the Wright–Fisher process
(Fisher 1930; Wright 1938), which describes the probabilistic trajectory
of a mutation’s frequency in a population under a chosen evolutionary
scenario. The defining characteristic of the Wright–Fisher process is
forward time, nonoverlapping, discrete generations with random ge-
netic drift modeled as a binomial distribution dependent on the pop-
ulation size and the frequency of a mutation (Fisher 1930; Wright
1938). On top of this foundation can be added models for selection,
migration between populations, mate choice and inbreeding, and link-
age between different loci, etc. For simple scenarios, an approximate
analytical expression for the expected proportion of mutations at a
given frequency in the population, the expected SFS, can be derived
(Fisher 1930; Wright 1938; Kimura 1964; Sawyer and Hartl 1992;
Williamson et al. 2004). This expectation can then be compared to
the observed SFS of real data, allowing for parameter fitting and model
testing (Williamson et al. 2004; Machado et al. 2017). However, more
complex scenarios do not have tractable analytical solutions, approxi-
mate or otherwise. One approach is to simulate the Wright–Fisher
process forward in time to build the expected frequency distribution
or other population genetic summary statistics (Hernandez 2008;
Messer 2013; Thornton 2014; Ortega-Del Vecchyo et al. 2016). Because
of the flexibility inherent in its construction, theWright–Fisher forward
simulation can be used to model any arbitrarily complex demographic
and selection scenario (Hernandez 2008; Carvajal-Rodriguez 2010;
Hoban et al. 2012; Messer 2013; Thornton 2014; Ortega-Del Vecchyo
et al. 2016). Unfortunately, because of the computational cost, the use
of such simulations to analyze polymorphism data are often prohibi-
tively expensive in practice (Carvajal-Rodriguez 2010; Hoban et al.
2012). The coalescent looking backward in time and approximations
to the forward single-locus Wright–Fisher algorithm using diffusion
equations provide alternative, computationally efficient methods of
modeling polymorphism data (Hudson 2002; Gutenkunst et al.
2009). However, these effectively limit the selection and demographic
models that can be ascertained and approximate the Wright–Fisher
forward process (Gutenkunst et al. 2009; Carvajal-Rodriguez 2010;

Ewing and Hermisson 2010; Hoban et al. 2012). Thus, by speeding up
forward simulations, we can usemore complex and realistic demographic
and selection models to analyze within-species polymorphism data.

Single-locus Wright–Fisher simulations based on the Poisson Ran-
dom Field model (Sawyer and Hartl 1992) ignore linkage between sites
and simulate large numbers of individual mutation frequency trajecto-
ries forward in time to construct the expected SFS. Exploiting the
naturally parallelizable nature of the single-locus Wright–Fisher algo-
rithm, these forward simulations can be greatly accelerated on theGPU.
Written in the programming language CUDA (Nickolls et al. 2008), a
C/C++ derivative for NVIDIA GPUs, GO Fish allows for accurate, flex-
ible simulations of SFS at speeds orders of magnitude faster than com-
parative serial programs on the CPU.As a programming library, GOFish
can be run in standalone scripts or integrated into other programs to
accelerate single-locus Wright–Fisher simulations used by those tools.

METHODS

Algorithm
In a single-locusWright–Fisher simulation, a population of individuals
can be represented by the set of mutations segregating in that popula-
tion, specifically by the frequencies of the mutant, derived alleles in the
population. Under the Poisson Random Field model, these mutations
are completely independent of each other and new mutational events
only occur at nonsegregating sites in the genome (i.e., no multiple hits)
(Sawyer and Hartl 1992).

Figure 1 sketches the algorithm for a typical, serial Wright–Fisher
simulation, starting with the initialization of an array of mutation
frequencies. From one discrete generation time step to the next, the
change in any given mutation’s frequency is dependent on the strength
of selection on that mutation, migration from other populations, the
percent of inbreeding, and genetic drift. Unlike the others listed, in-
breeding is not directly a force for allele frequency change, but rather it
modifies the effectiveness of selection and drift. Frequencies of 0 (lost)
and 1 (fixed) are absorbing boundaries such that if a mutation becomes
fixed or lost across all extant populations, it is removed from the next
generation’s mutation array. New mutations arising stochastically
throughout the genome are then added to the mutation array of the
offspring generation, replacing those mutations lost and fixed by selec-
tion and drift. As the offspring become the parents of the next gener-
ation, the cycle repeats until the final generation of the simulation.

Figure 1 Serial Wright–Fisher algorithm. Mutations are
the “unit” of simulation for the single-locus Wright–
Fisher algorithm. Thus, a generation of organisms is
represented by an array of mutations and their fre-
quency in the (each) population (if there are multiple
in the simulation). There are several options for how to
initialize the mutation array to start a simulation: a blank
mutation array, the output of a previous simulation run,
or mutation–selection equilibrium (for details, see File
S1). Simulating each discrete generation first consists of
calculating the new allele frequency of each mutation,
one at a time, where those mutations that become lost
or fixed are discarded. Next, new mutations are added
to the array, again, one at a time. The resulting off-
spring array of mutation frequencies becomes the par-
ent array of the next generation and the cycle is
repeated until the end of the simulation when the final
mutation array is output.
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While the details of how a GPU organizes computational work are
quite intricate (Nickolls et al. 2008), the vastly oversimplified version is
that a serial set of operations is called a thread and the GPU can execute
many such threads in parallel. With completely unlinked sites, every
simulated mutation frequency trajectory is independent of every other
mutation frequency trajectory in the simulation. Therefore, the single-
locusWright–Fisher algorithm is trivially parallelized by simply assign-
ing a thread to each mutation in the mutation array; when simulating
each discrete generation, both calculating the new frequency of alleles
in the next generation and adding newmutations to next generation are
embarrassingly parallel operations (Figure 2A). This is the parallel ideal
because no communication across threads is required to make these
calculations. A serial algorithm has to calculate the new frequency of
each mutation one by one, and the problem is multiplied where there
are multiple populations as these new frequencies have to be calculated
for each population. For example, in a simulation with 100,000 muta-
tions in a given generation and three populations, 300,000 sequential
passes through the functions governing migration, selection, and drift
are required. However, in the parallel version, this huge number of
iterations can theoretically be compressed to a single step in which all
the new frequencies for all mutations are computed simultaneously.
Similarly, if there are 5000 new mutations in a generation, a serial algo-
rithm has to add each of those 5000 new mutations one at a time to the
simulation. The parallel algorithm can, in theory, add them all at once. Of
course, a GPU only has a finite number of computational resources to
apply to a problem and thus this ideal of executing all processes in a single
time step is never truly realizable for a problem of any substantial size.
Even so, parallelizing migration, selection, drift, and mutation on the
GPU results in dramatic speedups relative to performing those same
operations serially on the CPU. This is the main source of GO Fish’s
improvement over serial, CPU-based Wright–Fisher simulations.

One challenge to the parallelization of theWright–Fisher algorithm
is the treatment of mutations that become fixed or lost. When a
mutation reaches a frequency of 0 (in all populations, if multiple) or

1 (in all populations, if multiple), that mutation is forever lost or fixed.
Such mutations are no longer of interest to maintain in memory or
process from one generation to the next. Without removing lost and
fixed mutations from the simulation, the number of mutations being
stored and processed would simply continue to grow as new mutations
are added each generation.When processingmutations one at a time in
the serial algorithm, removing mutations that become lost or fixed is as

Figure 2 Common parallel algorithms. Illustrative ex-
amples of three classes of common parallel algorithms
implemented using simple operations and an eight-
element, integer array. (A) Embarrassingly parallel
algorithms are those that can be computed indepen-
dently and thus simultaneously on the GPU. The given
example, adding one to every element of an array, can
be done concurrently to all array elements. In GO Fish,
calculating new mutation frequencies and adding new
mutations to population are both embarrassingly par-
allel operations. (B) Reduce is a fundamental parallel
algorithm in which all the elements of an array are
reduced to a single value using a binary operator, such
as in the above summation over the example array
(Harris 2007a). This algorithm takes advantage of the
fact that in each time step half of the sums can be done
independently while synchronized communication is
necessary to combine the results of previous time steps.
In total, log2(8) = 3 time steps are required to reduce
the example array. (C) Compact is a multi-step algo-
rithm that allows one to filter arrays on the GPU

(Billeter et al. 2009). In an embarrassingly parallel step, the algorithm presented above first creates a new Boolean array of those elements that
passed the filter predicate (e.g., x . 1). Then a “scan” is performed on the Boolean array. Scan is similar in concept to reduce, wherein for each
time step half of the binary operations are independent, but it is a more complex parallel algorithm that creates a running sum over the array
rather than condensing the array to a single value [see Harris et al. (2007b)]. This running sum determines the new index of each element in the
original array being filtered and the size of the new array. Those elements that passed the filter are then scattered to their new indices of the now
smaller, filtered array. Compact is used in GO Fish to filter out fixed and lost mutations. GPU, Graphics Processing Unit.

Figure 3 GO Fish algorithm. Both altering the allele frequencies of
mutations from parent to child generation and adding new mutations to
the child generation are embarrassingly parallel operations (see Figure 2A)
that are greatly accelerated on the GPU. Further, as independent opera-
tions, adding new mutations and altering allele frequencies can be done
concurrently on the GPU. In comparison to serial Wright–Fisher simula-
tions (Figure 1), GO Fish includes an extra compact step (see Figure 2C) to
remove fixed and lost mutations every X generations. Until compaction,
the size of the mutation array grows by the number of new mutations
added each generation. Before the simulation ends, the program com-
pacts the mutation array one final time. GPU, Graphics Processing Unit.
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trivial as simply not adding them to the next generation and shortening
the mutation array in the next generation by one each time. This
becomesmore difficult when processingmutations in parallel. As stated
before: the different threads for different mutations do not communi-
cate with each other when calculating the new mutation frequencies
simultaneously. Therefore, any given mutation/thread has no knowl-
edge of how many other mutations have become lost or fixed that
generation. This in turn means that when attempting to remove lost
and fixed mutations while processing mutations in parallel, there is no
way to determine the size of the next generation’s mutation array or
where in the offspring array each mutation should be placed.

Onesolution to theaboveproblems is thealgorithm“compact” (Billeter
et al. 2009), which can filter out lost and fixed mutations while still taking
advantage of the parallel nature of GPUs (Figure 2C). However, compac-
tion is not embarrassingly parallel, as communication between the differ-
ent threads for different mutations is required, and it involves a lot of
moving elements around in GPU memory rather than intensive compu-
tation. Thus, it is a less efficient use of the GPU as compared to calculating
allele frequencies. As such, a nuance in optimizing GO Fish is how fre-
quently to remove lost and fixed mutations from the active simulation.
Despite the fact that computation on suchmutations is wasted, calculating
new allele frequencies is so fast that not filtering out lost and fixed muta-
tions every generation and temporarily leaving them in the simulation
actually results in faster runtimes. Eventually of course, the sheer number
of lost and fixed mutations overwhelms even the GPU’s computational
bandwidth and theymust be removed. How often to compact for optimal
simulation speed can be ascertained heuristically and is dependent on the
number of mutations each generation in the simulation and the attributes
of the GPU the simulation is running on. Figure 3 illustrates the algorithm
for GO Fish, which combines parallel implementations of migration,
selection, drift, and mutation with a compacting step run every X gener-
ations and again before the end of the simulation.

The population genetics model of GO Fish
Amoredetaileddescriptionof the implementationof theWright–Fisher
algorithm underlying GO Fish, with derivations of the equations below,
can be found in Supplemental Material, File S1. Table 1 provides a
glossary of the variables used in the simulation.

The simulation can start with an empty initial mutation array, with
the output of a previous simulation run, or with the frequencies of the
initial mutation array in mutation–selection equilibrium. Starting a
simulation as a blank canvas provides the most flexibility in the starting
evolutionary scenario. However, to reach an equilibrium start point
requires a “burn-in,” which may be quite a large number of generations
(Ortega-Del Vecchyo et al. 2016). To save time, if a starting scenario is
shared acrossmultiple simulations, then the postburn-inmutation array
can be simulated beforehand, stored, and input as the initial mutation
array for the next set of simulations. Alternatively, the simulation can be
initialized in a calculable, approximate mutation–selection equilibrium
state, allowing the simulation of the evolutionary scenario of interest to
begin essentially immediately. lm(x) is the expected (mean) number of
mutations at a given frequency, x, in the population at mutation–
selection equilibrium and can be calculate via the following equation:

m ¼ mðj; 0Þ; sðxÞ ¼ sðj; 0; xÞ; etc:::

lmðxÞ ¼ 2mL

xð12 xÞe2Ne  sðxÞxfð2hþð122hÞxÞð12FÞþ2Fg

·
R 1
x e2Ne  sðyÞyfð2hþð122hÞyÞð12FÞþ2Fgdy
R 1
0 e2Ne  sðyÞyfð2hþð122hÞyÞð12FÞþ2Fgdy

(1)

The derivation for Equation 1 can be found in File S1 (Equation 1–6
in File S1). The numerical integration required to calculate lm(x) has
been parallelized and accelerated on the GPU. To start the simula-
tion, the actual number of mutations at each frequency is deter-
mined by draws from the Inverse Poisson distribution with mean
and variance lm(x). This numerical initialization routine can handle
most of the equilibrium evolutionary scenarios the main simulation
is capable of itself, a major exception being those cases with migra-
tion between multiple populations. Given the number of cases cov-
ered by the above integration technique, this is likely to be the primary
method to start a GO Fish simulation in a state of mutation–selection
equilibrium.

After initialization begins the cycle of adding new mutations to the
population and calculating new frequencies for currently segregating
mutations.Thenumberofnewmutations introduced ineachpopulation
j, for each generation t is Poisson distributed with mean NemL in
accordance with the assumptions of the Poisson Random Field Model.
These new mutations start at frequency 1/Ne in the simulation. Mean-
while, the SNP frequencies of the extant mutations in the current
generation t and population j are modified by the forces of migration
(I.), selection (II.), and drift (III.) to produce the new frequencies of
those mutations in generation t + 1.

xt;j /
I:
xmig /

II:
xmig; sel /

III:
xmig; sel;drift ¼ xtþ1;j

I. GO Fish uses a conservative model of migration (Nagylaki 1980)
where the new allele frequency, xmig, in population j is the average of
the allele frequency in all the populations weighted by the migration
rate from each population to population j. II. Selection further mod-
ifies the expected frequency of the mutations in population j accord-
ing to Equation 2 below:

sðxÞ ¼ sðj; t; xÞ; h ¼ hðj; tÞ; etc:::

xmig; sel ¼
x2migsðxmigÞ þ xmigð12 xmigÞsðxmigÞðF þ h2 hFÞ þ xmig

x2mig sðxmigÞ þ xmigð12 xmigÞsðxmigÞðF þ 2h2 2hFÞ þ 1

(2)

The derivation for Equation 2 can be found in File S1 (Equation 8–13
in File S1). The variable xmig,sel represents the expected frequency

n Table 1 Glossary of simulation terms

Variable Definition

m(j,t) Mutation rate per site per chromosome for
population j at time t

s(j,t,x)a Selection coefficient for a mutation at fre-
quency x in population j at time t

h(j,t)b Dominance of allele for population j at time t
F(j,t)c,d Inbreeding coefficient in population j at time t
N(j,t)d Number of individuals in population j at time t
Ne(j,t)d Effective number of chromosomes in population

j at time t
m(k,j,t) Migration: proportion of chromosomes from

population k in population j at time t
L Number of sites in simulation
a
s = 0 (neutral), 0 . s . 21 (purifying selection), and 0 , s (positive selection).

b
h = 1 (dominant), h = 0 (recessive), h . 1 / h , 0 (over-/underdominant), and
0 , h , 1 (codominant).

c
F = 1 (haploid), F = 0 (diploid), and 0 , F , 1 (inbred diploid).

d
Ne = 2 · N / (1 + F).
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of an allele in generation t + 1. III. Drift, which is modeled as
a binomial random deviation with mean Nexmig,sel and variance
Nexmig,sel(1-xmig,sel), then acts on top of the deterministic forces of mi-
gration and selection to produce the ultimate frequency of the allele in
the next generation, t + 1, in population j, xt+1,j. Then the cycle repeats.

Data availability
The library of parallel APIs, the Parallel PopGen Package, of which GO
Fish is a member, is hosted on GitHub at https://github.com/DL42/
ParallelPopGen. In the Git repository, the code generating Figure 4,
Figure 5, and Figure S1 is in the folders examples/example_speed
(Figure 4) and examples/example_dadi (Figure 5 and Figure S1) along
with example outputs. The companion serial Wright–Fisher simula-
tion, serial_SFS_code.cpp, is provided in examples/examples_speed, as
is a help file, serial_SFS_code_help.txt, and makefile, makefile_serial.
Table S1, referenced in Figure 4, can also be found under the folder
documentation/ in the GitHub repository uploaded as excel file
780M_980_Intel_speed_results.xlsx. The API manual is at http://
dl42.github.io/ParallelPopGen/.

RESULTS AND DISCUSSION
To test the speed improvements from parallelizing the Wright–Fisher
algorithm, GO Fish was compared to a serialWright–Fisher simulation
written in C++. Each programwas run on two computers: an iMac and
a self-built Linux-box with equivalent Intel Haswell CPUs, but very
different NVIDIA GPUs. Constrained by the thermal and space re-
quirements of laptops and all-in-one machines, the iMac’s NVIDIA
780M GPU (1536 cores at 823 MHz) is slower and older than the
NVIDIA 980 (2048 cores at 1380 MHz) in the Linux-box. For a given
number of simulated populations and number of generations, a key
driver of execution time is the number of mutations in the simulation.
Thus, many different evolutionary scenarios will have similar runtimes
if they result in similar numbers of mutations being simulated each
generation. As such, to benchmark the acceleration provided by paral-
lelization and GPUs, the programs were run using a basic evolutionary
scenario while varying the number of expected mutations in the

simulation. The utilized scenario is a simple, neutral simulation, starting
in mutation–selection equilibrium, of a single, haploid population with
a constant population size of 200,000 individuals over 1000 generations
and amutation rate of 1 · 1029mutations per generation per individual
per site.With these other parameters held constant, varying the number
of sites in the simulation adjusts the number of expected mutations for
each of the benchmark simulations.

As shown in Figure 4, accelerating theWright–Fisher simulation on
a GPU results in massive performance gains on both an older, mobile
GPU like the NVIDIA 780M and a newer, desktop-class NVIDIA
980 GPU. For example, when simulating the frequency trajectories of
�500,000 mutations over 1000 generations, GO Fish takes �0.2 sec to
run on a 780M as compared to �18 sec for its serial counterpart
running on the Intel i5/i7 CPU (@3.9 GHz), a speedup of 88-fold.
On a full, modern desktopGPU like the 980, GO Fish runs this scenario
�176· faster than the strictly serial simulation and only takes�0.1 sec
to run. As the number ofmutations in the simulation grows,morework
is tasked to the GPU and the relative speedup of GPU to CPU increases
logarithmically. Eventually though, the sheer number of simulated
SNPs saturates even the computational throughput of the GPUs, pro-
ducing linear increases in runtime for increasing SNP counts, like for
serial code. Thus, eventually, there is a flattening of the fold perfor-
mance gains. This plateau occurs earlier for 780M than for the more
powerful 980 with its more and faster cores. Executed serially on the
CPU, a huge simulation of�4 · 107 SNPs takes roughly 24 min to run
vs. only �13/5.7 sec for GO Fish on the 780M/980, an acceleration of
. 109/250-fold. While not benchmarked here, the parallel Wright–
Fisher algorithm is also trivial to partition over multi-GPU setups in
order to further accelerate simulations.

Tools employing the single-locus Wright–Fisher framework are
widely used in population genetics analyses to estimate selection coef-
ficients and infer demography [see Gutenkunst et al. (2009), Garud
et al. (2015), Ortega-Del Vecchyo et al. (2016), Jackson et al. (2017),
Kim et al. (2017), Koch and Novembre (2017), Machado et al. (2017)
for examples]. Often, these tools employ either a numerically solved
diffusion approximation, or even the simple analytical function, to

Figure 4 Performance gains on GPU relative to CPU.
The above figure plots the relative performance of GO
Fish, written in CUDA, to a basic, serial Wright–Fisher sim-
ulation written in C++. The two programs were run both
on a 2013 iMac with an NVIDIA GeForce GTX 780M mo-
bile GPU, 1536 at 823 MHz cores, (black line) and an Intel
Core i7 4771 CPU at 3.9 GHz and a self-built Linux-
box with a factory-overclocked NVIDIA GeForce GTX
980 GPU, 2048 at 1380 MHz cores, and an Intel Core i5
4690K CPU at 3.9 GHz (red line). Full compiler optimiza-
tions (2O3 –fast-math) were applied to both serial and
parallel programs. Each dot represents a simulation run
plotted by the number of SNPs in its final generation.
The serial program was run on the �10,000, �100,000,
and �1 · 106 SNP scenarios. As the speed of the CPU-
based program is linear on the number of simulated SNPs,
the resulting runtimes of 0.4, 3.9, and 38.7 sec were then
linearly rescaled to estimate runtimes for serial simulations
with differing numbers of final SNPs. The two Intel proces-
sors have identical speeds on single-threaded, serial tasks,
which also allows for direct comparison between the two
GPU results. Consumer GPUs like the 780M and 980 need

to warm up from idle and load the CUDA context. So, to obtain accurate runtimes on the GPU, GO Fish timings were done after 10 runs had finished and
then the average of another 10 runs was taken for each data point. The GO Fish compacting rate was hand-optimized for each number of simulated
SNPs, for each processor (Table S1). CPU, Central Processor Unit; GPU, Graphics Processing Unit; SNP, single nucleotide polymorphism.
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generate the expected SFS of a given evolutionary scenario, which can
then be used to calculate the likelihood of producing an observed SFS.
Themodel parameters of the evolutionary scenario are then fitted to the
data by maximizing the composite likelihood. With GO Fish, forward
simulation can generate the expected spectra. To validate these
expected spectra, the results of GO Fish simulations were compared
against dadi (Gutenkunst et al. 2009) for a complex evolutionary sce-
nario involving a single population splitting into two, exponential
growth, selection, and migration (Figure 5). The spectra generated by
each program are identical. Interestingly, the two programs also had
essentially identical runtimes for this scenario and hardware (Figure 5).
In general, the relative compute time will vary depending on the sim-
ulation size and population scaling for GO Fish, the grid size and time-
step for dadi (Gutenkunst et al. 2009), and the simulation scenario and
computational hardware for both.

For maximum-likelihood and Bayesian statistics as for parametric
bootstraps andC.I.s, hundreds, thousands, and even tensof thousandsof
distinct parameter values may need to be simulated to yield the needed
statistics fora givenmodel.Multiplying this by theneed tooftenconsider
multiple evolutionarymodels aswell as nonparametric bootstrapping of
the data, a single serial simulation run on aCPU taking only 18 sec, as in
the simple simulation of�500,000 SNPs presented in Figure 4, can add
up to hours, even days of compute time. Moreover, and in contrast
to the approximating analytical or numerical solutions typically
employed, simulating the expected SFS introduces random noise
around the “true” SFS of the scenario being modeled. Figure S1 dem-
onstrates how increasing the number of simulated SNPs increases the
precision of the simulation and therefore of the ensuing likelihood
calculations. Simulating tens of millions of SNPs, wherein a single run
on the CPU can take nearly half-an-hour, can be imperative to obtain
a high-precision SFS needed for certain situations. Thus, the speed
boost from parallelization on the GPU in calculating the underlying,
expected SFS greatly enhances the practical utility of simulation for
many current data analysis approaches. The speed and validation

results demonstrate that, now with GO Fish, one can not only track
allele trajectories in record time, but also generate SFS by using for-
ward simulations in roughly the same time-frame as by solving dif-
fusion equations. Just as importantly, GO Fish achieves the increase in
performance without sacrificing flexibility in the evolutionary scenar-
ios that it is capable of simulating.

GO Fish can simulate mutations across multiple populations for
comparative population genomics, with no limits to the number of
populations allowed. Population size, migration rates, inbreeding, dom-
inance, and mutation rate are all user-specifiable functions capable of
varyingover timeandbetweendifferentpopulations.Selection is likewisea
user-specifiable function parameterized not only by generation and
population, but also by allele frequency, allowing for the modeling of
frequency-dependent selectionaswell as time-dependent andpopulation-
specific selection. By tuning the inbreeding and dominance parameters,
GO Fish can simulate the full range of single-locus dynamics for both
haploids anddiploidswith everything fromoutbred to inbredpopulations
and overdominant to underdominant alleles. GPU-accelerated Wright–
Fisher simulations thus provide extensive flexibility to model unique and
complex demographic and selection scenarios beyond what many cur-
rent site frequency spectrum analysis methods can employ.

Paired with a coalescent simulator, GO Fish can also accelerate the
forward simulation component in forward-backward approaches [see
Ewing and Hermisson (2010) and Nakagome et al. (2016)]. In addition,
GO Fish is able to track the age of mutations in the simulation, provid-
ing an estimate of the distribution of the allele ages, or even the age by
frequency distribution, for mutations in an observed SFS. Further, the
age of mutations is one element of a unique identifier for each mutation
in the simulation, which allows the frequency trajectory of individual
mutations to be tracked through time. This ability to sample ancestral
states and then track the mutations throughout the simulation can be
used to contrast the population frequencies of polymorphisms from
ancient DNA with those present in modern populations for powerful
population genetics analyses (Bank et al. 2014). By accelerating the

Figure 5 Validation of GO Fish simulation results
against dadi. A complex demographic scenario was
chosen as a test case to compare the GO Fish simula-
tion against an already established site frequency spec-
trum (SFS) method, dadi (Gutenkunst et al. 2009). The
demographic model is from a dadi code example for the
Yoruba-Northern European (AF-EU) populations. Using
dadi parameterization to describe the model, the ances-
tral population, in mutation–selection equilibrium, un-
dergoes an immediate expansion from Nref to 2Nref

individuals. After time T1 (= 0.005) the population splits
into two with a constant, equivalent migration, mEU-AF

(= 1) between the now split populations. The second
(EU) population undergoes a severe bottleneck of
0.05Nref when splitting from the first (AF) population,
followed by exponential growth over time T2 (= 0.045)
to size 5Nref. The SFS (black dashed line) above is of
weakly deleterious, codominant mutations (2Nrefs =22,
h = 0.5) where 1001 samples were taken of the EU
population. The spectrum was then normalized by the
number of segregating sites. The corresponding GO
Fish parameters for the evolutionary scenario, given a

mutation rate of 1 · 1029 per site, 2 · 109 sites, and an initial population size, Nref, of 10,000, are: T1 = 0.005 · 2Nref = 100 generations, T2 =
900 generations,mEU-AF = 1/(2Nref) = 0.00005, 2Nrefs =24, h = 0.5, and F = 0. As in dadi, the population size/time can be scaled together and the
simulation will generate the same normalized spectra (Gutenkunst et al. 2009). Using the aforementioned parameters, a GO Fish simulation ends
with �3 · 106 mutations, of which �560,000 are sampled in the SFS. The red line reporting GO Fish results is the average of 50 such simulations;
the dispersion of those 50 simulations is reported in Figure S1. Each simulation run on the NVIDIA GeForce GTX 980 took roughly the same time
to generate the SFS as dadi did [grid size = (110,120,130), time-step = 1023] on the Intel Core i7 4771, just , 0.7 sec.

3234 | D. S. Lawrie

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300103/-/DC1/FigureS1.pdf ;
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300103/-/DC1/FigureS1.pdf ;


single-locus forward simulation on the GPU, GO Fish broadens the
capabilities of SFS analysis approaches in population genetic studies.

Across the field of population genetics and evolution, there exist a
wide range of computationally intensive problems that could benefit
fromparallelization.The algorithmspresented anddiscussed inFigure 2
represent a subset of the essential parallel algorithms, which more
complex algorithms modify or build upon. Applications of these par-
allel algorithms are already wide-ranging in bioinformatics: motif find-
ing (Ganesan et al. 2010), global and local DNA and protein alignment
(Vouzis and Sahinidis 2011; Liu et al. 2011, 2013; Zhao and Chu 2014),
short read alignment and SNP calling (Klus et al. 2012; Luo et al. 2013),
haplotyping and the imputation of genotypes (Chen et al. 2012), anal-
ysis for genome-wide association studies (Chen 2012; Song et al. 2013),
and mapping phenotype to genotype and epistatic interactions across
the genome (Chen andGuo 2013; Cebamanos et al. 2014). Inmolecular
evolution, the basic algorithms underlying the building of phylogenetic
trees and analyzing sequence divergence between species have likewise
been GPU-accelerated (Suchard and Rambaut 2009; Kubatko et al.
2016). Further, there are parallel methods for general statistical and
computational methods, like Markov ChainMonte Carlo and Bayesian
analysis, useful in computational evolution and population genetics
(Suchard et al. 2010; Zhou et al. 2015). GO Fish is itself part of the
larger Parallel PopGen Package, a planned compendium of tools for
accelerating the calculation of many different population genetics sta-
tistics on the GPU, including SFS and likelihoods. This larger package is
currently under development; the results in Figure 5 make use of a
prototype library, Spectrum, to generate SFS statistics from GO Fish
simulations on the GPU.

Future work on the single-locusWright–Fisher algorithmwill include
extending the parallel structure of GO Fish to allow for multiple alleles as
well as multiple mutational events at a site, relaxing one of the key
assumptions of the Poisson Random Field (Sawyer and Hartl 1992). At
present, neither running simulations with long divergence times between
populations nor any scenario where the number of extant mutations in
the simulation rises to too high a proportion of the total number of sites is
theoretically consistent with the Poisson Random Field model underpin-
ning the current version of GO Fish. Beyond GO Fish, solving Wright–
Fisher diffusion equations in programs like dadi (Gutenkunst et al. 2009)
can likewise be sped up through parallelization on the GPU (Lions et al.
2001; Komatitsch et al. 2009; Micikevicius 2009; Tutkun and Edis 2012).

Unfortunately,while the effects of linkage and linked selection across
the genome can bemitigated in analyses using a single-locus framework
(Gutenkunst et al. 2009; Coffman et al. 2016; Machado et al. 2017),
these effects cannot be examined and measured while assuming in-
dependence among sites. Expanding from the study of independent
loci to modeling the evolution of haplotypes and chromosomes, simu-
lations with the coalescent framework or forward Wright–Fisher algo-
rithm with linkage can also be accelerated on GPUs. The coalescent
approach has already been shown to benefit from parallelization
over multiple CPU cores [see Montemuiño et al. (2014)]. While
Montemuiño et al. (2014) achieved their speed boost by running mul-
tiple independent simulations concurrently, they noted that paralleliz-
ing the coalescent algorithm itself may also accelerate individual
simulations over GPUs (Montemuiño et al. 2014). Likewise, multiple
independent runs of the full forward simulation with linkage can be run
concurrently over multiple cores and the individual runs might them-
selves be accelerated by parallelization of the forward algorithm. The
forward simulation with linkage has many embarrassingly parallel
steps, as well as those that can be refactored into one of the core parallel
algorithms. The closely related genetic algorithm, used to solve difficult
optimization problems, has already been parallelized and, under many

conditions, greatly accelerated on GPUs (Pospichal et al. 2010;
Hofmann et al. 2013; Limmer and Fey 2016). However, not all algo-
rithms will benefit from parallelization and execution on GPUs; the
real-world performance of any parallelized algorithm will depend on
the details of the implementation (Hofmann et al. 2013; Limmer and
Fey 2016). While the extent of the performance increase will vary
from application to application, each of these represent key algo-
rithms whose potential acceleration could provide huge benefits for
the field (Carvajal-Rodriguez 2010; Hoban et al. 2012).

Thesepotential benefits extend to lowering the costbarrier for students
and researchers to run intensive computational analyses in population
genetics. The GO Fish results demonstrate how powerful even an older,
mobileGPUcanbe at executingparallelworkloads,whichmeans thatGO
Fish canbe runoneverything fromGPUs inhigh-end compute clusters to
a GPU in a personal laptop and still achieve a great speedup over
traditional serial programs. A batch of single-locus Wright–Fisher sim-
ulations that might have taken a 100 CPU-hr or more to complete on a
cluster can be done, withGOFish, in 1 hr on a laptop.Moreover, graphics
cards and massively parallel processors in general are evolving quickly.
While this paper has focused on NVIDIA GPUs and CUDA, the capa-
bility to take advantage of the massive parallelization inherent in the
Wright–Fisher algorithm is the key to accelerating the simulation and
in the high-performance computing market there are several avenues to
achieve the performance gains presented here. For instance, OpenCL is
another popular low-level language for parallel programming and can be
used to program NVIDIA, AMD, Altera, Xilinx, and Intel solutions for
massively parallel computation, which include GPUs, CPUs, and even
Field Programmable Gate Arrays (Stone et al. 2010; Czajkowski et al.
2012; Jha et al. 2015). The parallel algorithm of GOFish can be applied to
all of these tools. Whichever platform(s) or language(s) researchers
choose to utilize, the future of computation in population genetics is
massively parallel and exceedingly fast.
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