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Abstract

Summary: Multiple sequence alignment is an initial step in many bioinformatics pipelines, including phylogeny
estimation, protein structure prediction and taxonomic identification of reads produced in amplicon or metagenomic
datasets, etc. Yet, alignment estimation is challenging on datasets that exhibit substantial sequence length hetero-
geneity, and especially when the datasets have fragmentary sequences as a result of including reads or contigs gen-
erated by next-generation sequencing technologies. Here, we examine techniques that have been developed to im-
prove alignment estimation when datasets contain substantial numbers of fragmentary sequences. We find that
MAGUS, a recently developed MSA method, is fairly robust to fragmentary sequences under many conditions, and
that using a two-stage approach where MAGUS is used to align selected ‘backbone sequences’ and the remaining
sequences are added into the alignment using ensembles of Hidden Markov Models further improves alignment ac-
curacy. The combination of MAGUS with the ensemble of eHMMs (i.e. MAGUS+eHMMs) clearly improves on UPP,
the previous leading method for aligning datasets with high levels of fragmentation.

Availability and implementation: UPP is available on https://github.com/smirarab/sepp, and MAGUS is available on
https://github.com/vlasmirnov/MAGUS. MAGUS+eHMMs can be performed by running MAGUS to obtain the back-

bone alignment, and then using the backbone alignment as an input to UPP.

Contact: warnow@illinois.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Multiple sequence alignment (MSA) is a critical precursor for many
downstream analyses, such as gene and species tree estimation
(Heled and Drummond, 2010; Stamatakis, 2014), protein family
classification (Nguyen et al., 2016) and phylogenetic placement
(Matsen et al., 2010). Because of the broad impact of MSA estima-
tion, the development of new alignment methods continues to be of
interest in the community (e.g. see Katoh, 2021 for a recent book on
MSA estimation).

One of the challenges that arise in MSA estimation is sequence
length heterogeneity, which occurs naturally in many datasets due
to evolutionary processes that include large insertions or deletions
(jointly called ‘indels’), and also when the input sequence datasets
include some incompletely assembled sequences (e.g. contigs or
reads). Datasets of interest may contain some full-length sequences
as well as fragmentary sequences, for example when performing
taxonomic identification of reads in microbiome samples as in TIPP
(Nguyen et al., 2014; Shah et al., 2021).

To produce MSAs on datasets that contain both full-length and
fragmentary sequences, techniques for adding fragmentary
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sequences into alignments of (generally) full-length sequences have
been developed, including MAFFT —addfragments (Katoh and Frith,
2012) and techniques based on ensembles of profile HMMs
(Mirarab et al., 2012; Nguyen et al., 2015). These methods, when
provided with good alignments on the full-length sequences, have
been shown to provide better accuracy than alignment methods that
do not explicitly take fragmentary sequences into account. In par-
ticular, UPP (Nguyen et al., 2015), which constructs a ‘backbone
alignment’ on a sample of the full-length sequences using PASTA
(Mirarab et al., 2015) and then adds the remaining sequences into
the backbone alignment using an ensemble of profile HMMs (i.e.
eHMMs) technique, was shown to provide very good accuracy and
scalability to large and ultra-large datasets (up to 1 000 000 sequen-
ces), even in the presence of high levels of fragmentary sequences.
Here, we address the possibility of improving alignment accur-
acy compared with UPP. The main change we explore is the use of
MAGUS (Smirnov and Warnow, 2020a), a new alignment method
that has been shown to be generally more accurate than PASTA, for
the backbone alignment. We also explore the use of techniques from
MAFFT for adding sequences into the backbone alignment. We use
both simulated and biological datasets to evaluate the alignment
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methods we explore in this study. Our results show that the best
method in terms of alignment accuracy is by using MAGUS for the
backbone alignment and then an eHMM for adding in the remain-
ing sequences. This new approach, which we call
MAGUS+eHMMs, matches or improves on both MAGUS and UPP,
particularly when aligning datasets that evolved under high rates of
evolution and that have large fractions of fragmentary sequences.

2 Experimental study design

2.1 Overview

We performed three experiments to design and evaluate methods for
MSA estimation on datasets that have fragmentary sequences. In
Experiment 1, we explore the design space for computing the back-
bone alignment and adding sequences to the backbone alignment.
We show that the best variant is to use MAGUS for backbone align-
ment and eHMMs for adding the remaining sequences, and denote
it as MAGUS+eHMMs. In Experiment 2, we compare MAGUS to
MAGUS+eHMMs and show that MAGUS+eHMMs improves or
matches MAGUS alignment performance. In Experiment 3, we
evaluate MAGUS+eHMMs in comparison to methods that have
been shown to have high alignment accuracy. We again show that it
is the overall best performing method.

Due to space limitations, commands needed to reproduce the ex-
periment, as well as we also additional figures and tables, are in
Supplementary Materials available online at https://tandy.cs.illinois.
edu/magus-ehmms-suppl.pdf.

2.2 Methods

In this study, we evaluate two-stage methods and other multiple se-
quence alignment tools (i.e. MAFFT, PASTA, MAGUS and
MUSCLE) on datasets with and without fragmentation. Other
methods such as Clustal-Omega (Sievers et al., 2011) are not
included, because they are shown to be less accurate on the selected
datasets (Mirarab et al., 2015; Nguyen et al., 2015).

MAFFT (Katoh and Standley, 2013) is a well-known alignment
method that has performed very well in many studies evaluating
alignment methods (Edgar and Batzoglou, 2006; Nuin et al., 2006;
Sievers et al., 2011). Some of its variants (e.g. the L-INS-i and
G-INS-i options that use iterative refinement) have particularly
strong alignment accuracy. MAFFT also provides options to add
full-length or fragmentary sequences to an existing alignment (e.g.
the ‘“~addfragments’ option). We run MAFFT in two ways for align-
ing datasets: the default setting (which is faster but less accurate)
and the L-INS-i setting (which is slower but generally more accur-
ate). We also run MAFFT to add sequences into backbone align-
ments using its options described above.

MUSCLE (Edgar, 2004) is another well-known multiple se-
quence alignment method. We run MUSCLE in default mode on
datasets with at most 3000 sequences and with two iterations on
larger datasets.

PASTA (Mirarab et al., 2015) is a method that combines iter-
ation with divide-and-conquer to co-estimate alignments and trees,
where each iteration begins by dividing the dataset into subsets using
the tree from the previous iteration, aligning the subsets using a
selected method (e.g. MAFFT L-INS-i), merging the alignments
using OPAL (Wheeler and Kececioglu, 2007) or Muscle (Edgar,
2004) along with transitivity, and then computing a tree on the
merged alignment. PASTA has been shown to have better alignment
accuracy than its predecessors SATé (Liu et al., 2009) and SATe-1I
(Liu et al., 2012). We run PASTA in its default mode.

MAGUS (Smirnov and Warnow, 2020a) is a recently developed
alignment method that improves on PASTA for alignment accuracy.
By design, it is similar to PASTA (but with specific changes that im-
pact its accuracy). It begins with an initial alignment and tree,
decomposes the tree into a user-specified number of subsets, and
aligns the subsets using MAFFT L-INS-i. Then it differs from
PASTA: it combines the subset alignments using a novel approach
where it first computes additional estimated alignments, uses these
to define weights on pairs of columns from different alignments, and

then merges these disjoint subset alignments using the Graph
Clustering Merger (GCM) method (which is essentially the Markov
Clustering technique (Van Dongen, 2000a,b) with some extensions
to ensure that a legal alignment is created). MAGUS has been shown
to have better alignment accuracy than PASTA and other methods,
but has only been tested on full-length datasets (Smirnov and
Warnow, 2020a). The current version of MAGUS in GitHub
defaults to a recursive approach on subset alignments if they have
more than 200 sequences; however, Smirnov (2021) notes that ‘re-
cursion does not improve accuracy’ and ‘should be avoided if pos-
sible, and only engaged when the dataset becomes too large for the
subsets to be reasonably aligned with the base method’. Therefore,
we use MAGUS without recursion.

UPP (Nguyen et al., 2015) is a divide-and-conquer alignment
method that operates in steps described in the Introduction. UPP
improves on PASTA and other methods in terms of alignment accur-
acy when the datasets have fragmentary sequences (Nguyen et al.,
2015). We run UPP in its default mode.

In general, we will describe UPP as a #wo-stage method in which
the first stage selects and aligns the backbone sequences and the se-
cond stage adds the remaining sequences into the backbone align-
ment. In contrast, the other methods (MAFFT, PASTA and
MAGUS), as well as most standard alignment methods, are not
based on this type of two-stage approach and considered as one-
stage methods in the context of this study.

2.3 Datasets
We explore alignment methods on a collection of biological and
simulated datasets, some with introduced fragmentation (as
described below). The biological datasets all have reference align-
ments based on structure, and the simulated datasets have true align-
ments. Nearly, all the datasets used in this study are from prior
studies, and available in public databases (see Supplementary
Materials); the remaining datasets are available in the Illinois Data
Bank (see availability statement). The empirical statistics for these
datasets are provided in Tables 1 and 2. These datasets vary in num-
ber of sequences (from 278 to nearly 27 643), degree of heterogen-
eity (as indicated by the average and maximum p-distances) and the
percentage of the reference or true alignment is occupied by gaps.
All sequence alignments have sequences of approximately the same
pre-alignment length (averaging 1000-2000 nucleotides).
Fragmentary versions of datasets. We explore two techniques for
making fragmentary versions of our datasets. The script to generate
an alignment with fragments is available at https://git.io/JOGO1.

* High fragmentary (HF) means that 50% of the sequences are
made into fragments. The fragment size is sampled from a nor-
mal distribution with mean M (where M corresponds to 25% of
the original median sequence length) and a standard deviation of
60.

* Low fragmentary (LF) is similar to HF except that only 25% of
the sequences are made into fragments and M corresponds to
50% of the original median sequence length.

Simulated datasets. We use ROSE and RNASim datasets, each
from prior studies. The ROSE datasets are simulated DNA sequence
datasets generated using the ROSE simulator (Stoye et al., 1998)
and previously studied by Liu et al. (2009). These sequences evolve
under the GTRGAMMA model with various indel rates. Each con-
dition has 20 replicates and each replicate contains 1000 sequences
with ~ 1000 nucleotides. We explore fragmentary versions of the
1000M1 and 1000M2 conditions (also studied by Smirnov and
Warnow, 2020b), which have high and moderately high rates of
evolution, respectively, and medium indel lengths. The RNASim
(Mirarab et al., 2015) datasets evolve under a complex evolutionary
process that reflects selective pressures needed to conserve rRNA
structure; hence, this simulation condition is more complex than the
standard GTR+indel simulations (such as for the ROSE datasets).
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Table 1. Empirical dataset properties for the datasets with introduced fragmentation

Dataset No. of Segs. p-distance % gaps Avg. seq. length Avg. align- No. of frag. Avg. frag.
E— ment length seqs (L/H) length (L/H)
Avg. Max
Simulated datasets
10K(10) 10 000 0.411 0.629 89.6 1551 17955 -/5000 —/387
1000M1(19) 1000 0.694 0.781 74.3 1011 3960 250/500 505/251
1000M2(20) 1000 0.684 0.775 74.2 1014 3972 250/500 5057254
Biological datasets
16S.M(1) 901 0.359 0.887 78.1 1035 4722 225/450 473/240
23S8.M(1) 278 0.377 0.703 83.7 1746 10 738 69/139 7851392
16S.3(1) 6323 0.315 0.833 82.1 1557 8716 -/3161 /373
16S.T(1) 7350 0.345 0.901 87.4 1492 11 856 -/3675 —/368
16S.B.ALL(1) 27 643 0.210 0.769 79.9 1372 6857 —-/13 821 -/363

Note: The empirical statistics are computed per-replicate (number of replicates is marked next to dataset names). The p-distance between two aligned sequences

is the fraction of the sites in which they have different nucleotides. Percent gapped is the percentage of the alignment matrix occupied by dashes. 1000M1 has rep-

licate 16 removed due to being identified as an outlier in Smirnov and Warnow (2020b). Statistics regarding fragments are computed after introducing fragments

to the datasets, while the rest are computed prior to fragmentation. (L/H) in the last two columns indicates high or low level of fragmentation.

Table 2. Empirical dataset properties for 14 CRW datasets without
introduced fragmentation

Dataset # Segs. p-distance % gaps Avg. seq. length Align length
Avg. Max

SS.E 2774 0.305 1.000 87.8 96 793
58.3 5507 0.418 1.000 74.5 105 414
58.T 5751 0.425 1.000 75.6 106 436
16S.A 594  0.185 0.673 85.8 1103 7774
16S.B.ALL 27643 0.210 0.769 80.0 1372 6857
16S.C 320 0.157 1.000 86.9 1017 7774
165.M 805 0.359 0.768 78.8 1042 4931
16S.3 6323 0.315 0.833 82.1 1557 8716
16S.T 7350 0.345 0.901 87.4 1492 11 856
23S.A 214 0.293 0.667 $53.6 1851 3991
23S.C 374 0.143 0.750 64.7 2086 5916
23S.E 105 0.291 0.513 61.5 3635 9436
23S.M 254 0.380 0.695 84.0 1761 10 999
23S.3 451 0.337 0.544 78.3 3091 14 244

Note: The p-distance between two aligned sequences is the fraction of the
sites in which they have different nucleotides. Percent gapped is the percent-
age of the alignment matrix occupied by dashes.

The original RNASim dataset contains 1 000 000 sequences, but we
explore subsets with 10 000 sequences.

Biological datasets. We use the Comparative RNA Website
(CRW) datasets (Cannone et al., 2002), which are alignments of
RNA sequences based on structure. We explore 5S.E, 5S.3, 5S.T,
16S.A, 165.C, 165.M, 23S.A, 235.C, 23S.E, 235.M and 235.3 data-
sets. We then remove any sequence that contains any ambiguity
codes or that is entirely gapped. In addition, we examine the large
16S.3, 16S.T and 16S.B.ALL datasets, which were originally from
the CRW and then used by Liu et al. (2009), Mirarab et al. (2015).

Training versus Testing data. We use the high-fragmentation ver-
sion of the RNASim 10K dataset as our training data for
Experiment 1 and the remaining datasets for our other experiments.

2.4 Criteria

Our main criterion is alignment error (false-positive and false-nega-
tive rates, as well as their average), computed by comparing the esti-
mated alignment to the reference alignment. Each alignment is
represented with its set of pairwise homologies, which allows for the
calculation of false positive homologies (pairs of nucleotides aligned
in the estimated alignment that are not aligned in the reference

alignment) and false negative homologies (pairs of nucleotides
aligned in the reference alignment that are not aligned in the esti-
mated alignment). The SPFN (sum-of-pairs false negative) rate is the
fraction of the true pairwise homologies that the estimated align-
ment fails to recover, and the SPFP (sum-of-pairs false positive) rate
is the fraction of the pairwise homologies in the estimated alignment
that are not in the reference alignment. We compute SPFN and SPFP
using FastSP (Mirarab and Warnow, 2011). We also report the aver-
age of these two-error metrics. We evaluate wall clock running time.
However, due to the heterogeneous nature of the University of
Illinois Campus Cluster and the Blue Water server, it is not possible
to make clear inferences from these runtime comparisons.

2.5 Experiments

We performed three experiments. In Experiment 1, we explore var-
iants on the two-stage algorithmic strategy for aligning datasets that
contain both full-length and fragmentary sequences. We evaluate
their performance on the RNASim 10K-HF dataset with respect to
both alignment error (measured using SPFN and SPFP) and wall
clock running time. MAGUS+eHMMs is the most accurate method
(with an accuracy advantage when using all full-length sequences
for its backbone alignment and a running time advantage when
using only 1000 sequences for the backbone). For the remaining
experiments, we fix the backbone alignment size in
MAGUS+eHMMs to only 1000 sequences. In Experiment 2, we
compare MAGUS+eHMMs to MAGUS on the full range of testing
datasets, and demonstrate the superiority of MAGUS+eHMMs.
Finally, in Experiment 3, we compare MAGUS+eHMMs to two
versions of MAFFT (default and L-INS-i), PASTA and UPP on the
full range of testing datasets.

Here, we provide additional details regarding Experiment 1. As
described earlier, the basic strategy samples a desired number of
sequences considered to be full-length, computes a ‘backbone align-
ment’ on these sequences using a preferred method, and then adds
the remaining sequences into the backbone alignment using a
selected strategy. We explore variants for each step, as follows:

* Backbone size: 1000 (‘1000bb’) or all (‘allbb’) full-length
sequences.

* Backbone alignment method: MAGUS or PASTA.

* Technique to add sequences into the backbone alignment:
‘eHMMSs’ as used in UPP or MAFFT options (-add, —addfull and
—addfragments, further details below).

In our experiments on datasets with introduced fragmentation,
we know which sequences are fragmentary and which are full-
length, and we provide this information to the two-stage methods so
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that the backbone alignment is computed only on the full-length
sequences. In the experiments on datasets without introduced
fragmentation, we use the default technique from UPP to define the full-
length sequences (from which we then select the backbone sequences):
all sequences within 25% of the median sequence length.

To use the eHMMs approach, we need to build eHMMs on the
backbone alignment, which requires the construction of a phylogen-
etic tree on the backbone alignment. This is automatically per-
formed within UPP, but when we run MAGUS+eHMMSs, which
utilizes the UPP code library to operate, we need to provide UPP
with the backbone alignment and a tree on the backbone alignment.
We perform this by computing a maximum likelihood tree on the
backbone alignment using FastTree 2 (Price et al., 2010).

We performed preliminary analyses for how to use MAFFT to
add sequences into the backbone alignment. We first tried using the
L-INS-i version of MAFFT —addfragments (which we would expect
to be the most accurate setting), but this option encountered out-of-
memory issues on the RNASim 10K-HF datasets (see
Supplementary Materials); hence, we used the default setting for
MAFFT -addfragments. We considered several versions of this
technique:

1. Use ‘~addfragments’ for all missing sequences

2. Use ‘—add’ to add the missing full-length sequences, then ‘—add-
fragments’ to add fragments

3. Same as 2 except using ‘~addfull’ for the missing full-length
sequences.

The first version is denoted by ‘MAFFT(frag)’ (i.e. only using ‘~
addfragments’ to add the remaining sequences) and the other ver-
sions are denoted by ‘MAFFT (frag, add)’ (i.e. using ‘—add’ for full-
length sequences and ‘~addfragments’ for fragmentary sequences) or
‘MAFFT(frag, addfull)’, depending on whether ‘—add’ or ‘-addfull’
is used.

Given the details provided, we denote different variants of the two-
stage algorithmic strategy in the form of ‘[backbone alignment method]-
[strategy to add the remaining sequences]+[number of sequences in the
backbone]’. For example, ‘MAGUS+eHMM:s + 1000bb’ refers to using
1000 full-length sequences and MAGUS to construct the backbone
alignment, and using eHMM s to align the remaining sequences to the
backbone alignment (and thus, to form the final alignment).
‘PASTA+MAFFT (frag)+allbb’ refers to using all full-length sequences
and PASTA to construct the backbone alignment, and using MAFFT ‘—
addfragments’ option to align the remaining sequences to the backbone
alignment.

3 Results

We show results for Experiments 1-3; however, MAFFT(L-INS-i)
did not complete on some datasets. We show results on individual
datasets where MAFFT(L-INS-i) completed in Supplementary
Materials.

3.1 Experiment 1 results

Designing methods that use MAGUS for the backbone.
Supplementary Figure S1 shows the alignment error and runtime
for the variants using MAGUS as the backbone alignment
method (see Supplementary Fig. S4 for SPFN and SPFP).
MAGUS+eHMMs+allbb has the lowest error of all methods, but
it is followed very closely by MAGUS+MAFFT(frag)+allbb and
then closely by MAGUS+eHMMs + 1000bb. The other three
methods have much higher error rates. Between these three meth-
ods with high accuracy, only MAGUS+eHMMSs + 1000bb is rea-
sonably fast; the other two are much slower. Furthermore,
MAGUS+eHMMs + 1000bb is the fastest of the six tested pipe-
lines. Thus, MAGUS+eHMMs-+allbb is the best choice if align-
ment accuracy is the primary objective, but when the runtime is
also considered, then MAGUS+eHMMs + 1000bb is the best
choice. We use MAGUS+eHMMs + 1000bb in the subsequent
experiments, and refer to it henceforth as ‘MAGUS+eHMMs’.

Backbone tree using initial versus backbone alignment. Recall
that MAGUS first computes an initial alignment that is not designed
to provide high accuracy on the backbone sequences, then estimates
an initial tree using FastTree 2, and finally produces a new
(improved) alignment (i.e. backbone alignment). Here, we evaluate
the impact of changing how we compute the backbone tree: using
the initial tree (which is computed on the initial alignment) instead
using of FastTree 2 to compute a tree on the backbone alignment.
This evaluation (Supplementary Fig. S8) shows that there is no no-
ticeable difference in alignment error or runtime, while the tree esti-
mated on the backbone alignment has slightly lower tree error.

Running MAFFT(L-INS-i) —addfragments’ with reduced mem-
ory requirement. Since MAFFT(L-INS-i) has high memory require-
ments, we explored the use of the ‘~weighti 0’ option to reduce these
requirements (denoted as ‘MAGUS+MAFFT (linsi-frag)+1000bb’).
This approach produces less accurate alignments than
MAGUS+eHMMs (on the same 1000-sequence MAGUS backbone
alignments) and the guide tree it produces has much higher tree error
than the MAGUS backbone tree (Supplementary Fig. S9).

Designing methods that use PASTA for the backbone. There
is a clear best variant when using PASTA for the backbone align-
ment, whether with respect to running time or accuracy:
PASTA+eHMMs + 1000bb ~ (Supplementary  Fig. S2, see
Supplementary Fig. S3 for SPFN and SPFP). We refer to this vari-
ant as ‘PASTA+eHMMSs’ and use it in the subsequent experi-
ments. Note that, PASTA+eHMMs is identical to default UPP.

3.2 Experiment 2 results

The comparison between MAGUS+eHMMs and MAGUS (Fig. 1)
shows that MAGUS+eHMM:s matches or improves on MAGUS under
all tested conditions. MAGUS+eHMMs is much more accurate than
MAGUS on 1000M1 and 1000M2 with high fragmentation, somewhat
more accurate on 1000M1 and 1000M2 with low fragmentation, and
then has similar accuracy under the remaining conditions (i.e. on the
CRW datasets, with or without fragmentation).

3.3 Experiment 3 results

We compare MAGUS+eHMMSs to PASTA+eHMMs (i.e. default
UPP), PASTA, MAFFT(L-INS-i) and MUSCLE in terms of align-
ment accuracy. On some model conditions, MAFFT(L-INS-i) results
are not shown due to out-of-memory issues. We explored alternative
ways to run MAFFT(L-INS-i) to address these memory issues. These
approaches did enable MAFFT(L-INS-i) to complete, but produced
alignments that were clearly worse than alternative approaches (e.g.
MAGUS+eHMMs) (Supplementary Fig. S9). Full results can be
found in Supplementary Tables S1, S3 and S4.

Figure 2 shows the alignment error of each method on datasets
with high- and low-fragmentation conditions. MAFFT(L-INS-i) is
not shown for ‘CRW-HF’ as it failed to complete on one or more
datasets due to out-of-memory issues (see Section 3.4). One immedi-
ate observation is that methods are more clearly differentiated on
the high-fragmentation conditions, and so group into two sets: the
two better performing methods (MAGUS+eHMMs and
PASTA+eHMMs, with MAGUS+eHMMs clearly better) and the
four less accurate methods. On the low-fragmentation conditions,
the differences between methods decrease, but MAGUS+eHMMs
and PASTA+eHMMs still remain the best two, and
MAGUS+eHMMs still clearly the best performing.

Figure 3 shows the alignment error on the 14 CRW datasets
without introduced fragmentation. MAFFT(L-INS-i) is not shown
because it failed to complete on 16S.3, 16S.T and 16S.B.ALL due to
out-of-memory issues (see Section 3.4). Although results depend on
individual datasets, certain trends are apparent: MAGUS+eHMMs
is the best method with an average error of 10.4%, and
PASTA+eHMMs comes as the second with an average error of
11.8%. PASTA is generally less accurate than PASTA+eHMMs and
MAGUS+eHMMs (PASTA average error is 12.5%).
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Fig. 1. Experiment 2: Average alignment error in high fragmentation, low fragmentation, and without introduced fragmentation for MAGUS and MAGUS+eHMMs, from left
to right. ‘CRW refers to datasets originated from Comparative Ribosomal Website (Cannone et al., 2002). ‘CRW-HF’ contains the high-fragmentation version of 16S.M,

23S.M (smaller datasets), 16S.3, 16S.T and 16S.B.ALL (larger datasets), ‘CRW-LF’
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CRW datasets without introduced fragmentation. For both high- and low-fragmentation conditions, we examine ROSE 1000M1, 1000M2 and CRW 16S.M, 23S.M datasets.
For the high-fragmentation condition, we examine three additional large CRW datasets (16S.3, 16S.T and 16S.B.ALL with high fragmentation). For individual CRW dataset
results with and without introduced fragmentation, see Supplementary Tables S1 and S3

1.0 — -
‘
08 %
§ 0.6
5]
0.4
. M R
> = ==
0.0 < < ¢ <
N N N
\S Q Q&
\’@0‘“ \’00@‘\ &
1.0 —_ - [0 MAGUS+eHMMs
' ' B PASTA+eHMMs
0.8 I MAFFT(default)
B MAFFT(L-INS-i)
. = PASTA
g 06 v B MUSCLE
(l)

}

P ead

AS

o

R SN

Fig. 2. Experiment 3: Average alignment error on high-fragmentation (top) and low-
fragmentation (bottom) conditions. ‘CRW-HF and ‘CRW-LF’ refer to the same
datasets, as described in Figure 1. For ‘CRW-HF’, MAFFT(L-INS-i) is not shown as
it failed to complete on one or more datasets due to out-of-memory issues. See
Supplementary Table S1 for individual CRW dataset results with fragmentation
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Fig. 3. Experiment 3: Average alignment error on the 14 CRW datasets without
introduced fragmentation. MAFFT(L-INS-i) could not complete on 16S.3, 16S.T
and 16S.B.ALL due to out-of-memory issues. For individual CRW dataset results
without introduced fragmentation, see Supplementary Table S3

3.4 Runtime and computational issues

Most analyses were run on the University of Illinois Campus
Cluster, and a few large datasets were analyzed on the Blue Waters
supercomputer (i.e. high fragmentary 16S.3, 16S.T and 16S.B.ALL,
and also the 16S.B.ALL dataset without fragmentation). We set 32
GB memory and 48-hour time limit for all analyses, with 16 CPUs
for datasets with fragmentation and 8 CPUs for datasets without
introduced fragmentation. All analyses that did not encounter errors
completed within the time limit. Some methods had out-of-memory
issues and so failed to complete on some datasets; see
Supplementary Materials for full details.

Given that the University of Illinois Campus Cluster and the Blue
Waters supercomputer consist of heterogeneous computing nodes
with different speeds and available memory, it is difficult to draw
clear conclusions about runtime for the methods we explore.
However, here, we provide some general observations about the
wall clock time used in the different analyses; see Supplementary
Figures S1, S2, S5, S6 and Supplementary Table S2.

In Experiment 1, our main observation was that using large
backbones (all full-length sequences compared with 1000 full-length
sequences) and using MAFFT’s techniques for adding fragmentary
sequences into backbone alignments increased runtime substantially,
making the use of eHMMs to add sequences to 1000-sequence back-
bone alignments the most efficient technique (Supplementary Figs
S1 and S2). In Experiment 2 (Supplementary Fig. S5), we saw that
MAGUS+eHMMs was much faster than MAGUS on the HF condi-
tions except for CRW-HF (MAGUS being slightly faster), and some-
what faster on the LF conditions. In Experiment 3 (Supplementary
Fig. S6), we compared MAGUS+eHMMs to PASTA,
PASTA+eHMMS (ie. UPP), MAFFT(L-INS-i), MAFFT(default)
and MUSCLE. The runtime comparison showed MAFFT (default) to
be by far the fastest, especially on large datasets. For example, on
the largest dataset, 16S.B.ALL with high fragmentation,
MAFFT/(default) completed in under an hour while the other meth-
ods ranged in time from 6.9hours (MUSCLE) to 12.9hours
(PASTA). The relative runtimes between methods, after excluding
MAFFT(default), do not show any consistent trends, and as noted
before, it is not straightforward to interpret these results because of
the heterogeneity in the computational environment.

4 Discussion

This study revealed differences between methods for alignment of
datasets that contain some fragmentary sequences. While the range
of model conditions was limited (and in particular, we did not
examine any datasets with 30 000 or more sequences nor any pro-
tein datasets), we can note the following trends.

We observed that the relative performance between methods
depends on the dataset. For example, the differences between
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methods are reduced on datasets with low average p-distances (indi-
cating low heterogeneity), but are large on the 1000M1 and
1000M2 datasets, which have the highest average p-distances (and
so highest heterogeneity). Moreover, with sufficiently low hetero-
geneity, alignment estimation is generally easy, even when the data-
set has fragments, a finding that has been observed in prior studies
(Nguyen et al., 2015; Smirnov and Warnow, 2020b).

However, when datasets are challenging to align, then the choice
of method can matter substantially. Furthermore, we observed that
two-stage methods (i.e. methods that align full-length sequences first
and then add the remaining sequences) produce lower alignment
error compared with one-stage methods when the level of fragmen-
tation is high, and especially when the rate of evolution is high.
Thus, two-stage methods are more robust to fragmentation than
one-stage methods. Moreover, of all the methods we tested,
MAGUS+eHMMs is the best performing one in terms of alignment
accuracy, especially for the hardest model conditions. This is not
surprising, since by design two-stage methods enable local alignment
strategies (such as the eHMM technique) to be used to add fragmen-
tary sequences into alignments of full-length sequences. More gener-
ally, the two-stage approach allows each type of method to be used
on those data for which they are primarily designed.

Having said this, it is noteworthy that MAGUS displays fairly
good robustness to fragmentation. Thus, with the exception of high
levels of fragmentation and high rates of evolution, MAGUS is nearly
as accurate as PASTA+eHMMs (i.e. default UPP). MAGUS’ algo-
rithmic design is similar to that of PASTA, and the only important
difference is how disjoint alignments are merged. Obviously, this
study shows that MAGUS’ technique for merging disjoint alignments
(i.e. GCM) is more robust to fragmentation, which is intriguing, and
indicates the potential for new method development in alignment
merging that could further improve merged alignment accuracy. For
example, GCM can be seen as attempting to solve a reformulation of
the Maximum Weight Trace problem (Kececioglu, 1993) to the prob-
lem of merging disjoint alignments (Zaharias et al., 2021), but other
problem formulations may provide even better accuracy.

To understand why we see good accuracy in two-stage approaches,
we examined the correlation between the backbone alignment error
and the final alignment error. Figure 4 shows a very high level of cor-
relation (Pearson’s r=0.994 and r = 0.987 for low- and high-fragmen-
tation conditions, respectively) between the backbone alignment error
in MAGUS+eHMMs and the final alignment error, across all model
conditions (results for PASTA+eHMMs show similar trends, see
Supplementary Fig. S7). Although the correlation is very high, in gen-
eral the final alignment error is slightly higher than the backbone align-
ment error (with bigger increases for the HF conditions than the LF
conditions). Furthermore, the points for which the final alignment has
noticeably higher error than the backbone alignment are associated
with the 1000M1 and 1000M2 datasets on the HF condition, and
these are also the points on which we see the highest backbone align-
ment error. This suggests that the degree to which the eHMM tech-
nique maintains the backbone alignment accuracy may be higher for
slowly evolving datasets than for quickly evolving datasets, or more
generally higher for easy-to-align datasets than for difficult-to-align
datasets. Further research is needed to understand whether this (slight)
reduction in accuracy can be ameliorated through a more carefully
designed sampling strategy than the one we use in this study, which
just samples 1000 sequences randomly from the full-length sequences.

5 Conclusion

In this study, we examined the problem of computing multiple se-
quence alignments of datasets that contain fragmentary sequences, a
problem that arises in biological sequence analysis in several con-
texts, and especially when analyzing datasets that contain reads or
contigs (such as analyses of metagenomic datasets). The previous
leading method for this problem is UPP, which operates by using
PASTA to compute an alignment on a sample of the full-length
sequences and then adds the remaining sequences into the alignment
using an eHMM. We found that replacing PASTA with MAGUS in
the UPP pipeline improved accuracy, and some improvements were
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Fig. 4. Final versus backbone alignment error for using MAGUS to align the back-
bone and eHMMs to add the remaining sequences (MAGUS+eHMM:s), on low-
(top) and high-fragmentation (bottom) conditions. We report the Pearson’s correl-
ation coefficient for each case, showing a strong linear correlation between back-
bone alignment error and final alignment error across all datasets under both high
and low fragmentation

substantial. Given the noted difficulties in obtaining highly accurate
alignments for datasets with fragmentation, MAGUS+eHMMs may
provide a valuable addition to the alignment toolkit, with potential
benefits to downstream analyses.

We also found that except when the dataset evolves under a high
rate of evolution, MAGUS is highly robust to the presence of frag-
mentation. This property is surprising and may be rare among meth-
ods that do not operate in two stages (i.e. by treating full-length
sequences separately from fragmentary sequences). Why MAGUS is
so robust is not clear, but understanding the algorithmic designs that
provide this robustness would benefit developing new methods that
are even more robust.
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Data availability

Most of the datasets used in this study are from prior publications.
High- and low-fragmentation versions of ROSE 1000M1, 1000M2,
CRW 16S.M, 23S.M datasets can be accessed from https://data
dryad.org/stash/dataset/doi:10.5061/dryad.95x69p8h8. The three
largest CRW datasets (16S.3, 16S.T and 16S.B.ALL) can be accessed
from https://sites.google.com/eng.ucsd.edu/datasets/alignment/
16s23s. The remaining datasets are available in the Illinois Data
Bank at https://doi.org/10.13012/B2IDB-2419626_V1.
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