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A B S T R A C T   

Several deep-learning assisted disease assessment schemes (DAS) have been proposed to enhance 
accurate detection of COVID-19, a critical medical emergency, through the analysis of clinical 
data. Lung imaging, particularly from CT scans, plays a pivotal role in identifying and assessing 
the severity of COVID-19 infections. Existing automated methods leveraging deep learning 
contribute significantly to reducing the diagnostic burden associated with this process. This 
research aims in developing a simple DAS for COVID-19 detection using the pre-trained light-
weight deep learning methods (LDMs) applied to lung CT slices. The use of LDMs contributes to a 
less complex yet highly accurate detection system. The key stages of the developed DAS include 
image collection and initial processing using Shannon’s thresholding, deep-feature mining sup-
ported by LDMs, feature optimization utilizing the Brownian Butterfly Algorithm (BBA), and 
binary classification through three-fold cross-validation. The performance evaluation of the 
proposed scheme involves assessing individual, fused, and ensemble features. The investigation 
reveals that the developed DAS achieves a detection accuracy of 93.80% with individual features, 
96% accuracy with fused features, and an impressive 99.10% accuracy with ensemble features. 
These outcomes affirm the effectiveness of the proposed scheme in significantly enhancing 
COVID-19 detection accuracy in the chosen lung CT database.   

1. Introduction 

Recent literature indicates a gradual increase in the incidence rate of the disease among the population, attributed to various 
factors. Infectious diseases pose a spectrum of challenges, ranging from mild to severe impacts on human health. Even with recom-
mended precautionary measures in place, uncontrolled diseases have the potential to spread within large human groups. Therefore, 
timely and accurate detection, followed by appropriate treatment, is crucial to effectively address the condition and facilitate the 
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patient’s recovery through adherence to recommended medical protocols. 
The SARS-CoV-2 virus, leading to COVID-19, has impacted individuals worldwide indiscriminately of their race, gender, or age, 

prompting the World Health Organization (WHO) to declare it a pandemic. The global scale of the crisis is reflected in the staggering 
numbers, with reported infections reaching 772,166,517 cases and a total death toll of 6,981,263, according to the most recent WHO 
report as of November 23, 2023 (source: https://covid19.who.int/) [1]. These figures underscore the significant mortality associated 
with COVID-19, emphasizing that despite the availability of vaccinations and medications, its prevalence remains challenging to 
control. 

The literature evidents that the COVID-19 caused a large infection and death rate globally from year 2019 to till date. The earlier 
research related to the COVID-19 confirms that the Articifial Intelligence (AI) schemes played a vital role in screening, modelling and 
decision making process during the disease spread and still a number of AI schemes are used in clinics for COVID-19 infection ex-
amination tasks [2–5]. The common clinical practice involved in COVID-19 detection involves in; symptom examination, sample 
collection, Reverse Transcription-Polymerase Chain Reaction (RT-PCR) test for initial diagnosis and medical-imaging assisted 
confirmation of the infection and its severity [6–8]. The medical-imaging schemes, such as chest X-ray and CT slices are the common 
modalities considered to examine the lung infection due to COVID-19 and its analysis plays a prime role in confirming the severity of 
the lung infection, which plays a chief role in implementing the treatment to cure the disease with appropriate drugs. 

Compared to the X-rays, the CT slices helps to get complete information regarding the lung infection. Further, the CT helps to 
provide a three-dimensional (3D) view of the lung and it helps to view the whole lung region using axial-, coronal- and sagittal-planes 
using a chosen 3D to 2D conversion. The earlier research on COVID-19 assessment confirm that the AI supported methods assisted the 
doctors during the lung evaluation in early 2020 when much information regarding the clinical protocol for COVID-19 was not 
developed. Hence, several AI-supported procedures like machine learning (ML) and deep learning (DL) methods are proposed to 
examine the CT slices. The COVID19 detection with pre-trained and customary DL methods employed a variety examination pro-
cedures to improve the detection accuracy dueing the lung CT examination [9–11]. 

Most of the earlier works in the literature considered the complex methods like high layered DL models, pre-processed CT slices, 
and integrated segmentation and classification methods to achieve a better accuracy on a chosen dataset [12,13]. Execution of these 
techniques needs a larger and complex computational power. Further, these methods needs larger training and validation time. 
Compared to the conventional DL methods, the lightweight deep learning methods (LDMs) are having a smaller structure, lesser initial 
paremeters to be tuned and provides a result which is close to the large structured DL methods. Due to this reasons, the LDMs are 
widely adopted by the researchers to detect the COVID-19 infection [11,12]. The integrated thresholding and DL supported classi-
fication discussed in Ref. [13] confirms that this scheme helps to achieve a better result compared to the raw image supported 
detection. Based on this motivation, proposed research also considered the Shannon’s thresholding based image enhancement and 
LDM based classification of the chosen lung CT database. 

The aim of this research is to develop a simple and more efficient disease assessment schemes (DAS) using the LDMs to detect the 
COVID1-19 infection from the thresholded lung CT slice database. The various phases of this DAS includes the following; (i) image 
resizing and enhancement using Shannon’s entropy thresholding, (ii) deep features mining using a chosen LDM, (iii) features opti-
mization using a novel Brownian Butterfly Algorithm (BBA), (iv) features fusion to generate a new features vector (DDF) and (v) binary 
classification and performance confirmation using three-fold cross-validation. 

The main task of this work is to segregate the lung CT images into healthy/COVID-19 classes using the proposed DAS. For the 
experimental demonstration, this work considered 10000 2D axial-plane CT slices (5000 healthy and 5000 COVID19), and every image 
is then enhanced using Shannon’s entropy based tri-level thresholding using the BBA. These images are then considered for the 
experimental investigation. The initial investigation is performed using the chosen LDMs with SoftMax classifier and based on the 
achieved performance, the necessary LDM is selected for the fused-features and ensemble-features generation. Along with the SoftMax, 
the detection performance is also verified using classifiers, like Random Forest (RF), Decision Tree (DT), Naïve Bayes (NB), K-Nearest 
Neighbour (KNN) and Support Vector Machine (SVM) are implemented, and classification performance is verified. This work 
employed the LDM architectures, like SqueezeNet (SN), SqueezeNext (SNe), NASNetMobile (NNM), MobileNetV1 (MN1), Mobile-
NetV2 (MN2), MobileNetV3_Small (MN3S), and MobileNetV3_Large (MN3L) for the analysis, and the outcome of this scheme is tested 
using; individual, dual-deep features (DDF), and ensemble-deep features (EDF), and the results are compared. The research imple-
mented with ensemble LDM features offered a classification accuracy of >99% with the Decision Tree (DT) classifier, which confirms 
the merit of the proposed technique. 

The main contributions of this research include the following;  

• Lung CT enhancement using Shannon’s tri-level thresholding to improve the visibility of COVID-19 infection,  
• Features extraction using LDM and optimization using Brownian Butterfly Algorithm (BBA)  
• Execution of dual-deep feature-supported infection detection using dominant LDM features  
• Implementation of ensemble deep features to improve COVID-19 detection accuracy. 

The other regions of this paper are organized as follows; Section 2 presents the literature review, Section 3 demonstrates the 
methodology, and the results and conclusion are presented in Sections 4 and 5 correspondingly. 

2. Literature review 

Due to its implication, various DAS techniques are developed and implemented using ML and DL schemes to detectthe COVID-19 
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infection using chosen imaging modality. Compared to the chest X-rays, the CT slice supported methods are very efficient in detecting 
the disease and its severity level to support the doctors in planning and implementing the necessary treatment to cure the disease. 

COVID-19 detection with clinical and benchmark CT slices are widely discussed in the literature using pre-trained and customary 
DL methods. The previous works confirm that the DL-based examination provides better detection accuracy than conventional and ML 
schemes. Hence, several DL schemes are developed to support the COVID-19 segmentation/classification using lung CT slices of 
various planes. The summary of a few chosen existing procedures can be found in the review works and these methods confirms that 
the earlier methods provided a detection accuracy up to 100% [9–11]. 

The work of Furtado et al. (2022) implemented Cimatec-CovNet-19, a novel 3D supported LDM based on VGG16 scheme. This 
technique provided a detection accuracy of 90% when tested and verified on a balanced lung CT images with dimension 3000 [14]. 
Research by Bhosale and Patnaik (2022) discussed a low capacity hardware implementable LDM to classify the lung CT slices. This 
work is executed using Raspberry Pi integrated with a workstation and it achieved s detection accuracy of 99.28% [15]. Other related 
works existing in the literature for the examination of the lung CT slices helped to provide a detection accuracy up to 100% for the 
chosen image database [16,17]. 

The earlier works in the literature confism that the fused dual-deep fetaures (DDF) based approaches [18,19] and ensemble 
deep-features (EDF) approaches [20,21] helps to achieve a better COVID-19 detection compared to the individual features based 
techniques. To implement these techniques, it is necessary to identify the individual deep-features using an experimental study and the 
best feature vactors are then considered to implement the DDF and the EDF echnique. 

Few earlier works in the literature confirms that the pre-processed CT images with a chosen thresholding approach helps to achieve 
a better detection accuracy compared to the raw images. Based on this motivation, this research work implemented a LDM based 
scheme on the raw and the thresholded images and the performance of the chosen procedures are initially verified using the individual 
features using the SoftMax. After identifying the best LDMs based on the result with the chosen CT database, the BBA based features 
optimization is implemented and the DDF is generated, Further, three LDMs based on its individual features performance is selected 
and EDF generation is implemented as discussed in Ref. [22]. Finally, the performance of the developed DAS is verified using indi-
vidual, DDF and EDF using various binary classifiers and the achieved results are presented and discussed. 

3. Materials and methods 

The performance of the disease detection procedure depends mainly on the procedures employed in assessing the medical data. The 
complete information is presented in this section and this also presents the necessary information regarding methods employed to 
achieve the better detection accuracy. 

Fig. 1. Block diagram of the proposed approach.  
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3.1. Proposed scheme 

This work considered the lung CT slices for the examination, and the procedure executed in this work is depicted in Fig. 1. A 
preliminary image collection is performed using the available database [23] containing 10000 images in axial-plane (5000 healthy 
images and 5000 COVID19 images) for assessment. In order to enhance the visibility of the lung region and its infection, each image is 
resized to 224 × 224 × 3 pixels, noise removal is implemented to remove the unwanted pixels, and Shannon’s Entropy tri-level 
thresholding is applied to pre-process the considered image slice. An enhanced image (Normal/COVID19) is then given to the LDM 
developed, which is trained using 80% of the data and validated and tested with 10% of the data. 

To verify the performance of the chosen LDM, the classification task is initially performed using the SoftMax classifier with deep 
features. The proposed BBA is used to select features, and the DDF and EDF are employed to perform the classification task. Besides the 
SoftMax classifier, this study also considered binary classifiers such as RF, DT, NB, and SVM, and the results were evaluated. Three-fold 
cross-validation is employed in this study to verify the proposed scheme’s performance, and its performance is compared with the 
existing literature results. 

3.2. Image database 

The test CT images for this research are collected from Ref. [23]. From its database, only 10000 CT slices (5000 healthy and 5000 
COVID19) are considered for the investigation. Every image is considered for resizing, smoothening, and contrast improvement op-
erations to get a preprocessed image to offer better detection accuracy with the chosen LDM. In this database, 80% of images are 
considered to train the developed scheme, 10% of data is for validation, and the remaining 10% is for the testing task. The results are 
then compared, and the proposed system’s performance is verified. Fig. 2 depicts the sample pictures of this database. 

The considered images are preprocessed using the Shannon’s Entropy Thresholding (SET) with a chosen threshold value of three 
(Th = 3) to enhance the visibility of the lung and its infection. 

3.2.1. Shannon’s entropy thresholding 
As the objective value of the SET, the goal is to maximize Shannon’s entropy. The threshold selection by the BBA is performed until 

maximum entropy is obtained. The essential information regarding the SET is provided in Ref. [24]. 
Let us study a two-dimensional picture with size x × y in which ʄ (x, y) indicates the pixels with distributions; Xϵ{1, 2,…, x} and 

Yϵ{1,2,…,y}. If the image consist L = 256 thresholds, then the total thresholds in the image is Th = {1,2,…,255}. 
The image size and its threshold distribution can be represented as in Eqn. (1); 

ʄ (x, y)ϵTh∀(X, Y)ϵ image (1) 

Let, R = {r0, r1,…, r255} denotes the regulated image. Then the tri-level threshold selection (Th = 3) can be represented as in Eqn. 
(2); 

R(Th)= {r0(th1)+ r1(th2)+ r2(th3)} (2) 

As an objective value, Shannon’s entropy is maximized for each image and this value is obtained by using the proposed BBA. Its 
mathematical expression is given in Eqn. (3). 

Thmax =max {R(Th) : for Th= 1 to 255 (3)  

Fig. 2. Sample test images in chosen database.  
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3.2.2. Brownian Butterfly Algorithm 
Researchers have proposed a number of nature-inspired heuristic algorithms to find the best solution to a chosen tasks. For (i) 

Optimal threshold selection for preprocessing the test image and (ii) Optimal deep-feature collection using the LDM, the butterfly 
algorithm proposed by Arora and Singh (2019) is considered [25]. Unlike other approaches, this algorithm has simple initialization 
and updating functions that are easy to implement with fewer initial parameters, making it easier to implement. Further, to inspect the 
necessary solution from the CT slice, the Brownian-Walk (BW) search is executed. The BW operator improves the BA’s performance by 
replacing the random search Rϵ [0,1] with a mathematically guided search. Further information regarding this scheme can be found at 
[26]. 

This algorithm is based on the movement of a butterfly towards dominated one, which releases a fragrance (Ƒ) as in Eqn. (4); 

Ƒ= cIa (4)  

where I = intensity (0.8), c = modular modality (0.01) and a = power exponent with a value of ϵ [0.1,0.3]. 
This algorithm integrates a straightforward global search space and a local search space to identify the optimal solution for the 

given problem. The position of a selected butterfly is represented by Eqns. (5) and (6). The global search, focused on exploration, aims 
to discover the dominant butterfly (G∗) within the designated search space, as outlined in Eqn. (5). Simultaneously, the local search, 
emphasizing exploitation, is illustrated by Eqn. (6). The effectiveness of both exploration and exploitation operations is monitored 
through a BW, aligning with the approach detailed in previous discussions, contributing to enhanced overall performance and results. 

Pt+1
i =Pt

i +
(
R

2
×G∗ − Pt

i

)
× BW (5) 

Fig. 3. Optimal thresholding (Th = 3) with Shannon’s entropy and BBA (SE + BBA). (a) Implemented thresholding approach, and (b) BBA search in 
a 3D space. 

Fig. 4. Preprocessed lung CT slices with the chosen approach.  
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Pt+1
j =Pt

j +
(

R
2
×Pt

k − Pt
j

)
× BW (6)  

where Pt
i is primary spot of ith butterfly, Pt+1

i is the new spot of ith butterfly, Pt
j is primary spot of jth butterfly, Pt

k is primary spot of kth 
butterfly and Pt+1

j is the new spot of jth butterfly. 
The BBA parameters are assigns as follows; total butterflies = 50, search dimension = 3 (ie. Th = 3), total iterations (Itermax) = 2000 

and search termination = Thmax or Itermax). The implementation of the proposed work is shown in Fig. 3. Fig. 3(a) presents the 
implemented preprocessing work and Fig. 3(b) shows BBA search, which confirms that the proposed arrangement helps to achieve a 
better result on chosen CT slice. The sample enhanced results are depicted in Fig. 4 and these images are considered to verify the merit 
of proposed COVID-19 detection tool. 

3.3. Lightweight deep-learning arrangement 

According to recent research, several Machine Learning and Deep Learning algorithms have been implemented for detecting 
COVID19 infections with greater accuracy in lung CT/X-ray images. The earlier works further confirm that DL procedures outperform 
many cases due to its pixel-level exploration capabilities and the traditional pre-trained model alone sufficient to detect the disease in 
CT slices [27]. In order to verify the performance of the chosen DL model, high-end computational facilities are required for the 
implementation of conventional DL procedures. Based on the efforts of the researchers, LDM has been developed as a suitable 
alternative to conventional DL procedures in order to reduce this complexity. In LDM, computational effort is reduced, and most of 
these approaches can be implemented using mobile phones and low-capacity processing devices [28,29]. Fig. 5 illustrates the structure 
of MobiNetV1 and confirms that the proposed scheme is capable of delivering feature vector with size 1× 1× 1000. 

This research aims to implement the developed LDM scheme to examine the COVID19 infection in lung CT slices and verify the 
merit of the considered technique with a 3-fold cross-validation using; (i) individual, (ii) DDF, and (iii) EDF. It was observed that this 
study considered various LDM methods, such as SN, SNe, NNM, MN1, MN2, MN3S and ML3L [30–34]. provides information regarding 
these methods, and [35–39] provides preliminary software codes for this study. 

This work considered the above-stated LDM for the examination, and every approach’s performance is individually tested and 
verified based on the chosen data. Initially, individual features are used to verify performance. To obtain dual-deep features, two of the 
best LDMs are chosen, and serial feature integration is applied. As part of the ensemble feature procedure, the best feature from the 
chosen LDM is considered to determine a feature vector of dimension 1× 1× 1000. The performance of the binary classification is then 
evaluated based on the metrics attained during the classification process. 

3.4. Performance verification 

To validate the importance of the DAS at the developmental level, it is necessary to confirm its performance with clinical-grade 
datasets. In this work, the merit of the developed LDM is verified using 1000 test images (500 healthy and 500 COVID19), and 
these images are considered as true-positive (TP) and true-negative (TN) information. When the implemented scheme detects a wrong 
value other than the TP and TN, it is then measured as false-positive (FP) and false-negative (FN), and these values will help to 
construct the confusion matrix based on other derived metrics, like accuracy (ACC), precision (PRE), sensitivity (SEN), and specificity 
(SPE). These values are considered to verify the merit of the executed tool, and the equations of these metrics measures are in Eqns. 
(7)–(10) [40–42]. These measures are separately computed for the classifiers, such as SoftMax, DT, RF, NB, and SVM. Along with these 

Fig. 5. Traditional MobileNetV1(MN1).  
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measures, the Receiver Operating Characteristic (ROC) curve is also recorded. 
The mathematical expression of these paremeters are presented in Eqns. (7)–(10); 

ACC=
TP+ TN

TP+ TN + FP+ FN
× 100 (7)  

PRE=
TP

TP+ FP
× 100 (8)  

SEN=
TP

TP+ FN
× 100 (9)  

SPE=
TN

TN + FP
× 100 (10)  

3.5. Implementation 

The proposed scheme is implemented using a workstation having Intel i5, 12 GB Ram and 4 GB VRAM. The proposed experiment 
considered two softwares; PYTHON (3.11.1) and MATLAB (R2022b). MATLAB-software is considered to implement the BBA and 
Shannon’s supported thresholding and the feature optimization process. The PYTHON-software is considered to implement the 
necessary deep-learning scheme and the classifier. 

This section of the research presents the experimental results on each technique is presented and discussed individually. This work 
considered the pretrained schemes, such as SN, SNe, NNM, MN1, MN2, MN3S and MN3SL for the execution. The executed classifi-
cation task considered 8000 images for training, 1000 images for validation and 1000 images for testing based on 3-fold cross-
validation. The parameters of LDM schemes are assigned as follows; learning rate = 1 × 10− 5, Adam optimization, ReLu activation, 
total iteration = 1500, total epochs = 100, and SoftMax classifier as default unit. 

This investigation is presented using individual, DDF and EDF with a dimension of 1 × 1 × 1000 and the performance is verified 
based on the computed performance metrics. During the individual feature based classification, the outcome of the LDM depicted in 
Eqn. (11) is considered to verify the classification task. During the dual-deep feature, MN1 and MN3S are considered and the feature 
reduction is implemented using the BBA to find the best features by maximizing the Euclidean-Distance (ED) as shown in Eqn. (12). 
The LWD feature vector is shown in Eqn. (11) and the selected feature of this process is depicted in Eqns. (13) and (14) for two chosen 
LDM. The feature optimization procedure with heuristic algorithm is discussed in earlier works and in this research, the BBA is 
implemented to find optimal features and the selected features are serially concatenated to achieve the dual-deep features as in Eqn. 
(15), which is then considered to detect the COVID19 with netter accuracy compared to the individual features. 

LDM(1×1×1000) = LDM(1,1),LDM(1,2),…, LDM(1,1000) (11)  

ED(a, b)max =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

N=i
(aN − bN)2

√

(12  

where a and b are the two features in a search space (n) and aN and bN are the vectors. 

MN1(1×1×351) =MN1(1,1),MN1(1,2),…,MN1(1,351) (13)  

MN3S(1×1×407) =MN3S(1,1),MN3S(1,2),…,MN3S(1,407) (14)  

DDF(1×1×758) =MN1(1×1×351) +MN3S(1×1×407) (15) 

After finding the DDF using the proposed BBA, the necessary EDF are also computed in this work based on the recent work pre-
sented in Kundu et al. [22]. 

To select the ensemble features, the LDMs, such as MN1, MN2, and MN3S are considered. The best EDF vector is achieved using the 
necessary metrics, such as ACC, PRE, SEN, SPE, and AUC value and the selection of the EDF is and the necessary evaluation metrics (Ai)

is developed by combining the chosen evaluation paremeters as in Eqn. (16); 

Ai ={ACCi,PREi, SENi, SPEi,AUCi} (16) 

Computation of the ensemble probability score is presented in Eqn. (17); 

ensj =

∑

i
w(i) × pj(i)

∑

i
w(i) (17)  

where ensj = ensemble probability score, element weight w(i) =
∑

xϵAi
tanh (x), rediction pj

(i) = argmax(ensj), xϵAi =

element x chosen based on Ai, and tanh(x) = activation unit. 
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4. Result and discussions 

This section presents the experimental outcome achieved using Python software on a chosen workstation. Initially, the LDM with 
individual features is tested on the chosen lung CT database (10000 images), and the achieved results are presented and discussed. In 
this DAS, the binary classification task is executed using 3-fold cross-validation with SoftMax, and the best result achieved with each 
scheme is presented for discussion. 

Table 1 
Classification results achieved for raw CT images using DMs and SoftMax.  

LDM TP FN TN FP ACC PRE SEN SPE ROC 

SN 419 79 428 74 84.7000 84.9899 84.1365 85.2590 0.844 
SNe 421 79 425 75 84.6000 84.8790 84.2000 85.0000 0.837 
NNM 416 82 418 84 83.4000 83.2000 83.5341 83.2669 0.814 
MN1 427 72 426 75 85.3000 85.0598 85.5711 85.0299 0.849 
MN2 423 76 418 83 84.1000 83.5968 84.7695 83.4331 0.838 
MN3S 424 76 426 74 85.0000 85.1406 84.8000 85.2000 0.845 
MN3L 422 80 421 77 84.3000 84.5691 84.0637 84.5382 0.813  

Table 2 
Binary classification outcome with SoftMax classifier on thresholded CT images.  

LDM TP FN TN FP ACC PRE SEN SPE ROC 

SN 453 39 447 61 90.0000 88.1323 92.0732 87.9921 0.906 
SNe 461 41 455 43 91.6000 91.4683 91.8327 91.3655 0.912 
NNM 459 40 456 45 91.5000 91.0714 91.9840 91.0180 0.911 
MN1 445 35 489 31 93.4000 93.4874 92.7083 94.0385 0.957 
MN2 457 40 468 35 92.5000 92.8862 91.9517 93.0417 0.913 
MN3S 464 35 466 35 93.0000 92.9860 92.9860 93.0140 0.918 
MN3L 461 40 463 36 92.4000 92.7565 92.0160 92.7856 0.912  

Fig. 6. Comparison of overall performance with Glyph-plot. (a) Raw CT slices, and (b) Pre-processed CT slices.  

Fig. 7. Search convergence depicts the training and validation outcomes of MN1. (a) Accuracy, and (b) Loss.  
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Initially, the raw CT slices are considered for the investigation the achieved results during this task is depicted in Table 1. This table 
confiorms that the result by the MN1 is better compared to other schemes and it achieved an accuracy of 85.30%. Later, similar 
classification task is repeated using the pre-processed CT slices and the obtained results are shown in Table 2. This table confirms that 
the result of MN1 is better than other schemes, and MN3S presents a closer result than MN1. Further, Tables 1 and 2 results confirms 
that the COVID-19 detection performance is improved considerably when a pre-processed CT slices are considered. This confirms that 
the implemented SE + BBE based tri-level thresholding provides an enhanced result compared to the classification task implemented 
with the raw images. Fig. 6 presents the overall performance for Tables 1 and 2 values using the Glyph-plots, as in Fig. 6(a) and (b), 
respectively. These plots also verifies that the outcome of MN1 is superior compared to other LDMs of this study. 

Fig. 7 presents the search convergence obtained with MN1 for the SoftMax classifier on the chosen database. Fig. 7(a) and (b) 
present the results for accuracy and loss, respectively, and this confirms that the training and validation values are close and confirm 

Fig. 8. Convolutional layer values for chosen image. (a) Convolution1, (b) Convolution2, (c) Convolution3, and (d) Convolution4.  

Fig. 9. Achieved results with MN1. (a) Confusion matrix, and (b) ROC curve.  
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the merit of the proposed scheme. The intermediate layer results for MN1 are depicted in Fig. 8. Fig. 8(a)–8(d) represent the outcome 
for a chosen image with convolutional layers 1 to 4, confirming that the considered picture is transferred into features with these 
operations. After the fully connected layers, it helps to get a feature vector of dimension. Fig. 9 depicts the outcome in which Fig. 9(a) 
shows the confusion matrix, and Fig. 9(b) presents the ROC curve. Similar outcomes are achieved in all other methods considered in 
the research work. 

After verifying the individual performance of the chosen LDM, the merit of the MN1 and MN3 is confirmed with other chosen 
classifiers, like DT, RF, NB, and SVM. The achieved results are registered in Table 3. Then, the integrated features of MN1 and MN3S 
are considered to form the dual-deep features, and their performance is also verified with the chosen classifiers. Finally, the perfor-
mance of the proposed approach is tested using the ensemble features, and the outcome achieved with this task helped achieve a better 
classification accuracy than other schemes considered in this work. This confirms that the ensemble features-supported approach 
provides a better result with RF (>99%), and this result is then verified with the other similar outcomes adopted from the literature. 

To verify the performance of the proposed scheme, a graphical comparison of Table 3 is presented and initially the performance of 
MN1 and MN3S is verified using the combined Glyph-Plot as depicted in Fig. 10. The larger pattern is the best value and this confirms 
that the SVM classifier offers a better overall performance compared to the other classifiers considered in this study. To verify the 
results by DDF and the EDF, spider-plot based comparison is presented as in Fig. 11. Fig. 11(a) presents the outcome of the DDF and this 
confirms that the SVM classifier offers a better result and Fig. 11(b) presents the performance with EDF and it confirms that the RF 
classifier provides a better result. This study verifies that the EDF based COVID-19 offers a better outcome compared to other features 
considered in this study. 

This work implements an LDM scheme to classify the lung CT slices into healthy/COVID-19 class, and the achieved results are 
verified. The significant merit of this scheme is, it implements the pre-trained LDMs to achieve a detection accuracy of >93% with the 
chosen technique and helps to achieve an accuracy up to 99.10% with the EDF. In this work, the SE + BBA based thresholding is 

Table 3 
Overall result achieved with the proposed study.  

Features Classifier TP FN TN FP ACC PRE SEN SPE ROC 

MN1 SoftMax 459 37 472 32 93.1000 93.4827 92.5403 93.6508 0.921 
DT 472 38 450 40 92.2000 92.1875 92.5490 91.8367 0.933 
RF 468 37 455 40 92.3000 92.1260 92.6733 91.9192 0.942 
NB 466 38 458 38 92.4000 92.4603 92.4603 92.3387 0.947 
SVM 445 35 489 31 93.4000 93.4874 92.7083 94.0385 0.957 

MN3S SoftMax 464 35 466 35 93.0000 92.9860 92.9860 93.0140 0.918 
DT 468 35 463 34 93.1000 93.2271 93.0417 93.1590 0.937 
RF 470 32 466 32 93.6000 93.6255 93.6255 93.5743 0.952 
NB 469 30 467 34 93.6000 93.2406 93.9880 93.2136 0.928 
SVM 468 31 470 31 93.8000 93.7876 93.7876 93.8124 0.9757 

DDF SoftMax 479 23 472 26 95.1000 94.8515 95.4183 94.7791 0.961 
DT 479 22 475 24 95.4000 95.2286 95.6088 95.1904 0.969 
RF 477 20 477 26 95.4000 94.8310 95.9759 94.8310 0.972 
NB 476 24 480 20 95.6000 95.9677 95.2000 96.0000 0.970 
SVM 481 20 479 20 96.0000 96.0080 96.0080 95.9920 0.979 

EDF SoftMax 487 14 487 12 97.4000 97.5952 97.2056 97.5952 0.987 
DT 488 118 490 11 97.8000 97.7956 97.7956 97.8044 0.985 
RF 495 6 496 3 99.1000 99.3976 98.8024 99.3988 0.993 
NB 493 7 491 9 98.4000 98.2072 98.6000 98.2000 0.989 
SVM 492 9 491 8 98.3000 98.4000 98.2036 98.3968 0.990  

Fig. 10. The combined Glyph-Plot for MN1 and MN3S is considered to verify the best classifier.  

V. Rajinikanth et al.                                                                                                                                                                                                   



Heliyon 10 (2024) e27509

11

implemented to enhance the test image and in future, the performance of this technique can be verified with othetr thresholding and 
heuristic algorithms found in the literature. The developed scheme is simple and it needs a LDM to obtain a satisfactory COVOD-19 
detection accuracy. In future, its merit and clinical significance can be verified bt considering the clinically collected CT slices. 

5. Conclusion 

As a medical emergency, COVID19 requires prompt consideration and treatment. Using a binary classifier with cross-validation 
three times, this study proposed an LDM scheme for classifying lung CT slices into healthy/COVID-19 classes. 2D lung CT slices 
(10,000 numbers) are considered for the examination in the proposed work to improve detection accuracy. This work initially im-
plements SE + BBA based thresholding task to enhance the visibil; ityof the chosen CT slices and the pre-processed images are then 
considered to verify the performance of the developed DAS. The experimental investigation is implemented by considering the raw and 
thresholded CT slices and this result confirms a considerable improvement in detection accuracy when the preprocessed CT images are 
considered. Initially, individual features based classification is implemented to identify the best LDMs (MN1 and MN3S) and these 
features are then optimized with BBA and the DDF are generated using the serial features fusion. Along with the DDF, this work also 
generated the EDF using the best features of MN1, MN2 and MN3S. The image classification task is separately executed using indi-
vidual, DDF, and EDF using different binary classifiers and the outcome of this investigation confirmed that the EDF with RF classifier 
provided a better accuracy (99.10%) when thresholded CT images are considered. The over result of this study confirms that the 
proposed pre-trained LDM based DAS woks well on the chosen image database. In future, its merit can be verified using the clinically 
collected CT slices. 
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