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KEYWORDS Summary Background/Objective: Activity is increasingly being recognized as a highly rele-
accelerometry; vant parameter in all areas of healthcare for diagnosis, treatment, or outcome assessment,
activity monitoring; especially in orthopaedics where the movement apparatus is directly affected. Therefore,
clinical outcome the aim of this study was to develop, describe, and clinically validate a generic activity-

assessment monitoring algorithm, satisfying a combination of three criteria. The algorithm must be able

to identify, count, and time a large set of relevant daily activities. It must be validated for
orthopaedic patients as well as healthy individuals, and the validation must be in a setting that
mimics free-living conditions.

Methods: Using various technical solutions, such as a dual-axis approach, dynamic inclinometry
(hip flexion), and semiautomatic calibration (gait speed), the algorithms were designed to
count and time the following postures, transfers, and activities of daily living: resting/sitting,
standing, walking, ascending and descending stairs, sit—stand transitions, and cycling. In addi-
tion, the number of steps per walking bout was determined. Validation was performed with
healthy individuals and patients who had undergone unilateral total joint arthroplasty, repre-
senting a wide spectrum of functional capacity. Video observation was used as the gold
standard to count and time activities in a validation protocol approaching free-living conditions.
Results: In total 992 and 390 events (activities or postures) were recorded in the healthy group
and patient group, respectively. The mean error varied between 0% and 2.8% for the healthy
group and between 0% and 7.5% for the patient group. The error expressed in percentage of
time varied between 2.0% and 3.0% for both groups.

Conclusion: Activity monitoring of orthopaedic patients by counting and timing a large set of
relevant daily life events is feasible in a user- and patient-friendly way and at high clinical
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validity using a generic three-dimensional accelerometer and algorithms based on empirical
and physical methods. The algorithms performed well for healthy individuals as well as patients
recovering after total joint replacement in a challenging validation set-up. With such a simple
and transparent method real-life activity parameters can be collected in orthopaedic practice
for diagnostics, treatments, outcome assessment, or biofeedback.

© 2017 The Authors. Published by Elsevier (Singapore) Pte Ltd on behalf of Chinese Speaking
Orthopaedic Society. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Physical activity (PA) is increasingly recognized as a major
contributor to general health [1] and thus rising efforts are
being made to assess activity as a quantitative parameter in
the medical field [1,2]. In orthopaedics, where the movement
apparatus is directly affected and treated, assessing daily life
activity as an outcome dimension independent of the
commonly used questionnaire-based scores for pain, satis-
faction, or function is of particular interest. For assessing PA
some self-report questionnaires are available (Short QUes-
tionnaire to ASsess Health-enhancing physical activity, Lon-
gitudinal Aging Study Amsterdam Physical Activity
Questionnaire). However, in a review of 17 of such tools,
including the most popular ones, none could meet clinimetric
standards and consequently the use of accelerometers was
advised for monitoring [3]. Also, a recently published
recommendation of the Osteoarthritis Research Society In-
ternational advised sensor-based activity monitoring (AM) to
assess outcomes in patients with osteoarthritis [4].

Modern developments in sensor technology, such as
miniaturization, have enabled the use of wearable sensor-
based AM. So far, the focus of AM has mainly been on energy
expenditure, which is especially popular to assess the effect
of lifestyle and general health interventions for cardiac and
pulmonary diseases and obesity [5]. Many accelerometer-
based AM methods only provide activity counts or caloric
expenditure [6,7] based on intensity count thresholds and
caloric maps, instead of identifying, counting, and timing
the actual activity events such as walking. In several medical
fields, however, especially in orthopaedics, one is interested
in the identification of specific motor tasks and counting and
timing these well-defined events instead of finding the
overall intensity or caloric burn. In a recent review [8] (on
AM studies under free-living conditions in orthopaedic pa-
tients) it was shown that studies which used general quan-
titative activity parameters such as energy expenditure,
time upright, or daily steps seemed less discriminative and
responsive in orthopaedic applications while more specific
event counts such as minutes of moderate and vigorous PA or
climbing stairs were clinimetrically more powerful.

The goal of orthopaedic interventions, besides pain re-
lief, is the restoration of musculoskeletal function to
enable the performance of activities desired by the patient
or required to live independently, to participate in society,
and achieve a healthy lifestyle. Thus it is highly relevant in
orthopaedic outcome assessment to investigate whether,
when, how often, and for how long patients are able to
perform relevant and possibly challenging activities of daily

living (ADL), e.g., sitting, standing, sit—stand transitions,
walking, cycling, and stair climbing and descending.

As an example for choosing activity events relevant for
classification in orthopaedics, ascending stairs seems very
appropriate as it is the energetically more demanding task
[9]. However, it is conceivable that descending stairs is
motorically more difficult for patients undergoing total
joint arthroplasty because of pain, loss of muscle strength,
joint instability, or proprioception and a fear of falling.
Thus, in patients with lower limb osteoarthritis, counting
and timing of both stair events should be a highly relevant
outcome measure. Cycling, stationary or on a normal bike,
is a common and often recommended or prescribed physi-
otherapeutic activity for orthopaedic patients recovering
from surgery or the elderly osteoarthritic patient in general
[10]. Cycling is also an important activity for social partic-
ipation for many, so that its classification adds great value
to outcome assessment or supervising the compliance to
therapy. Step counters and most commercial monitors
cannot distinguish between walking and cycling.

Several AM devices with analysis software such as Acti-
graph (Actigraphcorp, Pensacola, FL, USA), StepWatch
(Modus Health, Washington, DC, USA), Shimmer3 (Shimmer,
Dublin, Ireland), Dynaport (McRoberts, Den Haag, The
Netherlands), ActivPal (Pal Technologies, Glasgow, UK),
Physilog (Gait Up, Lausanne, Switzerland), RT3 (StayHealthy,
Monrovia, CA, USA) and others have already been developed
and are commercially available [7,8,11—17]. However, their
algorithms are usually proprietary and nondisclosed, they do
not identify all of the aforementioned activities, or are not
always patient and user friendly (e.g., bulky). Furthermore,
to date only a few studies have validated their algorithms on
patients whose movement apparatus has been affected
[18—20]. In these patients there is a broad range of activity
levels, ranging from being able to walk only very short bouts
with the help of walking aids (1°* week postoperatively), to
uninhibited movement at the level of a healthy individual.
Not only does a patient’s condition influence his or her ac-
tivity level, but also the way a movement is performed (i.e.,
slower, lower intensity, use of walking aids) challenges the
universal validity of signal analysis algorithms. Thus, this
could affect the performance of AM devices when used to
monitor orthopaedic patients [21—23]. Therefore, it is
important to validate AM algorithms using individuals repre-
senting the intended target group.

Due to miniaturization of sensors and chips, it has
become feasible to increase the data-storage capacity of
devices, enabling 100% postprocessing of data. This in turn
enables the creation of AM algorithms that are hardware


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Activity monitoring for orthopaedic patients

21

independent, and can be used with any accelerometer
device, to allow for a widespread use of generic acceler-
ometers without the need to buy expensive preprogramed
devices.

The aim of this study was to develop, describe, and
clinically validate a generic AM algorithm, satisfying a
combination of three criteria. First of all the algorithm
must be able to identify, count, and time a large set of
relevant ADL as events. Second, it must be validated for
orthopaedic patients as well as healthy individuals, and
finally the validation must be in a setting mimicking free-
living conditions. The innovative character of this study lies
in the combination of these criteria.

Methods

All procedures performed were in accordance with the
ethical standards of the institutional and/or national
research committee and with the 1964 Helsinki declaration
and its later amendments or comparable ethical standards.
Ethical approval was obtained from the ‘Medisch-Ethische
Toetsings Commissie Atrium-Orbis-Zuyd’ under reference
number: 10-N-72. Informed consent was obtained from all
individual participants included in the study.

Device description

A commercially available three-dimensional accelerometer
device (GC Dataconcepts, Waveland, MS, USA) was used to
acquire data. The dimensions of this light-weight (18 g)
device were 64 mm x 25 mm x 13 mm. Acceleration data
(from —6g to +6g) was sampled at 50 Hz and stored on an
on-board memory chip with a capacity up to 16 GB and a
battery life of > 24 hours. Data transfer and device
configuration were possible via USB.

Device location and positioning obviously influences the
accelerometer signal, thus location and positioning is
crucial in any AM study. Only one group developed position-
independent algorithms [24]; however, this limits the ac-
tivity types which can be classified. For example, they do
not discriminate between sitting and standing and thus
cannot count transfers. In this study a position on the
lateral side of the nonaffected upper leg was chosen
(Figure 1). This way the inclinometer function of an
accelerometer during static periods with reference to earth
gravity, as described by Godfrey et al [25], could be used to
best advantage. Direct attachment of the sensor to the skin
using hypoallergenic double-sided tape (3M 9917) was used
to minimize cloth artifact and keep the sensor invisible.

Algorithm description

All data processing was performed using Matlab (Math-
works, Natick, MA, USA). The following steps were taken in
the analysis process: preprocessing, removal of nonwear
signals, semiautomatic calibration, and classification using
a decision tree based on different signal features. During
the preprocessing step the data was smoothed using a
standard fourth order low-pass Butterworth filter with 5 Hz
cut-off frequency. Since we were solely interested in
identifying movements, and not in quantitative peak

Attachment of device.

Figure 1

amplitudes, this smoothing does not affect the detection
quality of the algorithm.

Calibration

After removing the obvious parts of the signal where the
device was not worn, a calibration was performed by
manually selecting a period of level walking in the subject’s
data set. The criterion for this period was at least five
visible repetitions of the typical signal trace corresponding
to one gait cycle. From this period of walking three pa-
rameters were automatically extracted: gait cycle fre-
quency [GCF (Hz)], the average magnitude of the
acceleration vector [T; (g9)], and the average (low pass
filtered) anteroposterior component of the signal [x-offset
(¢)]. This was the only calibration step in the process,
making it user friendly. The calibration allows the general
algorithm to adapt to variations in user height, morphology,
sensor positioning, walking styles, and speed caused by
limited range of joint motion, pain, or the use of walking
aids, without the need to perform specific calibration
movements in the laboratory.

Classification

The actual classification algorithm was a decision tree, with
event-based windowing and decisions based on heuristic
features [26]. At first, periods were divided into static and
dynamic periods. Static periods were then classified as
either resting or standing. Dynamic periods were divided
into sedentary and upright parts, after which the sedentary
periods were classified as either cycling or noncycling.
Noncycling events were classified as resting, because no
sedentary dynamic activities were considered in this study.
In upright parts, a division was made between periods with
a cyclic movement (locomotion) and periods without. The
latter was classified as standing, the former was again
divided into walking on a level surface and walking on
stairs. Finally, a distinction was made between going up-
stairs and downstairs. This is schematically shown in
Figure 2. The various decision steps are described in more
detail below.



22

M. Lipperts et al.

Signal
preprocessing

Active periods

Static periods

Upright Sedentary Resting Standing
I ————
Gait Standing Cycling Resting
Level surface Stairs
—_—
Ascending Descending
Figure 2 Decision tree used to classify different activities and postures.

Static or dynamic

The discrimination between static and dynamic periods was
based on a 1-second average of the magnitude of the ac-
celeration vector. This signal magnitude area (SMA) is
calculated after high pass filtering.

wmm:?ﬁ

i-0.5

V@0 + () + @by, (1)

where SMA(i) is the magnitude in 1-second window i, and a,
is the high pass filtered acceleration signal in the direction
of the device’s x-axis. A similar approach had already been
used by others [25,27]. The threshold T4, obtained from the
calibration, was used to separate static (SMA < T,) from
dynamic (SMA > T,) periods. Consecutive static and dy-
namic seconds were then grouped together to form either
static or dynamic events. Two dynamic events interrupted
by a static event shorter than 5 seconds were considered to
be one dynamic event. This way each event was classified,
instead of classifying every 1-second window separately.

Sitting or standing

Static events were classified as either standing or resting.
This decision step was based on the inclination of the de-
vice. This approach has been used in a commercially
available device emulated by Godfrey et al [15] Sit—stand
transitions are now counted as changes in posture from
sitting to standing or from sitting to an active upright event
(usually locomotion) (Figure 3).

Sedentary or upright dynamic events

By applying a low pass filter (4™ order Butterworth, cut-off
frequency 0.15 Hz) on the signal in dynamic events, the
dynamic (inertial) characteristics in these events were
removed and the static component (inclination) remained.
Similar to static events (Figure 3), the dynamic events were
divided into sedentary and upright dynamic events. The
unfiltered signal was later used to classify these events
further.

Locomotion

For upright dynamic events, an additional check was per-
formed to distinguish locomotion from standing, shuffling,
and other nonrhythmic upright activities (all classified as
standing). Locomotion produces distinct patterns in both
vertical and anteroposterior directions. The visibility of
those patterns varies per subject, and thus the most visible
one will be used for classification. In individuals who walk
slowly, especially those using walking aids, the ante-
roposterior signal is more pronounced than the vertical
acceleration signal. Consequently, for these individuals the
event was classified as walking when there were at least
five consecutive peaks in the anteroposterior signal inter-
spaced less than 3 seconds (minimum cadence of 40 steps
per minute), with a peak amplitude of 0.1g after smoothing
(low-pass Butterworth filter with cut-off frequency of
2 Hz). Compton et al [28] defined slow walking as < 80
steps/min. Therefore, we defined a GCF of < 0.67 Hz as
slow walking. For individuals who walk faster, a similar
approach was used with different parameters. This time
there had to be five consecutive peaks in the smoothed
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vertical acceleration (low-pass Butterworth, cut-off fre-
quency 4 Hz), with minimum amplitude of 0.2g. The mini-
mum amplitudes were chosen in such a way that most peaks
were found by Matlab’s findpeaks function, while using the
“MinPeakDistance” option in combination with the low-pass
filter to limit the amount of double peaks. The consequence
of allowing only periods with at least five consecutive peaks
is that periods with only four steps or less will be classified
as standing or shuffling. The number of steps in each
walking bout is found by counting the number of peaks. In
the vertical signal each peak corresponds to one step, in
the anteroposterior signal each peak corresponds to a
complete gait cycle, i.e., two steps. Cadence was conse-
quently calculated as the inverse of the median interval (in
minutes) between peaks.

Stairs

A characteristic signal feature which differentiates man-
aging stairs and both stair ascent and descent from level
walking or cycling was identified. Typically, when walking
on stairs, individuals flex their knee and hip more than
when walking on a level surface. For patients with a uni-
lateral complaint (e.g., recovering from surgery) this effect
is even more pronounced, because of the default sensor
placement on the nonaffected leg. Those patients are often
not able to walk stairs using a step-over-step strategy. They
always lead with the nonaffected leg when ascending and

Inclinometer function of the device for posture detection.

the affected leg when descending, in order to keep the load
on the affected leg to a minimum.

This meant that, averaged over one gait cycle, the axis
parallel to the femur, and therefore the accelerometer, will
be characteristically more inclined towards horizontal than
during walking on a level surface. This so-called dynamic
inclinometer feature can be best observed in the ante-
roposterior component of the signal after applying a low
pass filter. To obtain the best temporal resolution the cut-
off frequency should be as high as possible, but low enough
to smoothen individual steps. Therefore, the cut-off fre-
quency for GCF > 0.67 Hz was 0.3 Hz, and for GCF < 0.67 Hz
the cut-off was 0.15 Hz. Assuming a minimum duration for a
stair event, dynamic events longer than 4 seconds (GCF >
0.67), or longer than 6 seconds (GCF < 0.67), where the
signal exceeded x-offset minus a threshold (T, = 0.05g for
GCF > 0.67, and T, = 0.1g for GCF < 0.67), were classified
as stair events (Figure 4).

Stair events were further classified as either ascending
or descending by assessing the shape of the original signal.
For GCF > 0.67 Hz, this was done solely based on the ver-
tical component of the signal, based on relative amplitude
of neighbouring peaks. Empirically it was found that for
ascending stairs a gait cycle consists of one higher and one
lower peak, whereas for descending all peaks are near
equal in amplitude (Figure 5). For GCF < 0.67 Hz, both
anteroposterior and vertical signals were used. It was found
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Figure 4 Typical (after smoothing) signal representing (A)
stair events and level walking; and (B) low pass filtered ante-
roposterior signal of the same period. Dashed line indicates x-
offset minus 0.05g.

that when ascending stairs the vertical signal peaks
occurred right before an anteroposterior signal peak,
whereas for descending the vertical peaks occurred right
after anteroposterior signal peaks (Figure 5). These char-
acteristic features were used in the algorithm to distinguish
ascending from descending stairs.

Cycling

For sedentary dynamic events, only two possible activities
were considered, cycling and noncycling, which was clas-
sified as resting. To classify a sedentary period as cycling
there had to be at least five consecutive peaks in both the
anteroposterior and the vertical acceleration, interspaced
less than 1.5 seconds (corresponding to a cadence of 40
revolutions/min). The minimum amplitude of both sets of
peaks was 0.1g after smoothing (low pass Butterworth, cut-
off frequency 2.5 Hz). Cycling events were grouped
together when pedalling was interrupted by a maximum of
20 seconds so that a cycling event will consist of parts with
and without active pedalling.

Algorithm validation

Validation protocol

Participants (n = 56) were divided into two groups. The
healthy group consisted of 16 individuals (mean age,
49 +20 years; mean body mass index, 23+0.7 kg/m?;
male:female, 10:6). The patient group consisted of 40 in-
dividuals (mean age, 65+ 9 years; mean body mass index,
30+ 6 kg/m?; male:female, 18:22) who underwent total
joint arthroplasty 3—14 days prior to the test, thus repre-
senting individuals with limited functional capacity, in
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time (s) C
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Figure5 (A, B) Typical (after smoothing) stair ascending signal; and (C, D) descending signal. A and C are ’step-over-step’ signals,

B and D are ’step-by-step’ signals.
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order to challenge the robustness of the algorithm. All
postoperative patients could mobilize safely, with some
using walking aids such as crutches or a walker. More pa-
tients than healthy individuals were tested to reflect the
higher movement variability in this group.

Healthy participants were followed for a period of
20—-30 minutes, in which they could walk, sit, stand, go up
and down the stairs, and use a bicycle to ride around. The
order, pace, and duration of the activities were free and
thus varied between individuals. Participants were free to
roam about outdoors in a large space to create a realistic
test environment.

This free test protocol (free order and duration of ac-
tivities) is more realistic and demanding than common
protocols, where activities are prescribed to the test par-
ticipants in fixed order and for a long fixed minimum
duration (e.g., 30 seconds)[24,29,30].

Postoperative patients performed as many activities
(walking, getting up from a chair, and stair climbing) as
they deemed possible. Typically, they climbed and
descended the stairs, got up from a chair once or twice, and
did several separate walking bouts. They walked and used
the stairs using walking aids (crutches), under supervision
of a physiotherapist. All activities were performed at self-
selected pace and intensity.

All participants from both groups were recorded on
video for post hoc identification of their movements, which
served as the reference for the validation of the algorithms.
Post hoc video analysis is used as the gold standard in other
AM studies [31—33] as it allows the most accurate activity
classification and timing, the possibility of reanalysis, or
measurement of observer reliability.

Output parameters and accuracy

For the entire period the sensor was worn one of the
following activities or postures was assigned by the video
observer and algorithm: standing, resting, walking (level),
ascending stairs, descending stairs, or cycling. In addition,
the number of steps (for walking and stair events) was
provided. The output parameters were event counts and
durations for each activity. Observer and AM event counts
were compared in a confusion matrix, comparable to Ermes
et al [29]. Durations and number of steps were compared
using Bland—Altman plots. In addition, the mean, standard

deviation, and maximum and minimum error were calcu-
lated. The error per event count was calculated as:

E— |#eventsau — #eventsyigeo|
X b)

2
#events,igeo @
where #events is the number of events of posture or ac-
tivity x.
The error in durations was calculated as:
E— |durationay — durationyigeo| 3)
X )

durationyigeo

where durationyy is the total duration of all correctly
classified events x.

Results

Healthy group

The validation protocol for healthy individuals took on
average 34 minutes per person. During this time the par-
ticipants sat down, stood, walked, ascended and descen-
ded stairs, and rode a bicycle (Table 1).

Atotal of 992 different events (postures or activities) were
identified by the video observer. A total of 986 of those 992
events were correctly classified by the algorithm. Insix events
the algorithm either partly or completely classified the event
incorrectly. All standing and resting events were identified
correctly, but one cycling and one walking event were (partly)
classified as standing or resting. Two stair ascending events
were misclassified (stair descent and level walking), and one
stair descending event was misclassified (ascent; Table 2).

The mean error for the six event count categories varied
between 0% (for cycling) and 2.8% for ascending stairs,
corresponding to an accuracy of > 97%. All sit—stand
transitions were correctly identified. The mean relative
error in step counting ranged from 1.7% for level walking to
6.4% for ascending stairs (Table 3). Figure 6 shows a
Bland—Altman plot for step detection. Negative errors
indicate an overestimation by the AM algorithm. The 95%
limits of agreement were from —40 steps to 40 steps for
level walking, from —14 steps to 20 steps for ascending
stairs, and from —5 steps to 16 steps for descending stairs.

The agreement between AM and video for duration was
excellent, with a mean error varying from 2.1% for resting to

Table 1 Mean, standard deviation, and range of activities performed by healthy individuals and patients.

Healthy Time (min) SST  Bouts (n) Steps (n) Cadence
Total Rest Walk Stand Cycle (™ Level Ascent Descent Level Ascent Descent (Ste€ps/min)

Mean 34 11 9 9 5 9 31 9 9 703 90 90 98

SD 8 4 2 3 1 2 7 2 2 151 21 20 8

Minimum 19 5 6 4 4 5 18 5 5 462 50 50 87

Maximum 43 16 12 13 7 10 37 11 10 910 110 100 112

Patients

Mean 16 6 5 6 NA 3 4 1 1 108 10 10 56

SD 5 3 2 2 NA 1 1 0 0 46 1 1 10

Minimum 8 1 2 3 NA 1 2 1 1 57 9 9 40

Maximum 29 12 12 9 NA 4 7 2 1 267 11 11 74

NA = not applicable; SD = standard deviation; SST = sit-stand transitions.
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Table 2 Confusion matrix, total number of correctly and incorrectly classified events.

Healthy Patient
| TrueN\AM— Stand Rest Walk Stairs Stairs Cycling Total | TrueNAM— Stand Rest Walk Stairs Stairs  Total
level ascent descent level ascent descent

Stand 86 0 0 0 0 0 86 Stand 58 0 0 0 0 58

Rest 0 69 0 0 0 0 69 Rest 0 102 O 0 0 102

Walk Level 1 0 496 0 0 0 497 Walk level 2 0 152 0 0 150

Stairs ascent 0 0 1 144 1 0 146 Walk ascent 2 0 0 42 0 40

Stairs descent 0 0 0 1 145 0 146  Walk descent 0 0 0 0 40 40

Cycling 1 1 0 0 0 48 48

AM = activity monitoring.

Table 3 Mean, standard deviation (SD) and range of counting error in output parameters.

Healthy

Activity Stand Rest Level Stairs Stairs Cycling SST Steps Steps Steps
Walk ascent descent level ascent descent

Mean error (%) 1 1.3 0.2 2.8 2.4 0 0 1.7 6.4 5.4

SD 4.2 5 0.8 7.9 4.9 0 0 1.5 5.6 5.5

Minimum 0 0 0 0 0 0 0 0 4.1 1.1

Maximum 16.7 20 3.2 20 11 0 0 4.4 16.6 17.4

Patients

Activity Stand Rest Level Stairs Stairs Cycling SST Steps Steps Steps
walk ascent descent level ascent descent

Mean error (%) 7.5 0.6 1.2 3.3 0 NA 0.6 3.4 6.9 8.2

SD 24.2 4 5.7 14.7 0 NA 4 3.6 18.4 15.4

Minimum 0 0 0 0 0 NA 0 0 0 0

Maximum 100 25 33.3 100 0 NA 25 16.7 66.7 66.7

NA = not applicable; SD = standard deviation; SST = sit-stand transitions.

2.8% for cycling. Figure 7 shows Bland—Altman plots with the
error in duration. On average, walking duration was slightly
underestimated, while resting duration was overestimated.

Patient group

For patients the mean time spent performing the validation
protocol was 16 +5 minutes. All patients performed at
least two walking bouts and ascended and descended the

stairs once. Cycling was not part of the mobilization routine
prescribed by the physiotherapist, and was thus not per-
formed in this group (Table 1).

A confusion matrix was constructed in the same way as for
healthy participants. A total of 390 events were identified by
the video observer. In four events (2 level walking and 2 stair
ascending) a pause (classified as standing) was detected by
the algorithm, leading to four erroneous standing events. All
other events were correctly classified (Table 2).
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Figure 6 Bland—Altman plots showing the error in step detection and 95% limits of agreement (1.96 SD) for (A) patients; and (B)

healthy individuals. SD = standard deviation.
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The mean error regarding event counts in patients varied
between 0% (for descending stairs) and 7.5% for standing,
corresponding to an accuracy of > 92%. Only one sit—stand
transition was missed by the algorithm (mean error 0.6%).
The mean relative error in steps ranged from 3.4% for level
walking to 8.2% for descending stairs (Table 3). Figure 6
shows the Bland—Altman plot for step detection. Only
level steps are shown because of the small number of steps
in stair events per patient. The 95% limits of agreement
were —10 steps and +5 steps.

The mean error in duration varied from 2.0% for resting
to 2.9% for standing. Figure 7 shows the error in duration.
On average, standing duration was underestimated,
whereas walking and resting duration were overestimated.

Discussion

This study presented a combination of previously described
and new AM classifiers, such as the dual-axis approach for
gait and the averaged hip flexion for stairs. A semi-
automated calibration method was used to allow the sensor
and algorithm to be used in healthy individuals with a wide
range of functional capacity or limitations from direct
postoperative arthroplasty, including the use of walking
aids.

This novel combination of AM algorithms was validated
in a demanding and realistic test protocol allowing free
choice of activity type, order, and duration.

With an average detection accuracy ranging between
92% and 100% for classifying all activity events and partic-
ipants in a demanding laboratory validation set-up, it was
shown that the method meets and exceeds values
commonly accepted for free field use of AM and commercial
devices used in clinical studies [24,27,29,31—-36].

The comparison of accuracy values in other studies is
challenged by the fact that different validation protocols
were used as there is no standard or consensus about it.
Accuracy values are influenced by the choice and definition
of activities to be identified, the way the test protocol is set
up, the participants used in the study, and the calculation
of accuracy values themselves.

Nyan et al [37] and Muscillo et al [38] presented algo-
rithms to classify locomotion (level, ascending stairs,

Bland—Altman plots showing the error in event duration and 95% limits of agreement (1.96 SD) for (A) patients; and (B)

descending stairs) and reported > 95% accuracies, compa-
rable to the accuracy found in this study (97%). Fortune
et al [31] reported 92% accuracy in step counts for walking,
stair events, and jogging events. In their study the
maximum average error was 8.2% in step counts for patients
descending stairs. Early research by Mathie et al [30] re-
ported accuracy values of 94—98% for resting/activity using
a fixed protocol and counting a correct detection even
when there was an overlap in time between classified event
and actual event. Few groups have tried to identify a
complete set of postures and activities as combined in this
study. Ermes et al [29] reported values between 78%
(Nordic walking) and 99% (resting) in a confusion matrix
comparable to this study, however they used multiple
sensors. Khan et al [24] used a single sensor, independent of
sensor positioning, and reported 94—98% accuracy for the
same activities as in this study, except sit—stand transi-
tions. Similar results were achieved in this study, using a
single fixed sensor position. A position-independent algo-
rithm would be advantageous over a fixed position, but its
validity has yet to be proven in a simulated free-living
environment such as in the protocol applied in this study.
In the study by Khan et al [24], start and end points were
manually annotated in the signal, whereas in a free-living
environment transitions between activities pose a chal-
lenge. Ermes et al [29] reported that in an unsupervised
free environment overall accuracy drops by up to 17%, and
individual classification accuracies by up to 40%. Therefore,
we propose that a validation protocol should resemble a
real life situation as closely as possible. The Bland—Altman
plots in Figures 6 and 7 show no correlation between ab-
solute error and event duration or number of steps. In the
validation protocol events were relatively short compared
to daily life, which means that the relative error in a longer
measurement will probably be even smaller than described
in this study.

The studies mentioned above have all validated their
algorithms using young, healthy individuals. Only Khan et al
[24] tested on elderly, healthy individuals, which was their
target population. However, functional limitations and
neurological disorders affect movement. This challenges
AM algorithms, and therefore the validation will be
different [21—23]. Raymond et al [20] validated the PAL2
monitor (Gorman ProMed Pty Ltd, Victoria, Australia) for
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different postures, transitions, and walking in an elderly
population but did not include stair events. O’Donoghue
and Kennedy [18] found high agreement using the activPal
(Pal Technologies, Glasgow, UK) sensor versus video
observation for sit—stand transitions and walking events,
but low agreement for step counts. In this study, high ac-
curacies were found for all categories including step counts
and for both healthy and functionally affected groups,
indicating a high robustness of the algorithm.

Accuracy figures were of equal quality in both the
healthy group and the patient group, showing that the al-
gorithm works well in a wide spectrum of functional capa-
bilities. The good results in both groups show that the
calibration and dual-axis approach perform well in prac-
tice, even when locomotion is performed at different
speeds or styles (e.g., walking aids, step-over, or step-by-
step stair climbing). It does, however, mean that the
investigator has to provide some manual input to the al-
gorithm when analysing the data set, by selecting one
walking event in a simple and fast step taking less than 1
minute.). This is a practical disadvantage to the algorithms
where a completely automated calibration is performed
[24,31].

The highest accuracy in both groups was found in sit—-
stand transitions, which can be attributed to the robust
inclinometer function of the device, and placement on the
upper leg.

The lowest accuracy (5—8% error) was found for step
detection on stairs. This can be explained by the fact that
the staircases in the validation protocol were short (10
stairs vs. 15—20 for a normal flight). One step before and
after the stair event can easily be counted as a step on
stairs, while the first or last step can be counted as a level
step. We accept this error, because if and how many times
an individual can manage stairs is more relevant to a
clinician than the exact amount of steps on the staircase.

Instead of reporting accuracy in event counts, is it then
better to report timing accuracy of activity classifications, as
reported by Nyan et al [37] In clinical practice, both accuracy
figures can be relevant and have been calculated in this
study. Timing error or accuracy seems more relevant for
activities or postures that take up a large portion of the day,
such as resting, standing, walking, or cycling, and event
based errors seem more meaningful for short events such as
sit—stand transition, managing stairs, and individual steps.

In this study, not only the mean errors for all participants,
but also means and ranges for each individual are reported.
Especially in the patient group, the maximum error per in-
dividual could be large (up to 100%). However, patients could
only perform a small amount of activity events. One mis-
classified event can already lead to large relative errors,
which do not reflect the true accuracy if more activity bouts
could have been tested per individual. This validation pro-
tocol was designed to collect a large number of events
overall from a large number and variety of individuals.

The major limitation of almost all validation studies is
the translation to free-living conditions. Ermes et al [29]
reported that the overall accuracy of their algorithm
dropped by 17% overall when participants were left unsu-
pervised. This emphasizes the need for a validation proto-
col that mimics real life as close as possible. Fortune et al
[31] asked their participants to fidget while sitting or

standing to challenge their algorithms. In this study, we
chose not to, considering it too unnatural. Ideally partici-
pants would be followed and video-recorded for a longer
period than in this test protocol (e.g., a day). This, how-
ever, would lead to practical and ethical difficulties, as
video observation would be too time consuming and inva-
sive, while self-report is too tedious and inaccurate.

Conclusion

It was shown that with a single, lightweight, three-
dimensional accelerometer fixed to the body and a compu-
tationally simple postprocessed signal analysis it is possible
to design an AM tool satisfying three important criteria.
Firstly, it is able to detect and differentiate a large set of
daily life activities relevant to orthopaedic patient assess-
ment with high accuracy. Secondly, it performs equally well
for healthy individuals as well as motorically limited patients
because of the semiautomatic calibration step. Finally, it is
validated using a challenging validation protocol.

The algorithms are independent of a particular sensor
and will work on any three-dimensional accelerometer with
a measurement range and sampling frequency similar to the
device used in this study. The low-cost sensor and simple
methods presented in this study can thus be applied, for
instance, to establish reference databases of habitual ac-
tivity levels of specific patient groups, to objectify outcome
assessment following orthopaedic intervention, to monitor
compliance to therapies involving activity, individualize
recovery programs, or to power scientific studies about
treatment alternatives.
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