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The knowledge of DNA-binding proteins would help to understand the functions of proteins better in cellular biological processes.
Research on the prediction of DNA-binding proteins can promote the research of drug proteins and computer acidified drugs. In
recent years, methods based on machine learning are usually used to predict proteins. Although great predicted performance can be
achieved via current methods, researchers still need to invest more research in terms of the improvement of predicted performance.
In this study, the prediction of DNA-binding proteins is studied from the perspective of evolutionary information and the support
vector machine method. One machine learning model for predicting DNA-binding proteins based on evolutionary features by
using Chou’s 5-step rule is put forward. The results show that great predicted performance is obtained on benchmark dataset
PDB1075 and independent dataset PDB186, achieving the accuracy of 86.05% and 75.30%, respectively. Thus, the method

proposed is comparable to a certain degree, and it may work even better than other methods to some extent.

1. Introduction

DNA-related life activities are an indispensable part of life
activities of biological cells, and it includes detecting the
damage of DNA, the replication of DNA, and the transcrip-
tion and regulation of the gene. On the one hand, they will
not occur without the assistance of specific proteins; on the
other hand, protein-DNA interaction regulates the activities.
To realize the regulation, the combination of proteins and
DNA-chain’s specific or nonspecific is essential. Proteins
related to the life activities of DNA and then regulate it are
known as DNA-binding proteins (DbPs) [1, 2], which are
also called helical unstable proteins. It is a kind of protein
that can bind with DNA to produce complexes. Because of
its crucial role in biological activities, the research of DbP rec-
ognition is developed.

With the rapid development of society, the demand for
medical health is higher and higher. Thus, it is urgent to
understand the structure and function of more proteins to
explain more meaning of life and promote the development
of biomedical and other fields. However, one research diffi-
culty exists in the current research of bioinformatics, that
is, how to predict proteins effectively by its sequence infor-
mation. Although, whether structure or function, the recog-
nition of traditional proteins via physical, chemical, and
biological experiments (such as filtration-binding analysis
and genetic analysis) [3] can predict effectively, these
methods need high actual cost and consume much time.

Besides, the requirements of the experimental environ-
ment are very strict. Thus, identifying all DbPs via experi-
mental methods is unrealistic. Given this problem, to
reduce time costs, many computational-based methods were
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proposed. The methods for the prediction of proteins can fall
into two categories: methods based on the sequence informa-
tion and structural information of proteins [4-6].

The performance of methods by researching the informa-
tion of protein structure is usually better, but it is hard to
obtain the information of structure, so this method is partly
hard to develop. Differently, the methods based on the infor-
mation of protein sequence just need to use the sequence
information of proteins to identify DbPs without complex
structural information. Thus, it has been well developed in
the postgene era with massive sequence information.

Compared with traditional protein recognition methods,
the DNA-binding protein recognition method based on
sequence information is more simple and cheaper. It is a
high-throughput prediction method of proteins. Therefore,
more potential DbPs can be extracted from massive protein
data by this method. Then, in order to determine the true
DbPs, more precise biochemical methods will be used to fur-
ther verify it. It can not only save human resources, material
resources and financial resources, but also achieve better use
of limited resources. So, the recognition method based on the
information of sequence is significant to economic develop-
ment and resource utilization. In addition, it can promote
the recognition for other types of proteins and the prediction
of the nucleic acid sequence [7, 8]. It can further improve the
development of bioinformatics as well.

At present, the methods based on sequence information
for DNA-binding protein prediction are various, but the per-
formance can be further improved. For improvement of per-
formance, protein representation is a challenge. We need to
do more research on it [9-11]. For this problem, one model
is proposed to predict DbPs based on evolutionary informa-
tion and the support vector machine (SVM) method by using
Chou’s 5-step rule [8, 12-14]. Firstly, we processed the data-
sets by PSI-BLAST [15]. To further improve the performance
of prediction, we extract three evolutionary features via fea-
ture extraction methods: PsePSSM, PSSM-AB and PSSM-
DWT. We splice the PSSM features end-to-end and then
input them into the prediction model. Next, the SVM classi-
fier is used to make the prediction. Finally, experiments via
the jackknife cross-validation test and independent test are
done to evaluate the performance. The results show that great
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predicted performance can be achieved in the prediction of
DbPs by the method proposed in this study. Figure 1 shows
the main research sketch of the paper.

2. Materials and Methods

The research for the prediction of DbPs can be divided into
three stages: building a model for prediction, training and
testing the model, and prediction and analysis. To begin with,
determine and extract three evolutionary features from the
datasets processed and then integrate them into the machine
learning model for prediction. Furthermore, train and test it
to verify its availability and reliability. In the end, the repre-
sentation algorithm with evolutionary features is used for
representing the information of protein sequence, and the
model is used to predict the proteins. Figure 2 shows the
framework of the method.

2.1. Datasets. In this study, datasets PDB1075 [16] and
PDB186 [17] that are widely used in the prediction of DbPs
are used as the basic data for the experiments. The sequence
of proteins originates in the international protein database:
PDB (https://www.rcsb.org/). Liu et al. created the dataset
PDB1075, and the dataset PDB186 was built by Lou et al.
The details of the two datasets are shown in Table 1. In this
study, the training set is dataset PDB1075 and dataset
PDBI186 is used as the dataset of the independent test.

2.2. Evolutionary Features

2.2.1. PSSM. PSSM is referred to as “Position-Specific Scoring
Matrix.” The evolutionary information of protein sequence is
stored in it. To reflect the evolutionary information, PSSM is
used in protein prediction. For one sequence of the protein,
setting its name to Q, its PSSM can be formed by three itera-
tions via PSI-BLAST [18] (the purpose of PSI-BLAST is to
search the optimum result by multi-iteration. The result of
the previous search will be used for the formation of PSSM.
Then, the matrix will be used as the input of the next search
until the best result is obtained. Experiments show that the
result is the best after three iterations). The E-value is
0.001. Presume Q=g,q,q; -~ q, and its length is L. The
PSSM of proteins can be expressed as a matrix, and the size
of the matrix is L x 20. The representation of the matrix is
as shown follows:

[ P Pra Pioo |
Doy Pap t Pago
PSSMoriginal = . . ‘ i (1)
Pir Pip  Pin
| P Pr2 Pro ] 1y

where the rows represent the corresponding position of Q
and the columns denote the corresponding type of the 20
amino acids. And p, ; is the score that the ith position of Q

converted into the residue type j during the process of
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FIGURE 2: The framework of our method.

TasLE 1: Information of benchmark datasets. The P, maized 1S @s follows:
Number\dataset PDB1075 PDB186 ~ _
Positive® 525 93 fua Frao
Negative” 550 93 : . :
Total 1075 186 Pnormalized = fi,l '“ fi,ZO > (4)
“The positive is the positive samples that represent the actual DbPs. "The
negative is the negative samples that denote the non-DbPs. :

L fL,l fL,ZO 4 %20

evolution. Generally, the higher the score is, the more fre-
quent the mutation is.

Besides, the following formula shows the representation
of PSSMoriginal(i’ ])

2

(=]

PSSMoriginal(i’ ]) = (U(l, k) X D<k’ ])’ (2)

1

=
Il

where w(i, k) is the frequency of kth amino acid type at the
position i and D(k, j) refers to the mutation rate that turns
from kth amino acid to jth in protein sequence of substitu-
tion matrix. The larger the value is, the more conservative
its position is. Otherwise, the result is the opposite.

2.2.2. PsePSSM. PsePSSM feature was usually used for
membrane protein prediction. It was inspired by Chou’s
pseudo amino acid (PseAAC) [19]. PSSM matrix is widely
used in protein description [20]. The original PSSM of
proteins should be further normalized for later calculation
and work.

= (120032 p.
fi,j _ pz,] ( )Zk—lpl,k . (3)

2
\/(1/20) 12=01 (Pi,z - (1/20)Zi21pi,k)

where f; ; is the score of the normalized PSSM; the average
of 20 amino acids is 0. p;; is the original score. The pos-

itive score refers to the occurrence of the corresponding
homologous mutations, is more frequent in multiple per-
mutations, and is higher than that by accident, and the
negative score is opposite to positive score.

2.2.3. PSSM-DWT. DWT is a discrete wavelet transform.
Nanni et al. first put forward the concept that reflects the
information of frequency and location [17, 21]. Looking upon
the protein sequence as a picture that is particular and then
using different matrices to express the sequence, the matrix
is decomposed into coefficients with different levels by DWT.

Furthermore, wavelet transform (WT) is the projection
of signal f(¢)that casts onto the wavelet function. The formu-
lation is as follows:

)= 7 [ sw(27)d, )

where a denotes the scale variable, b is the translation vari-
able, and y/((t — b)/a) means the wavelet analysis function.
T (a, b) refers to the transform coefficients that can be found
in a specific wavelet period and specific position of signal. An
effective DWT algorithm was proposed by Nanni et al. [17];
they presumed that discrete signal f(¢) is x[n] to perform
DWT. The coefficients are calculated as follows:
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where N is the length of the discrete signal and g and h denote
the low-pass filter and high-pass filter. y;, . [n] means the

approximative coefficient of signal while and yj’high[n] is the

coefficient that is elaborate. The former is low-frequency com-
ponents, and the latter is the opposite. Their value of maxi-
mum, minimum, mean and standard deviation is calculated
by 4-level DWT in this study. In addition, the discrete signals
of PSSM over level 4 of discrete wavelet transform are ana-
lyzed, which is composed of 20 discrete signals. Figure 3 shows
the structure of the 4-level DWT.

2.2.4. PSSM-AB. The full name of the AB method is the Aver-
age Block method [22] that was first presented by Huang
etal. [23]. Because the amount of amino acids in each protein
is different, the size of the feature vector is diverse when
PSSM is transformed into the feature vector immediately.
For this problem, average features over the local region in
PSSMs, and this method is referred to as the AB method.
Every block contains a 5% protein sequence. Here, the AB
method is used in PSSM without regard to the length of the
protein sequence. Divide each matrix into 20 blocks by row,
and the size of every block is N/20. Therefore, the protein
sequence will be divided into 20 blocks, and every block is
composed of 20 features that originated from 20 columns
in PSSMs. Its expression is as follows:

N/20
AB(k):NZMt<p+(i—l)x%,j), (7)
p=1

where N/20 is the size of j blocks and Mt(p+ (i—1) x 20
IN,j) is one vector with the size of 1x 20 extracted from
position i of jth block in PSSMs.

2.3. Classification Algorithm. Support vector machine (SVM),
one classification and regression paradigm built by Nanni
et al. [24], is a machine learning method based on statistical
theory that minimizes the risk of structure. It is one algo-
rithm of supervised learning. In pattern recognition, the
SVM method is usually used to solve problems of classifica-
tion. When using the SVM method, mark samples as positive
or negative and then project it into the high-dimensional fea-
ture space via kernels. Optimize the superflat in eigenspace so
that the edge of positive and negative samples can be maxi-
mized. In this study, we use LIBSVM to build one method
model with a radial basis function (RBF) by SVM. To get
the optimum parameters, the method of grid search is used
in this study [25].

Three kernel functions are commonly used in the con-
struction of SVM: polynomial kernel, radial basis function
and sigmoid kernel. RBF is the most commonly used kernel
function in most related studies. In this study, the use of
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RBF can make nonlinear transformation better, and because
of its fewer parameters, it can greatly reduce the complexity
and difficulty of calculation. The RBF kernel expression is
as follows:

K (x;, x;) = exp (—nyi—xsz), (8)

where x; € RV is the feature vector and y denotes the width of
RBF kernel.

Supposing one training dataset of instance-label pairs is
{x, 9}y, €{-1,1},i=1,2,---, N. The following expression
is the decision function:

fy(x)=sign lzyi«xiK(x, x)+ b] . (9)

i=1

To solve the problem of quadratic programming in the
following, &; can be obtained:

T
M=z

Il
—_
-

1l
—

N
Maximize Z a; —
i=1

st0<a <C, (10)

w0y K (%, %),

N
Yy =0, i=1,2-N,
=1

where x; is called support vector only when «; > 0. C is the
parameter of regularization that coordinates the margin
and the error misclassified.

3. Experiment Results

The steps of the experiments are as follows:

(1) Firstly, building one method model for the prediction
of DbPs based on evolutionary information by SVM,
benchmark dataset PDB1075 and PDB186 are selected
as experimental data.

(2) Secondly, determine the evolutionary features used in
the experiments. In order to further improve the pre-
diction performance of the model, we use a variety of
feature extraction methods to extract PSSM features
and then integrate them into the machine learning
model. The results show that the model with inte-
grated features has better prediction performance.
Besides, to better evaluate the performance of this
model, we need to select appropriate evaluation
indicators.

(3) Thirdly, compare the performance of combinations
with different features on the PDB1075 dataset via a
jackknife test that is commonly called the LOOCV
test. Then, the performance of several different
methods is compared on dataset PDB1075 and
PDB186 successively; finally, analyze and compare
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F1GURE 3: The architecture diagram of a 4-level DWT.

the performance of the model for prediction to prove
its validity, advantages and disadvantages.

3.1. Measurements. In the experiment, the jackknife test is
used to analyze the quality of the method predictor. The jack-
knife test has a high utilization rate of samples. It is suitable
for small sample datasets. The experimental results are deter-
ministic. Compared with the method of leaving out, there are
no random factors in the process of experiment, and the
results have strong persuasion. Thus, when testing the func-
tion of the predictor, the jackknife test is widely used. In
the test, almost all data in the benchmark dataset is used for
training. Use each data in it as the test dataset by turns, and
the sample data left is used for training [26, 27].

To better evaluate the performance of this method, accu-
racy (ACC), Matthews Correlation Coefficient (MCC), Sensi-
tivity (SN) and Specificity (SP) are used for the evaluation of
indicators. In the study of biological sequence classification,
these indicators are widely used [7, 28].

The definition is as follows:

No TP
- TP+EN’
TN
P=__——
TN + FP
ACC = TP+ TN ’
TP +FP + TN + EN
TP x TN — FP x EN
MCC = >
/(TP + EN) x (TN + FP) x (TP + FP) x (TN + FN)

(11)

where TP means the number of positive samples predicted
correctly and FP is the opposite; TN means the number of
negative samples that are correctly predicted and FN is the
converse. SN and SP denote the percentage of samples pre-
dicted correctly in two samples, respectively. ACC represents
the proportion of samples predicted correctly. To reflect the
quality of the model for prediction, MCC is used. The range
of its numerical value is [-1,1]. The larger the numerical value

of the evaluation indicators is, the better the performance of
the model for prediction is.

3.2. Parameter Optimization. To get the highest accuracy of
prediction, there are two parameters that need to be opti-
mized: parameters ¢ (penalty parameter) and g (gamma,
RBF kernel parameter), when using a radial basis function
to build a support vector machine. In the process of training,
due to their values that are unknown, it is necessary to select
and optimize the two parameters and different prediction
accuracy will be obtained with different (¢, g) pairs. To
achieve the optimal parameters, the method of gridding
search is used for the adjustment and optimization of param-
eters ¢ and g. Try various possible values of (¢, g) pairs, and
then, conduct the performance test via five cross-
validations to find the best accuracy of (c, g) pair. In this
way, global optimization can be achieved, and the parallelism
of the grid search is high. Each (¢, g) pair is relatively inde-
pendent. Besides, the range of parameters ¢ and g is [-5,5],
the length of step is 1, and the kernel function is RBF func-
tion, and estimate the probability of the training model.
Finally, the optimal parameters ¢ and g are 2 and 0.0313,
respectively, achieving the accuracy of 86.05% and 75.30%,
respectively, after training and testing on the benchmark
datasets PDB1075 and PDB186.

3.3. Experimental Results and Analysis

3.3.1. The Performance of Different Features on Benchmark
Dataset PDB1075. The sequence of PSSM is the main infor-
mation to predict the binding sites of proteins. The conserva-
tion or variability of the sequence depends on many factors in
the process of evolution, such as maintaining 3D structure
and stability and reducing the aggregation of amyloid protein
and the conservation of function. These factors affect the
binding of proteins with other proteins, nucleotides, lipids,
etc. Therefore, PSSM (including evolutionary information)
may pick up important signals/features for the binding of
ligand. It proves the validity of the method based on PSSM
evolutionary information.
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TaBLE 2: The performance of different features on the PDB1075 dataset via jackknife test evaluation.

Feature Size Computing time (s) ACC (%) MCC SN (%) SP (%) AUC
PsePSSM 1075 * 220 2020.3 78.61 0.5723 79.43 77.82 0.8579
PSSM-AB 1075 * 200 947.0 73.77 0.4765 76.00 71.64 0.8172
PSSM-DWT 1075 * 1040 9282.7 78.70 0.5739 78.86 78.55 0.8691
PsePSSM+PSSM-AB 1075 % 420 2501.8 82.98 0.6594 82.67 83.27 0.9013
PsePSSM+PSSM-DWT 1075 x 1260 11284.0 85.77 0.7152 85.33 86.18 0.9290
PSSM-AB+PSSM-DWT 1075 % 1240 12259.0 78.05 0.5608 79.91 78.18 0.8701
PsePSSM+PSSM-AB+PSSM-DWT 1075 = 1460 14736.0 86.05 0.7208 85.14 86.91 0.9324
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F1GURE 4: The AUROC of seven different feature combinations via jackknife cross-validation on the PDB1075 dataset.

In this study, we first determine that the evolutionary fea-
tures are PsePSSM, PSSM-AB and PSSM-DWT, combining
the features and testing them with the model for prediction
on benchmark dataset PDB1075 via the jackknife test by
SVM. In the end, the best combination of features can be
achieved and its result of prediction is the highest as well.

Table 2 provides the size, the computing time and the
performance of different combinations of the features. It
can be found that the test performance is improved obviously
when features are combined, and the best performance is
obtained, gaining ACC (86.05%), MCC (0.7208), SN
(85.14%), SP (86.91%) and AUC (0.9324) when combining
different features together.

For evaluating the performance of prediction with effect,
the AUROC feature curve is used for the analysis of classifi-
cation in this study. ROC curve (Receiver Operating Charac-
teristic Curve) and AUC (Area Under Curve) make up the
AUROC feature curve. In general, the curve is over the space
of line y = x; the value of the range is [0.5,1]. The closer the
curve is to the axis y, the better the performance of the clas-

sifier is. AUC refers to the area enclosed by the ROC curve
and axis x. The larger the numerical value of AUC is, the bet-
ter the effect of the classifier is. Figure 4 shows the results of
the comparison of seven combinations with different features
on dataset PDB1075.

From Figure 4, we can conclude two information: (1)
When the three features are combined together, the ROC
curve is more inclined to the direction of coordinate axis y.
At that time, the largest numerical value of AUC can be
obtained, and the performance is the best at the same time.
(2) The performance of the combination of feature PsePSSM
and PSSM-AB is just slightly lower than that of the combina-
tion of feature PsePSSM, PSSM-AB and PSSM-DWT.
Though the predicted performance of the model is improved
to a certain extent by adding feature PSSM-AB, it is not obvi-
ous. But the features are redundant to a certain degree, and
the features based on PSSM information have their upper-
performance limit, so the improvement of performance is
not obvious even if we add features based on PSSM informa-
tion (PSSM-AB).
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TaBLE 3: The performance of the method and other existing
methods on the PDB1075 dataset via jackknife test evaluation.

TaBLE 4: The performance of the method and other existing
methods on the PDB186 dataset.

Methods ACC (%) MCC SN (%) SP (%) Methods ACC (%) MCC SN (%) SP (%)
DNA-Prot 72.55 0.44 82.67 59.76 IDNA-Prot|dis 72.0 0.445 79.5 64.5
IDNA-Prot 75.40 0.50 83.81 64.73 IDNA-Prot 67.2 0.344 67.7 66.7
IDNA-Prot|dis 77.30 0.54 7940 75.27 DNA-Prot 61.8 0.240 69.9 53.8
PseDNA-Pro 76.55 0.53 79.61 73.63 DNAbinder 60.8 0.216 57.0 64.5
DNA bir.lder 73.58 047 6647 8036 DNABIND 67.7 0.355 66.7 68.8
(dimension = 400) DNA-Threader 59.7 0279 237 95.7
DNA binder (dimension =21)  73.95 0.48 68.57 79.09 DBPPred 76.9 0.538 79.6 74.0
IDNAPro-PseAAC 76.56 053 7562 7745 IDNAPro-PseAAC-EL 71.5 0442 828 60.2
Kmer1+ACC 75.23 0.50 76.76 73.76 Kmerl+ACC 71.0 0.431 82.8 59.1
RF-based method 82.42 0.65 83.81 81.09 RF-based method 79.0 0.616 957 62.4
SVM—based method 86.05 0.72 85.14 86.91 SVM—based method 75.3 0.560 96.8 53.8

3.3.2. The Performance of Different Methods Compared on
Benchmark Dataset PDB1075. In this section, the perfor-
mance of the methods described in this study is evaluated
on the benchmark dataset PDB1075 and compared with
other methods [29-34], such as IDNA-Prot|dis [16], DNA
binder [29, 30] and IDNA-Prot [31]. Table 3 provides the
performance of methods compared on dataset PDB1075 via
jackknife test evaluation.

As shown in Table 3, it can be concluded that the perfor-
mance of our method in this study is higher than that of other
methods obviously. The SVM-based method achieves the
highest ACC (86.05%), MCC (0.72), SN (85.14%) and SP
(86.91%). The ACC, MCC, SN and SP values are improved
by 3.63%, 0.07, 1.33% and 5.82%, respectively. It proves the
superiority and validity of the SVM-based method for identi-
tying DbPs.

The SVM algorithm selected in the experiment is based
on the theory of small sample statistics. Compared with other
methods, it can get better results on a small sample dataset.
The SVM algorithm has an excellent generalization ability.
Because the traditional process from induction to deduction
is avoided, the problem of classification is simplified
effectively.

Besides, the final decision function of the SVM algorithm
depends on minor support vectors. The amount of support
vectors determines the complexity of calculation, and it has
nothing to do with the dimension of the whole sample space,
which avoids the problem of the “dimension disaster”.

3.3.3. The Performance of Different Methods Compared on
Independent Dataset PDB186. In the independent test, data-
sets PDB1075 and PDB186 are used for training and testing.
Table 4 provides the performance of methods compared on
independent dataset PDB186 for the purpose of analyzing
the robustness. The SVM-based method achieves 75.3% of
ACC, 0.560 of MCC, 96.8% of SN, and 53.8% of SP. In a cer-
tain degree of credibility, the SVM-based method performs
better and it is superior to most of the existing methods
compared in this study. It can be concluded that the method
can identify DbPs effectively and accurately combined with
previous tests.

4. Conclusion

In this study, one model for predicting DbPs based on evolu-
tionary information and the support vector machine method
by using Chou’s 5-step rule is proposed. Firstly, the datasets
are processed by PSI-BLAST, and then, we extract three evo-
lutionary features used for experiments by feature extraction
algorithm. To integrate them, we splice the PSSM features
end-to-end. Next, inputting them into the machine learning
model built to predict DbPs. Finally, the validity and reliabil-
ity of the SVM-based method are verified by experiments.

In this model, the Pse and AB methods as well as the
DWT method that is seldom used in bioinformatics are
applied to make the model achieve better performance on
datasets PDB1075 and PDB186. In the jackknife test, the per-
formance of the method for the prediction of proteins is bet-
ter than that of other methods evidently; in the independent
test, the performance is better than that of the most methods.
The experimental results demonstrate that the model for pre-
diction and method proposed is effective and rational. It can
predict DbPs effectively.

In future work, the feature representation and classifica-
tion algorithm ought to be refined for the improvement of
the predicted performance. For the former, we are going to
combine some other features related to biology; for the latter,
we will use deep learning and other technologies to optimize
the performance of prediction.
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