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Traditional manufacturing businesses lack the standards, skills, processes, and

technologies to meet today’s challenges of Industry 4.0 driven by an interconnected

world. Enterprise Integration and Interoperability can ensure efficient communication

among various services driven by big data. However, the data management challenges

affect not only the technical implementation of software solutions but the function of

the whole organization. In this paper, we bring together Enterprise Integration and

Interoperability, Big Data Processing, and Industry 4.0 in order to identify synergies that

have the potential to enable the so-called “Fourth Industrial Revolution.” On this basis,

we propose an architectural framework for designing andmodeling Industry 4.0 solutions

for big data-driven manufacturing operations. We demonstrate the applicability of the

proposed framework through its instantiation to predictive maintenance, a manufacturing

function that increasingly concerns manufacturers due to the high costs, safety issues,

and complexity of its application.

Keywords: conceptual modeling, data analytics, enterprise architecture, data management, smart manufacturing,

predictive maintenance

INTRODUCTION

Enterprise integration and interoperability has been established as a scientific challenge of outmost
importance (Panetto et al., 2016), especially in the frame of the emergent technologies of the
Internet of Things (IoT), big data, and Artificial Intelligence (AI). This trend has inevitably
affected the manufacturing domain, which is currently feeling the approach of the fourth industrial
revolution and new approaches on data management and interoperability (Romero and Vernadat,
2016; Fraile et al., 2019; Zeid et al., 2019). However, the technical challenges for the transition
to Industry 4.0 are strongly related to those of the whole business environment. To this end,
the Enterprise Integration and Interoperability research domain should be adapted to smart
manufacturing requirements in order to facilitate the design and implementation of Industry 4.0
solutions and enable the stakeholders to meet their expectations.

In this context, the increasing size of big data poses additional challenges and asks for novel
techniques of software engineering for their design, analysis, and development. The existing
literature has been contributing to these challenges, mainly focusing on the development of
architectures for addressing lower level interoperability challenges of Industry 4.0, such as
distributed storage, data aggregation, and service orchestration, as well as big data infrastructures.
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On the other hand, the literature is rich on software frameworks,
often overlapping or controversial to each other, something
which has resulted in the design of ad-hoc and complex
architectural big data solutions (Davoudian and Liu, 2020).

Arguably, the most widespread and influential architectural
framework in the manufacturing domain is RAMI 4.0. Overall,
in the literature, there are only a few case studies that follow the
RAMI 4.0 model, and even fewer not requiring much effort to
reach the level of practical implementation (Pisching et al., 2018).
However, the key issue of any design and system development
in the context of Industry 4.0 is the proper implementation of
RAMI 4.0 in variousmanufacturing operations and the definition
of appropriate sub-models for individual aspects and processes
according to the technical background of Industry 4.0 (Zezulka
et al., 2016; Moghaddam et al., 2018; Bousdekis et al., 2019a).
To this end, there is the need for architectural frameworks that
will enable the systematic design and development of Industry
4.0 solutions so that they tackle the big data-rich, complex, and
uncertain manufacturing environment in a holistic way.

In this paper, we propose an architectural framework
for the design and development of software solutions for
big data-driven processes in Industry 4.0 in order to deal
with the integration, interoperability, and data management
challenges of the manufacturing environment. The proposed
framework is based upon three pillars: Enterprise Integration
and Interoperability, big data processing, and Industry 4.0. The
synergies among them derive from the requirements that guide
the design of the proposed framework. Then, the framework
is instantiated to predictive maintenance and serves as the
basis for the development of a predictive maintenance platform.
The platform was applied to three business cases according to
their requirements. In this paper, we describe its deployment
and present the evaluation results of a case study from the
steel industry.

The rest of the paper is organized as follows. Section
Literature Review provides a literature review on the three
pillars of the proposed framework, i.e., Enterprise Integration
and Interoperability, big data processing, and Industry
4.0. Section The Proposed Architectural Framework for
Big Data-driven Processes in Industry 4.0 describes the
proposed architectural framework for big data processing in
Industry 4.0. Section Application to Predictive Maintenance
explains the application of the proposed framework in the
context of predictive maintenance in the steel industry and
presents the evaluation results. Section Conclusions and
Future Work concludes the paper and presents our plans for
future work.

LITERATURE REVIEW

In this section, we present the literature review on the three
pillars of the proposed architectural framework: Enterprise
Integration and Interoperability (Section Enterprise Integration
and Interoperability), big data processing (Section Big Data
Processing), and Industry 4.0 (Section Industry 4.0). The
literature review identifies the state-of-the-art in these research
areas and enables the extraction of requirements for the design

of the architectural framework for big data-driven processes in
Industry 4.0.

Enterprise Integration and Interoperability
Enterprise integration is the process of ensuring the
interaction between enterprise entities necessary to achieve
domain objectives (EN/ISO I9439, 2003), while enterprise
interoperability refers to the ability of interactions (exchange
of information and services) between enterprise systems (Chen
et al., 2008). In this context, enterprise architecture facilitates
enterprise modeling from various viewpoints and guides its
implementation by providing a formal description of a system
at a component level (ISO 15704, 2000; Open Group TOGAF,
2000; Bernus et al., 2003).

Since the 1980’s, a lot of research has been conducted
to develop enterprise architecture frameworks for enterprise
integration, such as the Computer Integrated Manufacturing
Open System Architecture (CIMOSA) (AMICE, 1993), the
Purdue Enterprise- Reference Architecture (PERA) (Williams,
1994), the GIM architecture (Girard and Doumeingts, 2004),
ARIS (Scheer, 1994), and Zachman Framework (Zachman,
1996). On top of them, the Generalized Enterprise-Reference
Architecture andMethodology (GERAM) was developed (IFAC–
IFIP Task Force, 1999), while additional frameworks, such
as TOGAF (developed by Open Group on Architecture
Framework) and C4ISR (or DoDAF) (DoDAF, 2007), as well
as software engineering standards, were developed (e.g., ISO
15704, EN/ISO I9439, ISO 42010). Despite their differences,
these architectures converge in three main levels of integration
(Romero and Vernadat, 2016): (i) Physical Integration, which
deals with systems interconnections and data exchange; (ii)
Application Integration, which deals with interoperability of
software applications and database systems; and (iii) Business
Integration, which deals with co-ordination of functions,
processes, and people.

On the other hand, several enterprise interoperability
frameworks have been proposed in the literature (Chen
et al., 2008), such as LISI (Levels of Information Systems
Interoperability) (C4ISR, 1998), IDEAS interoperability
framework (IDEAS, 2002), ATHENA interoperability
framework (AIF) (ATHENA, 2003), Framework for Enterprise
Interoperability (FEI), Big Data Value (BDV) Reference
Model (BDVA, 2017), National Institute of Standards and
Technology (NIST), and Big Data Interoperability Framework
(NIST, 2019). In addition, during the last years, new domain-
specific interoperability frameworks have been proposed,
such as the European Interoperability Framework (EIF)
(EIF, 2017), the Internet of Things-based interoperability
framework for fleet management (Backman et al., 2016),
the Smart City Interoperability Framework (Ahn et al.,
2016), the interoperability framework for software as service
systems in cloud (Rezaei et al., 2014), the International Image
Interoperability Framework (Snydman et al., 2015), and the
conceptual interoperability framework for large-scale systems
(Selway et al., 2017). Overall, the enterprise interoperability
frameworks can be seen in the frame of three main layers
(Romero and Vernadat, 2016; Leal et al., 2020; Technical,
Semantic, and Organizational).
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Big Data Processing
Big data is characterized by the 4Vs: Volume, Velocity, Variety,
and Veracity (De Mauro et al., 2016). Volume is related to how
much data is generated, velocity is related to how fast data
is generated, variety is related to how many different types of
data are generated, and veracity is related to how accurate data
are (Chen et al., 2014; Xu and Duan, 2019). Big data analytics
is classified in three main stages (Lepenioti et al., 2020): (i)
descriptive analytics, identifying what has happened, examining
why it happened, as well as providing real-time information
about what is happening; (ii) predictive analytics, predicting what
will happen and why; and (iii) prescriptive analytics, supporting
decisions about what should be done and why.

The increasing size of big data poses challenges related to
the complexity of big data-driven information systems and asks
for novel techniques of software engineering for their design,
analysis, and development (Varghese and Buyya, 2018; Xu and
Duan, 2019; Davoudian and Liu, 2020). To this end, the literature
has proposed asynchronous communications protocols, such as
the Advanced Message Queuing Protocol (AMQP) (Vinoski,
2006) and the Message Queuing Telemetry Transport (MQTT)
(MQTT, 2019), as well as scalable architectures, such as Lambda
and Kappa Architecture (Davoudian and Liu, 2020). Moreover,
the edge computing paradigm has emerged, aiming at addressing
networking and computing challenges that cannot be met by
existing cloud computing infrastructure (Trinks and Felden,
2018; Varghese and Buyya, 2018). Further, the fog computing
aims at leveraging the existing computing resources on edge
nodes or integrating additional computing capability between
user devices and cloud data centers (Varghese and Buyya, 2018;
Papageorgiou et al., 2019).

Apart from these, the recent emergence of a wide range
of overlapping software frameworks in the literature, each one
having a different focus, has resulted in the design of ad-hoc and
complex architectural big data solutions (Davoudian and Liu,
2020). According to their focus and contribution, these research
works can be classified into four categories: (i) empirically-
grounded architectural design (Galster and Avgeriou, 2011;
Angelov et al., 2012, Maier et al., 2013; Pääkkönen and
Pakkala, 2015); (ii) implementation and deployment of big
data systems (Schmidt and Möhring, 2013; Zimmermann
et al., 2013; Salma et al., 2017); (iii) database management
(Doshi et al., 2013; Zhong et al., 2013); and (iv) analytics
integration (Westerlund et al., 2014; Sang et al., 2017). It
should be noted that the literature is rich on domain-specific
big data architectures, developed in order to address particular
problems for specific application domains. For more details
on the literature about software architectures, the reader may
refer to Marjani et al. (2017) and to Davoudian and Liu
(2020).

Industry 4.0
RAMI 4.0
The German Federal Ministry of Education and Research
defines Industry 4.0 as “the flexibility that exists in value-
creating networks by the application of Cyber Physical Systems
(CPS)” (Platform Industrie 4.0, 2019). In this context, Reference

Architectural Model Industrie 4.0 (RAMI 4.0) is based on a
three-dimensional model consisting of the Architecture Layers,
Life Cycle and Value Stream, and Hierarchy Levels dimensions,
as shown in Figure 1. RAMI 4.0 considers any technical asset
of the factory as an entity that can be represented in the
digital world to conform an I4.0 component. Industry 4.0-
related core topics are on the way to being standardized with a
strong focus on interoperability in order to ensure networking
across company and industry boundaries (Deutsches Institut
für Normung, 2019; Standardization Council Industrie 4.0,
2020).

The main scope of each dimension is described below. For a
more detailed introduction to RAMI 4.0, the reader may refer to
Hankel and Rexroth (2015), Adolphs et al. (2015), and Deutsches
Institut für Normung (2019).

Architecture Layers: The Architecture Layers enable the
development of Industry 4.0 software solutions in a consistent
way so that different and mutually dependent manufacturing
operations are interconnected, taking into account the physical
and the digital world. RAMI 4.0 consists of six layers: Asset
layer, Integration layer, Communication layer, Information layer,
Functional layer, and Business layer.

Life Cycle and Value Stream: The second axis in RAMI 4.0
represents the lifecycle of products and systems and is taken
from the IEC 62890 standard (International Electrotechnical
Commission, 2017). The product lifecycle model introduces a
differentiation between product type and product instance.

Hierarchy Levels: The third axis of RAMI 4.0 is the
hierarchical representation of the different functional levels of the
factory, based on the IEC 62264 (International Electrotechnical
Commission, 2016) and IEC 61512 standards. These hierarchy
levels are: Connected World, Enterprise, Site, Area, Work
Centers, Work Units or Station, Control Device, Field Device,
and Product.

In this context, a digital twin is the container for integrating
information, executing operations, and producing data
describing its activity which can be in different formats,
from different software tools, and not necessarily deployed
in one central repository (Ganz, 2018; Catarci et al., 2019).
Both the physical and the digital twins are equipped with
networking devices to guarantee a seamless connection and a
continuous data exchange between a generic physical system
(or process) and its respective Digital Twin (Platform Industrie
4.0, 2019), while they facilitate predictions about future
situations and prescriptions about production optimization
(Grieves and Vickers, 2017; Zillner et al., 2018; Barricelli
et al., 2019). The digital twin is implemented by the Asset
Administration Shell (AAS). The AAS consists of a number of
sub-models in which all the information and functionalities of
a given asset—including its features, characteristics, properties,
status, parameters, measurement data, and capabilities—
are described (Bedenbender et al., 2017). The German
Federal Ministry of Economic Affairs and Energy provides
specifications for the exchange of information with the AAS
(German Federal Ministry of Affairs and Energy, 2018;
German Federal Ministry of Economic Affairs and Energy,
2018).
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FIGURE 1 | The RAMI 4.0 (Source: Hankel and Rexroth, 2015).

Other Architectural Frameworks
Although, arguably, the most widespread and influential
architectural framework in the manufacturing domain is RAMI
4.0, several other collaborative paradigms have emerged. The
Industrial Internet Reference Architecture (IIRA), developed
by the Industrial Internet Consortium (IIC) Task group, deals
with different Industrial Internet of Things (IIoT) application
domains such as Energy, Healthcare, Manufacturing, Public
Domain, and Transportation (Industrial Internet Consortium,
2017a). An alignment of IIRA and RAMI 4.0 has been recently
developed in order to identify the complementary, contradictory,
and similar aspects of these two architectural paradigms
(Industrial Internet Consortium, 2017b). On top of this, BDVA
presented the big data challenges in smart manufacturing and
designed the BDVA SRIA 4.0, a Reference Model for data-
driven mapping of BDVA Reference Model to manufacturing
scenarios, taking into account RAMI 4.0 and IIRA (BDVA,
2017). Other initiatives include NIST smart manufacturing
(American National Institute of Standards Technology, 2017),
China’s National Intelligent Manufacturing System Architecture
(IMSA) (Wei et al., 2017), Made in China 2025 vision for
intelligent manufacturing, and (Ministry of Industry Information
Technology of China Standardization Administration of China,
2015).

In parallel, the scientific literature has been contributing
to the challenges of enterprise integration and interoperability
in the smart manufacturing era (Zeid et al., 2019). Existing
literature mainly focuses on the development of architectures
for addressing lower level interoperability challenges of Industry
4.0, such as distributed storage, data aggregation, and service
orchestration (Pisching et al., 2018; Bicocchi et al., 2019; Fraile
et al., 2019) as well as big data infrastructures (Pedone and

Mezgár, 2018; Calabrese et al., 2020). A considerable amount
of research has also focused on architectures for CPS, digital
twins, and AAS (Lee et al., 2015; Bader and Maleshkova, 2019;
Bousdekis et al., 2020a; Cavalieri and Salafia, 2020). For more
details, the reader may refer to Moghaddam et al. (2018), Cheng
et al. (2018), Fraile et al. (2019), and Zeid et al. (2019).

THE PROPOSED ARCHITECTURAL
FRAMEWORK FOR BIG DATA-DRIVEN
PROCESSES IN INDUSTRY 4.0

In this section, we present the proposed architectural framework
for big data-driven processes in Industry 4.0. First, we present the
requirements to be fulfilled by the proposed framework (Section
Requirements for the Architectural Framework). Second, we
place the big data technologies and functions in the frame
of RAMI 4.0 in order to assure enterprise integration and
interoperability (Section Big Data Technologies and Functions in
RAMI 4.0). On this basis, we provide a technical view of the 3-
tier architecture in accordance with the Industry 4.0 principles
and the existing big data technologies and architectures (Section
Technical View of the Architecture).

Requirements for the Architectural
Framework
The literature review of Section Literature Review presented the
background, as well as the main trends and challenges for each
pillar of the proposed framework, i.e., Enterprise Integration and
Interoperability, Big Data Processing, and Industry 4.0. Based
on this analysis, we synthesized the requirements for each pillar.
We concluded with 11 requirements, presented in Table 1. These
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TABLE 1 | The requirements for the architectural framework.

Enterprise integration and interoperability

R1 The architecture shall support physical,

application, and business integration.

R2 The architecture shall support technical,

semantic, and organizational interoperability.

Big data processing

R3 The architecture shall support the data

analytics lifecycle, i.e., descriptive, predictive,

and prescriptive analytics.

R4 The architecture shall support both stream

processing and batch processing.

R5 The architecture shall support the whole cloud

continuum, i.e., edge, fog, and cloud

computing.

R6 The architecture shall integrate heterogeneous

data sources.

Industry 4.0

R7 The architecture shall conform to RAMI 4.0.

R8 The architecture shall tackle the uncertain

manufacturing environment.

R9 The architecture shall be compatible with digital

twins.

R10 The architecture shall provide various levels of

insights.

R11 The architecture shall be generic and scalable.

requirements guide the design of the proposed architectural
framework for enterprise integration and interoperability for big
data-driven processes in the frame of Industry 4.0.

Big Data Technologies and Functions in
RAMI 4.0
Architecture Layers
The proposed framework places the key components of a solution
for big data-driven processes in the context of the RAMI 4.0
Architecture Layers, as depicted in Figure 2.

Asset Layer: Since this layer represents the reality, Production
Equipment and Users are part of it. The Assets have their digital
twin which is implemented with the AAS. The AAS can be
applied on the level of a field device, a control device, and a
station device. Moreover, the user, i.e., the Operator 4.0, can also
have their “digital replica” according to the concept of “Human
Digital Twin” (Bousdekis et al., 2020a).

Integration Layer: This layer provides information related to
the assets in the appropriate format by connecting elements and
people with information systems. This layer involves the Sensors
and Actuators assigned to the machines as well as the Enterprise
Systems (MES, ERP, etc.). It also includes the Human Machine
Interfaces through which the users interact with the platform and
the enterprise systems.

Communication Layer: Since this layer provides
standardization of communication by means of uniform
data format and deals with the physical support of information
processing, it includes the IoT Gateway, the Enterprise Data

Uplifting, and the Message Broker. The latter follows the AMQP
or the MQTT protocol, while sensory and enterprise data are
gathered with domain-specific data adapters. The machine-to-
machine communication is implemented with the OPC UA
protocol. In this way, data from various sources are collected for
further processing in the Information Layer.

Information Layer: This layer provides pre-processing of
events and execution of event-related rules by enabling their
formal description for the interpretation of the information
(Bousdekis et al., 2019a). It also manages data persistence and
ensures consistent data integrity and transformation for feeding
into the Functional Layer. Therefore, it includes sensor and
enterprise data pre-processing in the Edge, Fog, and Cloud
computational environments. Edge Computing contributes to
this data pre-processing on the edge layer by performing edge
analytics. Fog Computing leverages the resources on edge nodes
and integrates additional computing capability along the entire
data path between user devices and the cloud. Cloud Computing
provides the infrastructure for the implementation of a big data
reference software architecture. The types of data that need to
be processed include real-time sensor data, historical sensor
data, enterprise data, and human knowledge. In this case, the
Lambda architecture is selected because it is able to incorporate
stream processing and batch processing. Although the single
stream processing engine of the Kappa architecture simplifies
the implementation in completely data-driven computational
environments, Industry 4.0 dictates that the human is an integral
part of the process. Therefore, a batch processing engine is
needed in order to facilitate the human-machine collaboration by
embedding the expert knowledge at configuration or as soon as it
becomes available. Apart from the real-time sensor data which
are processed in the stream processing engine, historical sensor
data and enterprise data can be processed in both engines. The
information layer also includes the Models DB, for the storage
of the simulation, context, knowledge and analytics models, the
Enterprise DB, for the storage of the enterprise data, and the
Time-Series DB, for the real-time data generated by equipment-
installed sensors. In this way, the required data is extracted and
combined accordingly in order to be available to the functions of
the Functional Layer.

Functional Layer: This layer enables the formal description
of functions and creates the platform for horizontal integration
of various functions (Bousdekis et al., 2019a). It includes the
run time and modeling environment for services supporting the
business processes and a run time environment for applications
and technical functionalities. In order to assure scalability and
efficiency, the functionalities are developed as web services,
following the background of SOA or EDA. Based upon the
data integrity of the previous layer, the following functions
are included:

• Context Model: It includes the definition of the manufacturing
system’s elements, including the assets, causes, and effects
along with appropriate reactive and proactive actions. It also
aims at performing knowledge representation and reasoning
and, thus, it forms the basis for the enrichment of data
analytics algorithms. In the current proposal, the context
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FIGURE 2 | Big data technologies and functions for manufacturing operations in the frame of RAMI 4.0 Architecture Layers.

model is foreseen to be implemented with Probabilistic Web
Ontology Language (PR-OWL) (Carvalho et al., 2017), in
order to model the Bayesian relationships among the various
entities of the context model (Setiawan et al., 2019) and to
achieve uncertainty representation and reasoning. The queries
can be performed with RDF and SPARQL.

• Data and Process Mining: Data mining deals with information
extraction and discovery of structures and patterns in large and
complex data sets (Hand and Adams, 2014). Process mining
extracts knowledge from event logs stored in the information
systems in order to discover, monitor, and improve processes
(Van Der Aalst et al., 2011). In the proposed approach, they
facilitate the structuring and analysis of enterprise data and
event logs in order to extract meaningful insights about the
past performance of manufacturing business’ processes and
KPIs. They also enable longer-term decisions, while their
results contribute to the enrichment and labeling of the
descriptive, predictive, and prescriptive analytics outcomes.

• Descriptive Analytics: In a stream processing context,
descriptive analytics deals with (deep) machine learning
methods and algorithms for anomaly detection (Yue
et al., 2019). In the proposed architecture, descriptive
analytics is implemented as real-time algorithms on the
basis of sensor-generated data streams in order to detect
abnormal behaviors.

• Predictive Analytics: Predictive analytics are executed both
offline and in real-time. It includes the development of
offline predictive analytics models based on historical sensor
data until a decision horizon enriched by the Data and

Process Mining and the Context Model functions. Moreover,
at runtime, when the descriptive analytics function detects
an abnormal behavior, predictive analytics retrieves the
appropriate offline model and predicts the future situation
and/or the time of its occurrence.

• Prescriptive Analytics: Prescriptive analytics is triggered by
real-time predictions about future situations in order to
generate recommendations about proactive actions and their
optimal time and formulate the action plan. The prescriptive
analytics models have been developed offline by taking
advantage of the Data and Process Mining function as well as
the Context Model.

Business Layer: This layer ensures the integrity of functions

in the value stream and enables mapping business models
and the outcomes of the overall process (Bousdekis et al.,
2019a). In other words, it assures the enterprise integration
and interoperability by providing the interfaces with the rest

of the business functions. It takes into account the constraints,

rules, and policies that affect the system operation and facilitates
the interaction of manufacturing operations with the overall

business environment. To do this, it provides the Process Model
in accordance with the business models and KPIs defined at the

strategic level, also taking into account the Legal and Business

Constraints. In this way, it provisions both the organizational
and legal interoperability. Finally, this layer provides the business
interface with other Manufacturing Operations of the business
environment as well as with the associated users through
Visualization of results in order to achieve explainability of
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the AI algorithms that were implemented in the Functional
Layer and, thus, to be compatible with the “Ethics Guidelines
for Trustworthy Artificial Intelligence” for the development of
ethical and human-centric AI, as has been reported by the High-
Level Expert Group on AI (European Commission, 2019).

Life Cycle and Value Stream
The proposed approach facilitates the interchange of data and
data analytics outcomes to all the stakeholders of the supply
chain and at all stages of the manufacturing operations. This fact
enables timely and reliable cooperation among them throughout
the whole lifecycle of operations.

Hierarchy Levels
The proposed approach is also compatible with the Hierarchy
Levels of RAMI 4.0. The I4.0 AAS concept enables its application
to the various Hierarchy Levels on the basis of a defined Asset
or as a synthetics AAS, combining the AAS of various Assets at
various levels. To achieve this, the AAS, which implements the
Digital Twin and ranges from the Asset Layer of RAMI 4.0 to
the Functional Layer, is formulated as shown in Figure 3. It is
based on the AAS template proposed by Ye and Hong (2019)
and provides a generalized and data-driven way of constructing
the associated sub-models. The AAS can be extended in order
to include additional asset-specific sub-models (e.g., quality,
maintenance, supply chain, etc.).

Technical View of the Architecture
Based upon the aforementioned structuring of big data
technologies and functions in the frame of RAMI 4.0, we
design the technical view of the proposed architecture for big
data-driven processes in Industry 4.0, depicted in Figure 4.
It shows the main interactions and the data flow among the
components through the definition of end-to-end integration
and communication processes and consists of three tiers:
Presentation Tier, Logic Tier, and Data Tier. The technical
view of the architecture drives the development procedure of
associated information systems and platforms in accordance with
the Industry 4.0 principles.

Below, we explain the interactions and the data flow among
the components of the aforementioned architecture based upon
the descriptions provided in Section Big Data Technologies and
Functions in RAMI 4.0. The Logic Tier is put at the core of
the description, while its functions are presented in two steps
according to whether the data flow takes place at design time or
at runtime:

Design time: The entities of the Context Model are defined
based on the expert knowledge that is inserted through the
User Interaction of the Presentation Tier, while their Bayesian
relationships are extracted by the Data and Process Mining
function of the Logic Tier and are communicated through
RESTful APIs. The Data and Process Mining function retrieves
data in order to produce process models, to analyze past
performance, and to estimate KPIs. This data are derived from
Enterprise Systems and are stored in the Enterprise DB (a NoSQL
DB) of the Data Tier through Enterprise Data Uplifting. Its
outcomes are exposed to the user through Visualization of the

Presentation Tier. The Context Model and the outcomes of Data
and Process Mining are stored in the Models DB.

Runtime: TheDescriptive Analytics function processes sensor-
generated data streams in real-time in order to detect the actual
performance of the Production Equipment. To do this, it mainly
implements (deep) machine learning algorithms. This data are
stored to the Time-Series DB and are communicated with the
AMQP and the MQTT protocols. An initial pre-processing
of the data may have taken place through edge analytics
techniques in Edge Computing. These outcomes have been
extracted through an IoT Gateway, while they have been further
processed in Fog Computing. The Predictive Analytics function
relies on both Batch Processing and Stream Processing. At Stream
Processing, it receives streams of the Descriptive Analytics
outcomes through the Message Broker and generates predictions
about the future states of the Production Equipment. The
predictions are generated according to the predictive analytics
models that have been developed at Batch Processing based on
historical sensor data enriched by the Data and Process Mining
and the Context Model functions. The Prescriptive Analytics
function receives streams of predictions through the Message
Broker and generates prescriptions about proactive actions, i.e.,
actions that mitigate the impact of a future undesired event or
exploit future opportunities. The Prescriptive Analytics models
are enhanced by the Data & Process Mining and the Context
Model functions. The outcomes of Descriptive, Predictive, and
Prescriptive Analytics are exposed to the user through Real-time
Monitoring of the Presentation Tier, while they are stored to the
Models DB of the Data Tier.

APPLICATION TO PREDICTIVE
MAINTENANCE

In this section, we present the instantiation of the proposed
architectural framework to predictive maintenance and the
deployment of an associated platform to a steel industry case
study. More specifically, we describe the motivation for selecting
the maintenance process (Section Predictive Maintenance in
Industry 4.0), we instantiate the proposed framework to the
predictive maintenance context (Section Instantiation of the
Proposed Architectural Framework to Predictive Maintenance),
and we present the deployment of a predictive maintenance
platform, developed according to the proposed framework, to
a case study from the steel industry (Section Case Study in the
Steel Industry).

Predictive Maintenance in Industry 4.0
Predictive maintenance is an indispensable aspect of Industry
4.0, since it aims at achieving availability of the production
equipment while avoiding unplanned downtimes with the use
of condition monitoring. Predictive Maintenance in the context
of Industry 4.0 is the maintenance strategy that takes advantage
of the huge amounts of real-time and historical data in the
enterprise ecosystem in order to detect early anomalies in
equipment behaviors, to predict the future health state of the
equipment and potential future failure modes, and to formulate
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FIGURE 3 | The I4.0 AAS of the big data-driven manufacturing operations’ Digital Twins.

proactive maintenance plans with the aim to eliminate or
mitigate the impact of the predicted failures (Bousdekis et al.,
2020b). Due to its importance, the German Federal Ministry
of Affairs and Energy has published “The Standardization
Roadmap of Predictive Maintenance for Sino-German Industrie
4.0/ Intelligent Manufacturing” (German Federal Ministry of
Affairs and Energy, 2018), while the European Federation of
National Maintenance Societies (EFNMS) has published the
maintenance Body of Knowledge (BoK) (EFNMS, 2019).

Predictive maintenance has gathered increasing interest in
both literature and practice. However, the lack of successful case
studies and the development of ad-hoc approaches and platforms
have led the manufacturers to be reluctant for its adoption
(Guillén et al., 2016; Hribernik et al., 2018). The potential
of predictive maintenance can be demonstrated through the
concept of P-F curve, as shown in Figure 5. The P-F curve is a

well-established representation of asset’s behavior. According to
the P-F curve, the condition of an asset deteriorates over time,
leading to functional failure. Therefore, the failure is considered
as a process instead of an instant event. As shown in Figure 6,
this approach provides an opportunity time window, i.e., the P-
F interval, between the time of the potential failure (P), i.e., the
point that it can be found out that the equipment is failing, and
the functional failure (F), i.e., the point when the equipment
actually fails, within which proactive decisions and actions can
be taken. The point F is typically a distribution of the possible
failure times for the failure mode under examination, derived
from the historical data analysis. While Breakdown Maintenance
is implemented after the point F and Time-Based Maintenance
is scheduled at specific time intervals in order to avoid F,
predictive maintenance can take advantage of the big data in
order to maximize the P-F interval closer to the degradation start
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FIGURE 4 | The 3-tier technical view of the architecture for big data-driven processes in Industry 4.0.

and support timely and cost-efficient decisions even before the
symptoms are visible by humans.

Instantiation of the Proposed Architectural
Framework to Predictive Maintenance
The systematic representation of a predictive maintenance
solution enables the reusability and knowledge transfer, an
aspect of outmost importance in Industry 4.0 platforms

(Bousdekis et al., 2018a; Gröger, 2018). The proposed approach
provides the capability of designing the “Predictive Maintenance
Digital Twin” in order to facilitate the development of a
predictive maintenance platform in the frame of Industry 4.0.
Below, we illustrate how the functions of the Functional Layer
are instantiated to predictive maintenance.

• Context Model: It includes the definition of the manufacturing
system including the assets, failure causes, failure modes, and
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FIGURE 5 | Predictive maintenance in the context of the P-F curve.

FIGURE 6 | The milling station: (A) an overview; (B) a representation of the

asset in the AAS; (C) the rolls when the main casing is open and the

placement of sensors; (D) the sensors placement in the infrastructure setup.

effects, along with appropriate reactive and proactive actions
in order to create themaintenance data model. Existing related
literature usually develops data models and ontologies based
on the FMECA background (Zhou et al., 2015; Guillén et al.,
2016; Nunez and Borsato, 2017; Ali andHong, 2018; Hribernik
et al., 2018). However, their deterministic and static nature
creates obstacles to the full exploitation of big data in the frame
of Industry 4.0 (Bader and Maleshkova, 2019). The PR-OWL
can enable the representation of domain knowledge enhanced
by data analytics in the form of uncertain relationships
between the FMECA entities, e.g., failure causes, the failure

modes, and the mitigating actions, while the root causes
are mapped to the available sensors that serve as indirect
indicators of the failure modes.

• Data and Process Mining: It extracts useful insights about root
causes of failures and maintenance-related business processes
based upon the enterprise and operational data [e.g., Overall
Equipment Effectiveness (OEE) data, Statistical Process
Control (SPC), Enterprise Resource Planning (ERP), and
Computerized Maintenance Management System (CMMS),
maintenance event logs] in order to construct themaintenance
process model. Data mining algorithms have been widely used
in the related literature (Accorsi et al., 2017), while process
mining is an emerging research area (dos Santos Garcia et al.,
2019).

• Descriptive Analytics: In a predictive maintenance context,
descriptive analytics is implemented as real-time diagnostic
algorithms. Diagnosis aims at assessing the actual health state
of the equipment and identifying abnormal behaviors based
on sensor-monitored indicators of degradation, e.g., when
anomalies are detected (Bousdekis et al., 2015). The literature
is rich on real-time diagnostic algorithms; see e.g., Xu et al.
(2017) and Li et al. (2020).

• Predictive Analytics: Predictive analytics is implemented
as prognostic algorithms, triggered by real-time diagnostic
outputs. Prognosis aims at predicting the future health
state of the equipment, particularly when a failure mode is
expected to occur, and estimating the Remaining Useful Life
(RUL) (Bousdekis et al., 2015). This function includes the
development of offline predictive analytics models based on
historical sensor data that indicate the degradation process
until the failure. In this sense, the models utilize information
that exists in maintenance logs and in the context model,
such as the time that a failure occurred, the type of the
failure mode, the asset, etc. At runtime, when the descriptive
analytics function detects an abnormal behavior which moves
the equipment from a normal state to a deteriorating state,
predictive analytics retrieves the appropriate offline model
and predicts the failure mode and/or the time of the
failure occurrence. Prognostic algorithms have been widely
investigated in the last years; see e.g., Zonta et al. (2020).

• Prescriptive Analytics: Prescriptive analytics models are
triggered by real-time predictions about future failure modes
in order to generate recommendations about proactive
actions and formulate the maintenance plan. The prescriptive
analytics models have been developed offline by taking
advantage of the Data and Process Mining function as
well as the Context Model. Although the development of
maintenance decision making algorithms is a well-established
area (Ruschel et al., 2017), the sensor-driven computational
environment and the need for proactive actions ahead of time
(instead of reacting to incoming events) ask for novel proactive
decision making methods (Bousdekis et al., 2019b).

Table 2 provides an overview of the instantiation of the
proposed architecture to predictive maintenance by addressing
the Functional Layer of RAMI 4.0. More specifically, it defines
the five big data functions of the proposed architecture in the
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TABLE 2 | Instantiation of RAMI 4.0 functional layer to predictive maintenance.

Function Context model Data and process

mining

Descriptive analytics Predictive analytics Prescriptive

analytics

Predictive maintenance Maintenance data

model

Maintenance process

model

Diagnosis Prognosis Maintenance planning

Methods Probabilistic ontology,

belief networks,

uncertainty reasoning

Knowledge discovery,

statistical analysis,

descriptive, predictive

Signal processing,

unsupervised machine

learning, deep learning

Unsupervised and

supervised machine

learning, deep learning

Supervised and

reinforcement learning,

operational research

Inputs Domain knowledge

Enterprise data

Analytics models

Process models

Enterprise data

Maintenance logs

Sensor data Current health state

Historical prognostic

models

Context

Estimated RUL

Failure PDF

Context

Human feedback

Outputs System definition

Uncertain relationships

Contextual elements

KPIs

Business performance

Process models

Time and frequency

features

Current health state

Early warnings

Estimated RUL

Breakdown prediction

Failure PDF

Proactive actions

Maintenance plan

Optimal time

of maintenance

Data processing Batch processing Batch processing Stream processing Stream processing

(batch processing)

Stream processing

Data storage OWL 2 RL profile

Triplestore

NoSQL

Time-series DB

OWL 2 RL profile

NoSQL

Time-series DB Time-Series DB

OWL 2 RL profile

NoSQL

Time-series DB

OWL 2 RL profile

NoSQL

Communication protocol RESTful APIs RESTful APIs AMQP AMQP

RESTful APIs

AMQP

RESTful APIs

frame of predictive maintenance along with related categories
of methods and their inputs and outputs. Moreover, it defined
the data processing approach, the data storage high-level
specifications, and the appropriate communication protocols for
each function.

Case Study in the Steel Industry
In this section, we demonstrate a predictive maintenance
platform that was developed in accordance with the proposed
architectural framework for big data-driven processes in Industry
4.0 and based upon its instantiation to predictive maintenance, as
presented in Section Instantiation of the Proposed Architectural
Framework to Predictive Maintenance. It has been applied
in three use cases from different manufacturing sectors:
the steel industry, domestic appliances production, and the
aerospace industry. The following demonstration deals with the
steel industry.

The Manufacturing Process and Equipment
The case under examination is the cold rolling process.
Cold rolling is a manufacturing process of metal deformation
involving a pair of rotating metal rolls aiming at reducing
the cross-sectional area or shaping a metal piece below its
recrystallization temperature. The main components of the
milling station are:

• The work rolls: a pair of rolls responsible for the actual milling
until the required width is achieved.

• The backup rolls: a pair of rolls transmitting motion to the
working rolls.

• The motor unit: the component supporting the rotation of the
backup rolls.

TABLE 3 | The installed accelerometers.

Sensor ID Measurement point Sensor direction

1 Upper backup roll – DE side Vertical

2 Upper backup roll – DE side Axial

3 Upper backup roll – NDE side Vertical

4 Upper working roll – DE side Reverse horizontal

5 Upper working roll – NDE side Horizontal

6 Down working roll – DE side Reverse horizontal

7 Down working roll – NDE side Horizontal

8 Down backup roll – DE side Vertical

9 Down backup roll – DE side Axial

10 Down backup roll – NDE side Vertical

Figure 6A shows the milling station on the shop floor; Figure 6B
illustrates the cold rolling manufacturing process. Figure 6C
depicts the work and the backup rolls. During the operation, the
rolls are continuously being sprayed by soap oil in order to reduce
heat and friction. Figure 6D depicts the infrastructure setup for
sensor data acquisition and the placement of the accelerometers.
Their description is presented in Table 3.

Before the installation of sensors, maintenance was performed
on a time-based mode. The rolls were replaced every 8 h (i.e.,
when there was a shift change) regardless of their health state.
According to their condition, identified with visual inspection,
the removed rolls were subject either to repair or they were sent to
waste. In this way, on the one hand, replacement took place even
if it was not necessary and, on the other hand, unexpected failures
occurred between successive replacements. This fact led to high
maintenance costs, despite the improvements of the last years
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TABLE 4 | Summary of the streaming dataset.

Dataset title Roller vibrations

Origin Milling station

Sensor type Accelerometer

Physical world measurements Acceleration, velocity, shock,

and overall bearing

Sensor reporting frequency 10 readings per minute

(configurable)

Data stream rate ∼8 kb per minute

Sensor input signal(s) Mechanical

Data type Acceleration, velocity, bearing:

Float

Shock: Integer

Interfaces to obtain sensor readings PLC TCP connection

TABLE 5 | The CMMS dataset.

Dataset title Operational and legacy

Data type Roll data

Roll position: upper roll/down roll

Roll ID

Roll past operation

Input characteristics: timestamp,

roll diameter Output

characteristics: timestamp,

reason of replacement (type of

failure mode/planned

maintenance)

Production data

KPIs: number of failures, time of

planned maintenance, OEE,

MTBF, MTTR

Interface Data uplifting or API

due to the adoption of a Total Productive Maintenance (TPM)
management program.

The Datasets
The data used in this case were derived from sensors
and a CMMS, while the required expert knowledge was
embedded through a Graphical User Interface (GUI). The sensor
infrastructure consists of 10 Accelerometers collecting vibration
data which are gathered in an MVX which are then transmitted
via Modbus TCP to a Siemens S7-1500 PLC. The values are
exposed from the PLC to the DB port and can thus be collected
via external modules that have access to the PLC via the network.
An adapter was developed in order to sample the DB Port
every 5ms – 5 s. The data are then processed via a Storm-Kafka
pipeline and are stored and retrieved into the Time-series D. This
pipeline is responsible for performing normalization procedures
before the data are pushed to the Logic Tier. Normalization is
also configurable and can be adjusted by attaching new Storm
Bolts. A set of Bolts for rounding continuous variables has
been deployed. The summary of the streaming dataset derived
from the aforementioned accelerometers is presented in Table 4.
In addition, there is a CMMS which stores operational and

TABLE 6 | Technology stack.

Presentation tier

User interaction Thymeleaf

Visualization Grafana, Kibana, Thymeleaf

Real-time monitoring Grafana, Kibana, Thymeleaf

Logic tier

Context model Spring Boot framework, Apache

Maven

Data and process mining Django Web Framework,

django-rest-framework,

Elasticsearch, Jupyter, Pandas,

scikit-learn, numPy, somPy,

Keras, pm4Py

Descriptive analytics Spring Boot framework, Apache

Commons, Netlib, Common

Math, MOA: Massive Online

Analysis, MathParser Org

MXparser, Elasticsearch

Predictive analytics Spring Boot framework, Apache

Commons, Weka, Common

Math, MOA: Massive Online

Analysis, Netlib

Prescriptive analytics Apache Maven, Spring Boot

framework, Drools, BURLAP,

Common Math, Netlib

Data tier

Models DB MongoDB, MySQL, MariaDB

Enterprise DB MongoDB, PostgreSQL

Time-series DB InfluxDB

Message broker Apache Kafka

enterprise data and performs basic calculations about OEE, time-
based maintenance plan, failure modes, downtime, etc. The
summary of the CMMS dataset used in this case is presented
in Table 5.

Implementation of the Architecture
The core technology stack of the predictive maintenance
platform which implements the 3-tier architecture for big data-
driven processes in Industry 4.0 is shown in Table 6. The
platform embeds various algorithms for each function, as shown
in Table 7. Some of these algorithms have been developed within
the platform while others are retrieved through APIs from open
source data analytics tools. In this way, the platform is able to
tackle a wide variety of cases, assets, and degradation behaviors,
while it is extensible in order to embed more algorithms.

At design time, the Context Model represents and stores
probabilistic relationships among failure causes, failure modes,
and mitigating actions. It is in accordance with MIMOSA OSA-
CBM data model, while it introduces the capability of uncertain
relationships among the entities according to PR-OWL. TheData
and Process Mining function creates the maintenance process
model and enriches the offline predictive analytics models.
Moreover, it feeds into the context model with the cost models
of the failure modes and the mitigating actions. At runtime,
the platform provides real-time monitoring of the vibration and
ensures that the gathered data at the on-site PLC are transmitted
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TABLE 7 | The algorithms implemented in the platform.

Data and process mining Linear Regression, Bayesian

Networks, Self-Organizing Map

(SOM), K-means clustering,

Support Vector Machines (SVM),

Decision Tree (DT), Random

Forest (RF), Inductive Miner,

Fuzzy Miner

Descriptive analytics Feature Extraction, k-Nearest

Neighbor, association rules,

online Bayesian changepoint

detection

Predictive analytics Logistic Regression, Exponential

fitting, Weibull fitting, Hidden

Markov Model (HMM)

Prescriptive analytics Association rules, Bayesian

Networks, Markov Decision

Process, Reinforcement Learning

through the communication channel. The acquired data feed into
the stream processing functionalities, i.e., Descriptive, Predictive,
and Prescriptive Analytics, which implement various data fusion,
(deep) machine learning, and optimization algorithms, which
are configurable according to the specific use case requirements
and complexity.

Illustrative Scenario
As already mentioned, the platform embeds various algorithms
in order to deal with the complexity and the requirements of
the complex manufacturing environment, e.g., various assets,
different degradation behaviors, different specifications, etc. In
order to demonstrate a typical information flow across the
aforementioned functions, we herein present an instance of the
platform in the case study as an illustrative scenario. The scenario
in the case study under examination is depicted in Figure 7.

In this scenario, Descriptive Analytics performs feature
extraction with rolling kurtosis and online Bayesian changepoint
detection (Wen et al., 2018) in order to estimate in real-time
the log likelihood of having a changepoint from the normal
state to the dangerous state of equipment. In Figure 7, it
identifies a changepoint 385min after the setup of the machine.
This outcome triggers the Predictive Analytics service in order
to provide a prediction about the failure mode occurrence
by retrieving the most similar cluster that corresponds to a
failure mode and applying Weibull fitting (Zhang et al., 2018).
Therefore, it predicts that the failure mode “Broken Roll” will
occur in 115min. This prediction feeds into Prescriptive Analytics
which recommends the optimal proactive action, out of the
alternative actions for this failure mode, along with the optimal
time of its application. In the current scenario, the prescriptive
analyticsmodel has been developed as aMarkovDecision Process
(MDP) (Bousdekis et al., 2018b) and there are three alternative
maintenance actions: lower the speed of the machine, replace the
rolls, and perform full maintenance on the equipment. As shown
in Figure 7, the optimal action is to replace the rolls in 51min,
because at that time, the expected loss is minimized.

Evaluation Results
We evaluated the value of the proposed approach by performing
a before/after analysis of KPIs retrieved by the CMMS. The
comparison was performed on the basis of 2 complete years. In
the 1st year of the evaluation period (“before”), the company
performed time-based maintenance by replacing the rolls every
8 h, according to the supplier’s specifications. As a result, either
the rolls were replaced in their normal state or unexpected
breakdowns took place in this time interval. In the 2nd year, the
aforementioned platform had been deployed and the company
started performing predictive maintenance of the rolls. In this
way, not only the decisions about the roll replacement were taken
dynamically, but also it adopted imperfect maintenance actions
(e.g., lower the speed of the mill, increase the soap oil to eliminate
friction, optimal utilization of repaired rolls, etc.) that extend the
lifetime of the equipment when downtime is not acceptable (e.g.,
when customers’ demands need to be met).

The evaluation focused on the aforementioned milling station
and not on the whole production process in order to eliminate
other factors that may affect the KPIs’ values. It is expected
that the effect of the proposed approach can be multiplied if
it is applied to the whole factory and for a longer period of
time. The results are shown in Table 8. We also interviewed key
persons from the company, such as the General Manager, the
Quality Manager, the Production Manager, and the operators
of this milling station. According to the results, the number
of failures was decreased by 47.69%, the time for performing
planned (time-based) maintenance was decreased by 62.5%, the
OEE was increased by 5.03%, the Mean Time Between Failures
(MTBF) was increased by 22.90%, and the Mean Time To Repair
(MTTR) was decreased by 21.88%.

Lessons Learned
In this section, we summarize the lessons learned from all
three use cases (steel industry, domestic appliances production,
and aerospace industry), mainly related to the enterprise
integration and interoperability challenges. In this sense, we
emphasize the challenges with respect to the complexity of
applying the proposed framework and to the integration with
the manufacturing environment, information systems, and
measuring devices. Below, we discuss the main lessons learned.

Combination of process knowledge and data analytics: On
a business level, collaboration and communication between
domain experts and data analysts is a challenging task. On the one
hand, the data analysts need to understand the manufacturing
process, it potential and constraints, as well as the business
requirements in order to decide on the functionalities, the
algorithms, and the configuration of the platform to the specific
business needs. On the other hand, the domain experts need
to understand the system and technical requirements that may
lead, not only to new investments on information systems and
sensor infrastructure, but also to a disruptive way of thinking
and practice.

Project management: The adoption of disruptive
technologies in the frame of Industry 4.0 needs efficient
project management. Such projects usually last for a long period
of time in order to tackle the large variety of integration and data
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FIGURE 7 | An illustrative scenario in the context of the case study.

TABLE 8 | Evaluation results of KPIs in the steel industry.

KPI Number of failures Planned maintenance duration OEE MTBF MTTR

Before 96 2,340min 59.43% 2,135min 117 min

After 65 1,440min 64.46% 2,772min 96 min

Improvement 47.69% 62.5% 5.03% 22.90% 21.88%

management challenges and to sufficiently assess the efficiency of
the software solutions. Long-lasting software maintenance and
support is also an important aspect.

Data privacy and security: The manufacturing data is highly
confidential for the manufacturers, since they are critical to
their processes. Moreover, the increasing use of sensors and
actuators on the shop floor makes cybersecurity a topic of
outmost importance for the robustness of operations and the
safety of operators. For these reasons, manufacturing companies
are usually reluctant to open-source platforms “intervening” with
their legacy systems and sensor infrastructure and externally
processing the data. Such platforms should use state-of-the-art
technologies and mechanisms that ensure data security, while
a close collaboration with the enterprise systems and sensors
is essential.

Utilization of heterogeneous data sources: The
manufacturing environment includes various and heterogeneous
data sources that have the potential to provide insights on various
aspects of the processes. This heterogeneity is caused by, among
others, the co-existence of old-fashioned systems and disruptive

Industry 4.0 technologies. Therefore, an Industry 4.0 platform
needs to take advantage of all the data sources which may include
sensors, actuators, legacy and operational systems, enterprise
systems, and Excel files, but also expert knowledge. The
identification of all the available data sources, the development
of appropriate interfaces, and the implementation of the right
algorithms are among the main challenges in the deployment of
the proposed solution.

Integration to the legacy and operational systems: Legacy
and operational systems are usually proprietary solutions,
something which poses additional challenges to the integration of
open-source platforms. Apart from the close collaboration with
the provider, it is important to define the required data formats,
and process the data in order to enrich the context model and the
data analytics algorithms. In this sense, the databasemanagement
of the proposed solution is crucial for the storage and retrieval
according to the consuming functions. When this is not possible,
legacy data uplifting can be applied.

Integration to the sensor infrastructure: Integration to the
sensor infrastructure also requires a close collaboration with the
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provider in order to develop adapters capable of extracting the
data at a pre-configured sampling time. The adapters need to
be configured in order to sample the DB port at appropriate
times according to the specific process (e.g., frequency of events,
criticality of operations, time constraints, etc.). They should
ensure data security.

CONCLUSIONS AND FUTURE WORK

Traditional manufacturing businesses lack the standards, skills,
processes, and technologies tomeet today’s challenges of Industry
4.0 driven by an interconnected world. Enterprise Integration
and Interoperability can ensure efficient communication
among various services in alignment with the business
needs and requirements. However, the data management
challenges affect not only the technical implementation of
software solutions but the function of the whole organization.
A key issue in Industry 4.0 is the effective application of
the Reference Architecture Model Industrie (RAMI) 4.0 in
various manufacturing operations. In this paper, we bring
together Enterprise Integration and Interoperability, Big Data
Processing, and Industry 4.0 in order to identify synergies that
have the potential to enable the so-called “Fourth Industrial
Revolution.” On this basis, we propose an architectural
framework for designing and modeling Industry 4.0 solutions
for big data-driven manufacturing operations. We demonstrate
the applicability of the proposed framework through its
instantiation to predictive maintenance, a manufacturing
function that increasingly concerns manufacturers due to
the high costs, the safety issues, and the complexity of its
application. The proposed approach achieved to exploit
the full potential of predictive maintenance in a case study
from the steel industry, since it provides a systematic way
of designing the maintenance operations and developing a
software platform. At the same time, the developed solution
can be seen in the context of the whole enterprise architecture,
according to the digital manufacturing strategy, in order to
balance the wide-ranging—vertical and horizontal—effects
within the organization. The effect of such a solution is strongly
affected by the data availability (quality and quantity) and
the algorithms suitability; however, the enterprise integration
and interoperability in the frame of Industry 4.0 is an area
usually underestimated.

Our future work will move toward four main directions.
First, we will apply the proposed architectural framework for the
development of software platforms for additional manufacturing
operations. In particular, we will prioritize its application to
quality processes in the frame of the predictive quality strategy.
Second, we will focus on the user interaction aiming at achieving
an optimized human-machine collaboration through explainable
AI and digital intelligent assistants. Third, we will provide
a taxonomy of appropriate technologies for each part of the
architecture in order to facilitate the software implementation.
Fourth, we will design a holistic business process management
view of all the main manufacturing operations in order to further
assure the organizational interoperability for the transition to
Industry 4.0.
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