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in silico analysis of alternative 
splicing on drug-target gene 
interactions
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identifying and evaluating the right target are the most important factors in early drug discovery phase. 
Most studies focus on one protein ignoring the multiple splice-variant or protein-isoforms, which might 
contribute to unexpected therapeutic activity or adverse side effects. Here, we present computational 
analysis of cancer drug-target interactions affected by alternative splicing. By integrating information 
from publicly available databases, we curated 883 FDA approved or investigational stage small 
molecule cancer drugs that target 1,434 different genes, with an average of 5.22 protein isoforms per 
gene. Of these, 618 genes have ≥5 annotated protein-isoforms. By analyzing the interactions with 
binding pocket information, we found that 76% of drugs either miss a potential target isoform or target 
other isoforms with varied expression in multiple normal tissues. We present sequence and structure 
level alignments at isoform-level and make this information publicly available for all the curated drugs. 
Structure-level analysis showed ligand binding pocket architectures differences in size, shape and 
electrostatic parameters between isoforms. Our results emphasize how potentially important isoform-
level interactions could be missed by solely focusing on the canonical isoform, and suggest that on- and 
off-target effects at isoform-level should be investigated to enhance the productivity of drug-discovery 
research.

Discovering a right drug candidate and bringing it to the market is a highly complex process. In recent years, the 
cost of identifying a new compound and converting it into an FDA approved drug has increased enormously, with 
an estimated median cost of developing a single cancer drug at $648.0 million1. Another study has estimated the 
cost to drug-makers at $2.6 billion, which includes the cost of the compounds that failed to make it to the market2. 
A promising drug candidate can fail at any of the different stages of the drug discovery process due to various 
reasons, including lack of clinical efficacy of the potential drug (approximately 57%) and unexpected toxicities 
or safety concerns (17%)3,4. This low productivity is quite troubling, despite great advances in multi-omics tech-
nologies and medicinal chemistry assays, together with screening and secondary assays are generating enormous 
amount of data and knowledge. While the ever increasing datasets should have aided in silico experimentation to 
expedite the overall search for new drugs, the rate of new drugs entering into the market is falling and many drugs 
approved by regulators are being withdrawn due to toxicity and safety concerns. Most of the chemical biology 
and genomic approaches are primarily gene-centric (one target-one gene/protein-one disease model) not leading 
to the desired results. Almost all the experimental and/or computational studies assume “one gene – one protein” 
paradigm ignoring the true dynamic complexity of the proteome, which include alternative protein isoforms 
generated from the same gene by mechanisms known as alternative transcription and alternative splicing5.

It is now well known that alternative splicing events (exon skipping, intron retention, alternative 5′ or 3′ splice 
sites, and mutually exclusive exons) and alternative transcriptional events (alternative promoters and alternative 
3′ polyadenylation) contribute to the transcriptome and proteome diversity5. At least 40% of the human genes 
produce two or more protein isoforms according to recent annotations of the protein-coding regions that were 
identically annotated on the human and mouse reference genome assembly in genome annotations produced 
independently by NCBI and the Ensembl group at EMBL-EBI6. The latest annotations of the human genome 
(GRCh38.p12, GENCODE Release, version 30) contains annotations for 19,986 protein-coding genes and 57,687 
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full-length protein-coding transcripts, highlighting the complexity of the total proteome that can be expressed by 
different cells and tissues in the human body. Numerous studies have noted the functional importance of main-
taining a coordinated regulation of alternative events in various biological processes, such as tissue development 
and aging7–9. Isoforms of a gene often appear to have different, sometimes even opposite functions, and are tightly 
regulated to express in a context-specific manner. Conversely, a disruption of such coordinated regulation is often 
linked to diseases, such as cancer. A recent large transcriptome-wide study revealed that ~19% genes consistently 
undergo isoform switching (context-dependent differential usage of isoforms) that potentially have functional 
consequences across 12 solid cancer types10. Such genes with isoform switching were previously found to relate to 
all hallmarks of cancer, in particular apoptosis and metastasis11,12.

One best example of such aberrant isoform switching in angiogenesis is VEGFA gene, where a switching from 
anti-angiogenic isoform VEGFA165b to pro-angiogenic splice variant VEGFA165 is observed in multiple types of 
cancers13–17. Another apoptosis-related example is the BCL2L1 gene, where a switching from pro-apoptotic short 
isoform Bcl-xs to anti-apoptotic long splice variant Bcl-xl enable cancer to bypass programmed cell death18–20. 
Examples for metastasis-enabling isoform switching include cell surface adhesion receptors, such as CD4421 and 
CDH1 (E-cadherin)22; growth factor receptors, such as FGFR223 and TGFBR224; as well as other proteins that 
induce EMT and confer enhanced invasiveness/motility of cells, such as the Rac1b isoform of RAC1 gene25–27 
and a short-form, constitutively active isoform of RON gene (RonΔ165)28. Importantly, the RON gene simul-
taneously produces other tumor-promoting or tumor-opposing isoforms involved in different pathways under 
different conditions5. Meanwhile, the aberrant splicing of RAC1 gene has also been linked with multiple other 
cancer hallmarks, including proliferation, genome instability and inflammation12. Another aberrant splicing 
example responsible for sustained proliferative signaling is BRAF gene, as alternative isoforms of wild-type 
and V600E mutant affect its kinase domain and may confer resistance to treatment29,30. For isoforms related to 
evading growth suppressors, human TP53 itself serves as a perfect example, as many splice variants exists for 
this well-studied tumor suppressor, some of which are dominant-negative hampering anti-tumor function of 
wild-type p5331,32. In addition, alternatively spliced, dominant negative isoforms of human telomerase gene TERT 
were identified in multiple cancers33,34, while splice variants for HLA-G protein were found on surface of tumor 
cells that enhance immune evasion35.

The above examples suggest that disease-causing splice variants, or aberrant isoforms, not only can function 
as important biomarkers but also have the potential of becoming successful drug targets. Several recent studies 
have started to explore on the first aspect by performing large-scale pharmacogenomic association studies using 
transcriptomic expression data36,37. However, no study thus far has evaluated the impact of alternative splicing 
on drug target interactions to the best of our knowledge, perhaps due to lack of availability of sufficient data. In 
this study, we curated drug interaction data for isoforms from multiple databases, and investigated the binding 
profile of different isoforms of drug target genes with small molecule compounds, in particular kinase inhibi-
tors. We evaluated the expression patterns of the drug-target genes transcript-variants (or isoforms) in normal 
and cancer tissues by mining the publicly available databases, such as The Cancer Genome Atlas (TCGA) and 
Genotype-Tissue Expression (GTEx). Finally, based on our findings, we suggest that the search for the drug tar-
gets should also include alternatively spliced protein-isoforms rather than solely focusing on canonical isoform 
for more efficient and cost-effective drug discovery processes.

Methods
curation of cancer drug-target interaction data with sequence-level binding pockets. We 
obtained all downloadable entries of drug-target interaction pairs from the Drug Gene Interaction Database 
(DGIdb), converted from Entrez to Ensembl annotation using MyGene.Info API, and annotated with transcript- 
and protein-level isoform information from latest Ensembl GRCh37.p13 and GRCh38.p12 assembly38–40. The 
duplicate protein isoform entries having distinct Ensembl protein IDs with the same sequence were removed. We 
downloaded non-redundant set of receptor data, proteins with sequence and binding site residues identity ≤90% 
from BioLiP protein function database41. We then annotated all the entries in PDB with Ensembl ID in order to 
filter human drug binding data and achieve a uniformity with our previous anti-tumor drug-target interactions 
list42. PDB uses 3-letter ligand ID code to label the ligands and not all ligands are small molecule drugs, and 
generic names and ChEMBL IDs are used to annotate drugs in DGIdb43,44. Therefore, to integrate small molecule 
drug information from PDB, we queried DrugBank database and converted ligand ID to drug generic names and 
ChEMBL ID. Finally, we merged the anti-tumor drug-target list from DGIdb with ligand-protein binding site 
information from BioLiP to obtain final drug interaction data with binding pockets.

extraction of binding residues from canonical sequence and multiple sequence alignments 
with protein isoforms and pfam domains. We extracted sequence-level ligand binding sites for all 
the curated drug targets, and replaced the residues that do not directly interact with the ligand by “−” in each 
sequence, by our custom R script (http://www.R-project.org/, version 3.4.3). Since multiple PDB entries could be 
representing the same ligand-protein interaction with slight differences in the binding site residues, we eliminated 
duplicated versions by combining all the residues. Meanwhile, we treated any two binding sites as independent 
if their residues have completely different numbering and/or amino acid composition. We generated multiple 
alignments of sequences by using Bioconductor package msa, which allows choice of several alignment algo-
rithms and output alignment plots in a LaTeX format45. We generated alignment of binding site sequence with 
all protein isoforms of a same gene (both GRCh37.p13 and GRCh38.p7 assembly) by Cluster Omega algorithm 
available in the msa package46. We obtained Pfam domains from EMBL-EBI Pfam database (https://pfam.xfam.
org/) and aligned to the sequences47. Sequences of fusion proteins were obtained from FusionGDB (https://ccsm.
uth.edu/FusionGDB/)48.
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expression analysis of drug target isoforms. We downloaded harmonized RNA-Seq data (19,131 sam-
ples) from TCGA, GTEx and TARGET cohorts from Toil RNA-Seq Recompute Compendium on UCSC Xena 
browser49,50. We used log-transformed RSEM Transcript per Million (TPM) data from only TCGA and GTEx 
in this analysis. We mapped 30 TCGA cancer types to same/adjacent GTEx tissue, and filtered out all normal 
controls from TCGA (not pooled with GTEx) for consistency. We computed the Fold change (FC) values for each 
transcript and upregulation/downregulation declared with logFC > 0 and <0 respectively.

Structure modeling of protein isoforms and ligand docking. In order to have a better understating 
on the interactions between the protein isoforms and ligands(drugs), we constructed 3D structures of different 
protein isoforms by considering their primary sequences and using homology building tools implemented in 
Schrodinger suite51. The MolProbity software52 was utilized to assess the suitability of the homology models for 
the in-silico studies of protein-drug interactions. Then the validated 3D structures of the different isoforms were 
subjected to protein preparation panel implemented in Prime module of Schrodinger platform51. After refin-
ing the 3D structures of various isoforms, we used the SiteMap53 to identify the druggable pocket in different 
isoforms. Then we considered a set of known drugs already identified for that disease protein and carried out a 
ligand preparation suitable to study ligand-protein docking simulations at pH = 7.4 ± 1. The Glide docking tool54 
in the extra precision mode implemented in Schrodinger platform was used to find the ligand-protein binding 
mode as well as the binding energy of various ligands (drugs).

Results
Majority of cancer drug-target genes have more than five isoforms. We developed an informatics 
pipeline (Fig. 1) for evaluating the differences in interaction profiles between a drug and its target protein iso-
forms, and curated FDA-approved and investigational anti-tumor drug-target interactions with known ligand 
binding residues. In this study, we focused our analysis on small molecule inhibitors, one of the two major classes 
of cancer drugs successfully used for targeted therapies. We started with the Drug Gene Interaction Database 
(DGIdb), a recently developed comprehensive resource containing to-date 29,783 established drug-target inter-
actions, with an emphasis on interactions in cancer context. We obtained all drug interactions available for 
download with total 42,727 entries corresponding to 2,994 unique genes (based on Entrez gene symbol annota-
tion) and 6,538 drugs with annotated drug names. By setting the antineoplastic preset filter, we extracted 6,688 
cancer drug-target interactions, corresponding to 1,447 genes and 883 drugs, among which 3,477 pairs (1,122 
genes and 280 drugs) were FDA-approved. To ensure consistency on gene annotation across multiple databases 
and throughout the analysis, all Entrez gene symbols were queried using MyGene.info API to retrieve Ensembl 
annotation. Out of the 1,447 genes, 1,434 unique ones were successfully annotated, of which 1,110 were tar-
gets of FDA-approved drugs. The resulting 1,434 gene-level drug interaction summary was further annotated 
with transcript and protein-level isoform information. A summary table was included in Supplementary Files 
(Supplementary Dataset 1) with a partial list shown here as an example (Table 1). We found that the majority of 
the target genes in our list contained two or more transcript splice variants and protein isoforms, based on the 
most recent GENCODE release (version 30) annotations (Fig. S1). Out of 1,434 drug-target genes, 1,036 and 618 
have more than five splice variants and protein isoforms respectively. On average, each drug target was found to 
have 9.23 splice variants and 5.22 protein isoforms. The results indicate that majority of the cancer drug target 
genes undergo alternative splicing and produce multiple protein isoforms that could be functionally distinct and 

Figure 1. Workflow of the analysis pipeline.
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interact with drugs differently, which emphasizes the importance of taking isoforms and alternative splicing into 
consideration in drug discovery.

Drug-target protein isoforms show binding pocket differences on sequence level. Our goal is 
to evaluate drug-target interactions at splice-variant isoform-level, however, such isoform-level drug binding 
data with annotations for residues is not currently available to the best of our knowledge. We, therefore, identi-
fied the specific interacting residues within the drug binding pocket of each isoform through multiple-sequence 
alignments. Frist, we obtained the ligand binding information by accessing the BioLiP protein function data-
base, a comprehensive ligand-protein interactions database with ligand binding sites and affinity information. 
BioLiP has documented specific binding residues either previously validated or predicted using the COACH 
algorithm, which allows us to retrieve sequence-level drug binding information55. We initially obtained a total 
180,750 non-redundant entries (as of Apr 2018). Multiple types of ligands are available in BioLiP including 
DNA/RNAs, peptides, metals and regular ligands. For this study, we confined our analysis to small molecule 
drugs, the most abundant class of cancer drugs currently in use. We obtained a total of 10,714 binding entries 
corresponding to 1,790 human genes that interact with 1,633 small molecule drugs, after filtering out multiple 
ID entries. We eventually merged these entries with our interaction list from DGIdb and obtained a total 207 
unique drug-gene interaction pairs that correspond to 111 genes and 137 drugs, among which 51 drugs targeting 
67 genes are FDA-approved, with predicted binding pocket information (Supplementary Dataset 2). For each 
of these drug-gene interaction pairs, we performed multiple sequence alignment between drug-target binding 
sequence, sequences of protein isoforms, and the PFam functional domain that the drug is known to interact 
with. Multiple sequence alignment plots for few representative gene-drug pairs (ABL1 with Imatinib, EGFR with 
Erlotinib and MAP2K1 with PD-0325901) are discussed here, while all 207 interaction pairs are included as a 
Supplementary Data (Supplementary Dataset 3). We summarized the isoforms with different binding pockets 
from the canonical ones in each of the 207 cases, as well as number of aligned PFam functional domains for each 
gene (Supplementary Dataset 4). Based on the multiple sequence alignments, we found that 86 out of 111 genes 
have at least one isoform having different binding pocket (either completely or partially missing the binding 
pocket residues) from the canonical isoform (77.5%). Of these, 55 (64%) genes have more than one functional 
domain. The sequence alignments of these examples suggest that many approved and investigational drugs can 
have multi-target effects, and that this database can be a good resource for discovery of isoform-level drug targets. 
In the following we present three case studies for three different drugs.

Imatinib (Gleevec), a well-known FDA-approved BCR-ABL fusion protein inhibitor for treatment of 
Philadelphia chromosome positive chronic myelogenous leukemia (CML), targets the tyrosine kinase 
domain on the ABL side56. ABL1 gene has 3 protein isoforms (ABL1-201 - ENST00000318560, ABL1-202 - 
ENST00000372348 and ABL1-203 - ENST00000393293), and only two of them contain residues documented 
within Imatinib binding site (ABL1-201 and ABL1-202). In contrast, ABL1-203 is a shorter isoform (64 residues 
only) and completely lacks the predicted binding pocket, which will be ignored. The sequence alignment (Fig. 2) 
shows that ABL1-201 and ABL1-202 have identical sequence in the Imatinib-binding region (the tyrosine kinase 
domain, as specified by Pfam PF07714), while significant differences occurs in the N-terminal region of these two 
protein isoforms. Previous studies discovered that the N-terminal region functions as a cap that is responsible 
for regulation and autoinhibition of its kinase activity57–59. In BCR-ABL, however, the whole N-terminal region 
(corresponding to the first exon on transcript level) is substituted with the BCR protein, resulting in loss of auto-
inhibition and constitutively active mutant60. Since the entire downstream regions of ABL1-201 and 202 are same, 
the resulting active site of fusion proteins from the two isoforms should ideally have same structure. To confirm 
this, we also aligned 9 unique BCR-ABL protein sequences in FusionGDB database, and all sequences show over-
lapping interacting residues with Imatinib (Fig. S2). This sequence level information shows that Imatinib would 
potentially target all the splice-variant isoforms of BCR-ABL fusion protein, therefore, splice-variation within 

Gene symbol Targeting drugs
No. of Transcript 
variants

No. of Protein 
isoforms

FGR ILORASERTIB, XL-228, DASATINIB, ENMD-981693, 
APITOLISIB, NINTEDANIB 8 3

GCLC CARBOPLATIN 12 8

CFTR GENISTEIN, RETINOL 11 6

BAD ISOSORBIDE, NAVITOCLAX 7 5

CFLAR BICALUTAMIDE, FINASTERIDE, NINTEDANIB, 
IDRONOXIL, CABOZANTINIB, DOVITINIB 26 17

TFPI FULVESTRANT, LOVASTATIN, DACTINOMYCIN 13 8

CD38 SAR-650984, HUMAX-CD38, DARATUMUMAB 5 3

FKBP4 SIROLIMUS 7 5

KDM1A DIPHENHYDRAMINE HYDROCHLORIDE 7 5

NDUFAB1 METFORMIN HYDROCHLORIDE 5 4

Table 1. Example summary of 10 FDA-approved/investigational anti-cancer drug-target interactions. All genes 
listed have more than one transcript variants as well as protein isoforms due to alternative splicing. Complete 
list of drug-target interactions for anti-cancer therapy was included in Supplementary Files (Supplementary 
Dataset 1).
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ABL gene does not affect the Imatinib binding to its targets. We used Imatinib as an example of successful drug 
not affected by the alternative splicing of the target fusion gene.

Erlotinib selectively targets the ATP binding site within the cytoplasmic tyrosine kinase domain of the EGFR 
protein and disrupt the kinase activity, and is approved for treatment of Non-small cell lung cancer (NSCLC) as 
well as investigational in other types of cancers61,62. Human EGFR gene is well known for producing multiple 
isoforms via alternative splicing, while its shorter-form splice variants that contain only exons encoding for the 
extracellular domain have been extensively studied in multiple cancers63–65. These shorter protein isoforms were 
found to be soluble and commonly serve as potential biomarkers in different cancers66. These soluble EGFR iso-
forms (EGFR-202, 203, 204 and 205) lack the ATP binding pockets in the canonical form, as shown in the multiple 
sequence alignment of EGFR isoforms (Fig. 3), therefore, not expected to serve as targets of Erlotinib. However, 
other than the full-length isoform (EGFR-201/ENST00000275493), two previously unreported isoforms (EGFR-
206/ENST00000454757 and EGFR-207/ENST00000455089) also share the same binding residues and are there-
fore likely to be targeted by Erlotinib. We checked the expression of these two isoforms in TCGA samples, and 
found much lower expression than the canonical isoform, EGFR-201, while EGFR-206 is expressed only in a few 
samples as the density is low (Fig. 4). Importantly, both alternative isoforms, although lowly expressed in cancer 
samples, showed varied expression in normal GTEx samples, in contrast to their canonical counterpart, which 
is elevated in tumors, especially in lung squamous cell carcinoma samples. Therefore, these isoforms should be 
included in further studies for evaluating on- and off-target effects of Erlotinib due to the presence of its binding 
residues in the target pocket.

As third example, we choose PD-0325901, an oral MEK inhibitor that was discontinued for phase II clinical 
trial in treatment of advanced NSCLC as the efficacy was not met and the cause of lacking objective responses is 
not fully understood67. We investigated the target binding sites of PD-0325901 in both the isoforms of MAP2K1, 
MAP2K1-201/ENST00000307102 (canonical isoform), and MAP2K1-203/ENST00000566326 (alternative iso-
form). Based on the multiple sequence alignment (Fig. 5), we found that the alternative isoform lacks the entire 
upstream domain, which is expected to greatly hamper the interaction with PD-0325901. We investigated the 
expression of these isoforms and found that the expression of alternative isoform is higher than the canonical 
form in both lung adenocarcinoma (TCGA-LUAD) and lung squamous cell carcinoma (TCGA-LUSC) (Fig. 6). 
These results suggest that the therapeutic effects of PD-0325901 might have been significantly impacted due to 
the lack of partial binding site in the target region of the highly expressed alternative isoform (MAP2K1-203).

Figure 2. Multiple sequence alignments of predicted interacting residues of Imatinib on different isoforms 
of ABL1 protein. Cluster Omega was applied to align the binding residues with isoform sequences using 
Bioconductor package msa. From top to down: predicted Imatinib interacting residues; aligned Pfam domains; 
ABL1-202; ABL1-203 and ABL1-201. Sequence logo of the consensus sequences were shown on top of each line. 
Blue shading indicates overlapping residues of a sequence with the predicted binding residues. Purple shading 
indicates ≥50% of all sequences are conserved with this residue. Pink shading indicates similar amino acids. 
Only regions near the predicted binding pockets were shown.
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Figure 3. Multiple sequence alignments of predicted interacting residues of Erlotinib on different isoforms 
of EGFR protein. Cluster Omega was applied to align the binding residues with isoform sequences using 
Bioconductor package msa. From top to down: predicted Imatinib interacting residues; aligned Pfam domains 
(different versions represent different sequences with same Pfam ID); EGFR-206; EGFR-203; EGFR-207; EGFR-
205; EGFR-202; EGFR-204 and EGFR-201. Sequence logo of the consensus sequences were shown on top of 
each line. Blue shading indicates overlapping residues of a sequence with the predicted binding residues. Purple 
shading indicates ≥50% of all sequences are conserved with this residue. Pink shading indicates similar amino 
acids. Only regions near the predicted binding pockets were shown.

Figure 4. Expression and exon structure of EGFR isoforms. 11 isoforms correspond to (top to down) EGFR-
207, 202, 206, 203, 204, 201, 202 (removed in latest version), 208, 209, 205 and 210. Purple density indicates 
log2(TPM) from (A) TCGA Lung Adenocarcinoma (LUAD) samples or (B) TCGA Lung Squamous Cell 
Carcinoma (LUSC) samples; green density indicates those from GTEx normal lung samples. Exon plot (C) 
follows the same order as density plots. All plots are generated using UCSC Xena browser50.
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7Scientific RepoRtS |          (2020) 10:134  | https://doi.org/10.1038/s41598-019-56894-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 5. Multiple sequence alignments of predicted interacting residues of PD-0325901 on different isoforms 
of MAP2K1 protein. Cluster Omega was applied to align the binding residues with isoform sequences using 
Bioconductor package msa. From top to down: predicted Imatinib interacting residues; aligned Pfam domains 
(different versions represent different sequences with same Pfam ID); MAP2K1-201 and MAP2K1-203. 
Sequence logo of the consensus sequences were shown on top of each line. Blue shading indicates overlapping 
residues of a sequence with the predicted binding residues. Purple shading indicates ≥50% of all sequences are 
conserved with this residue. Pink shading indicates similar amino acids.

Figure 6. Expression and exon structure of MAP2K1 isoforms. Three isoforms correspond to (top to down) 
MAP2K1-201, MAP2K1-202 and MAP2K1-203. Purple density indicates log2(TPM) from (A) TCGA Lung 
Adenocarcinoma (LUAD) samples or (B) TCGA Lung Squamous Cell Carcinoma (LUSC) samples; green 
density indicates those from GTEx normal lung samples. Exon plot (C) follows the same order as density plots. 
All plots are generated using UCSC Xena browser50.
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Drugs target genes showed varied expression patterns at isoform-level. An ideal small molecule 
drug should deplete the expression of the target protein, leading to complete suppression of downstream signal-
ing pathways in cancer cells. In order to evaluate which protein isoforms should also be included (and excluded) 
as targets of the drug, we investigated the transcript-level expression profiles of all protein-coding isoforms of 
the 111 drug target genes on transcript level across 30 types of human cancers, as compared to their respective 
normal tissues. By assuming that the isoforms that are beneficial to tumor growth (“onco-isoforms”) should 
have higher expression in cancer, and vice versa, we defined three types of nonspecific drug-interactions on 
isoform-level (Fig. 7). If a drug could potentially interact with two or more isoforms of a gene, while at least one of 
them is downregulated in cancer, we classify such drug-target gene pair as Type I. In contrast, if the drug ignored 
at least one isoform, which is overexpressed in cancer, we classify it as Type II. Meanwhile, Type I and II are not 
mutually exclusive, so we defined Type III as being both Type I and II to avoid confusion. Drugs that do not fall 
into any of these three nonspecific categories will be considered “isoform specific”. Based on this definition, we 
found that 4,916 (75.8%) out of 6,417 drug-target gene pairs (207 in 30 cancers) as nonspecific, falling into one 
of the three defined categories (Fig. 8). Only 1,501 pairs are considered specific on isoform-level, meaning that 
the drug either targets one isoform only or targets the correct isoform(s) among several isoforms of its target 
(Supplementary Dataset 5).

Drugs interact with different isoforms of target on structural level. Although we have observed 
differences in binding pockets between isoforms on sequence level, more convincing evidence that the drugs bind 
to isoforms of their targets differently can only be obtained by structural-level analysis. In order to understand 
how a particular drug molecule interacts with different isoforms of a protein, we have analyzed EGFR gene with 
three different isoforms (Isoform-201, Isoform-206 and Isoform-207) along with reported drugs targeting them 
as a specific case study.

EGFR. Searching the isoform database, we found this gene has 7 isoforms of which 3 of them (EGFR-201, 
EGFR-206 and EGFR-207) contain the ligand binding domains (LBD). Then we searched the protein database 
and found only one isoform has been solved (EGFR-201). Considering the crystal structure of EGFR-201 as the 
template, we build the other 3D structures of EGFR-206 and EGFR-207. The structural homology of EGFR-206 
and 207 are found to be 96% and 92% with respect to EGFR-201 (crystal structure). Then we superposed the 3 

Figure 7. Heatmap of isoform specificity profile for 207 drug target interactions in 33 types of cancers. Type 
I: targets ≥2 isoforms when at least one is downregulated; Type II: ignores at least one upregulated isoform in 
cancer; Type III: both Type I and II.

https://doi.org/10.1038/s41598-019-56894-x
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structures to identify the ligand binding pockets for EGFR-206 and 207. After identifying the LBD for all the 
isoforms, we did a structural homology of the pockets and found that EGFR-206 and 207 have 98% and 97% 
homology with EGFR-201 respectively.

A careful analysis of the ligand binding pockets reveals that shape, size and electrostatic map of the LBDs are 
very different in all the three isoforms (see Fig. 9). Then we considered a set of 7 reported drugs for this disease 
target and carried out the docking simulations using Glide-XP module of the Schrodinger suite54. After analysis 
of the docked poses we observed that some of the drugs are binding similarly and few others are binding in very 
different way. For example, in case Lapatinib it has the lowest binding score in EGFR-206 but for EGFR-201 and 
207 it has better scores (see Table 2). On the other hand, Erlotinib has similar binding scores in EGFR-201 and 
EGFR-206 but in the case of EGFR-207 it has much lower score. For Osimertinib drug produces a similar score 

Figure 8. Summary of isoform specificity of different drugs. (a) Pie chart showing percentages of the 4 types. 
Type I: targets ≥2 isoforms when at least one is downregulated; Type II: ignores at least one upregulated 
isoform in cancer; Type III: both Type I and II. (b) Venn diagram showing counts of Type I, Type II and Type 
III (overlap of Type I and II). Type I: targets ≥2 isoforms when at least one is downregulated; Type II: ignores at 
least one upregulated isoform in cancer; Type III: both Type I and II.

Figure 9. Ligand-binding pocket of EGFR isoforms (a) EGFR-201 (b) EGFR-206, and (c) EGFR-207, with 
binding of Gefinitib.

Drug

Glide-XP 
Score in 
EGFR-201

Glide-XP 
Score in 
EGFR-206

Glide-XP 
Score in 
EGFR-207

Lapatinib −8.11 −3.30 −7.44

Gefitinib −6.38 −6.56 −6.0

Afatinib −7.46 −6.32 −6.69

Erlotinib −7.62 −7.73 −3.73

Dacomitinib −6.13 −6.11 −6.92

Osimertinib −4.64 −4.21 −8.41

AEE −7.40 −4.40 −7.68

Table 2. Glide -XP scores of the Drug Compounds binding with EGFR-201, EGFR-206 and EGFR-207.
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for EGFR-201 and 206 but for EGFR-207 it has a much better score. Again, for AEE we found the binding scores 
to be similar in EGFR-201 and 207 but in case of EGFR-206 isoform it showed a much lower score. The rest of 
the drugs Gefitinib, Afatinib and Dacomitinib have all similar scores across the three isoforms. In order to show 
that even if the scores are identical in some cases the binding mode seems to be different as the pocket size, shape 
and electrostatic potential surfaces are different. Here, we analyzed the binding mode of Gefitinib in all the three 
isoforms and found that it has similar binding score but the binding modes are very different (Fig. 9). Based on 
these results, we believe that though the binding site residues are almost similar, their ligand binding pocket 
architectures differ in size, shape and electrostatic parameters as result of which the same drug binds differently 
in different isoforms with different binding scores.

Discussion
Although recent target prediction methods have demonstrated that genomic, chemical and pharmacological data 
can provide reliable information for drug target interaction prediction; those methods often focus solely on the 
canonical isoforms (“one gene-one protein” model), thereby carrying the risk of ignoring the on- or off-target 
isoform-level interactions that are related to the compound’s activity68. Several studies have previously linked 
cancer specific aberrant splicing with drug resistance mechanisms, for example, BCR-ABL35INS protein with a 
truncated inactive kinase domain that Imatinib is unable to interact69–72. However, the therapeutic effect of the 
drug in the target tissue and unwanted effects in other tissues are poorly understood. Alternative splicing driven 
protein isoforms can express at varying levels and display different, sometime opposing, functions in multiple 
tissues and/or organs73,74. Further, it was found that a subset of alternative splicing changes could affect protein 
domain families that were frequently mutated in tumors and potentially disrupt protein-protein interactions in 
cancer related pathways75. In this study, we hypothesized that different protein isoforms, resulting from alterna-
tive transcription and/or alternative splicing, could become non-target or off-target drug interacting candidates 
due to the presence (or absence) of target binding sequence in different isoforms. We developed an informatics 
pipeline for mining multiple public databases, and curated sequence-level drug target interaction data with actual 
interacting residues. Our results demonstrate that the majority of small molecule drug targets have multiple 
protein isoforms, similar to the earlier results we published on a much smaller list of drug candidates5. Thus, it is 
conceivable that the protein isoforms of majority of drug target genes could be functionally distinct and exhibit 
isoform-level differences in their interactions with the compound.

Indeed, multiple sequence analysis coupled with the data mining of the gene expression profiles in TCGA 
and GTEx datasets revealed important details, such as (i) drugs that miss alternative isoforms, which are also 
expressed in cancer but remain non-targets, (ii) drugs that could potentially target alternative isoforms that are 
variably expressed in several normal tissues, and (iii) drugs that remain specific despite presence of alterna-
tive protein isoforms. Further, the structural analysis and drug docking analysis of an example confirmed that 
the binding of same drug to multiple structurally similar isoforms with different affinities. These results suggest 
potentially two direct mechanisms that could both contribute to missed- and off-target effects, leading to poor 
efficacy and drug resistance. We hereby define the concept of isoform-level specificity as being able to only target 
the correct isoform(s) in a specific context. Based on our analysis, we conclude that majority of drugs currently do 
not possess such isoform-level specificity, leading to the risk of unwanted target-interactions that are not related 
to the compound’s activity.

We presented our analysis on three kinase inhibitors as case studies. Imatinib family of Tyrosine Kinase 
Inhibitors (TKIs) were reported to inhibit not only mutant BCR-ABL fusion protein but also normal ABL protein 
from noncancer cells, which agrees with our prediction since the binding pocket sequences in ABL isoforms are 
not affected by alternative splicing56,76. However, the binding affinity could be different due to different conforma-
tions between the two normal isoforms and the BCR-ABL protein, but the extent of such difference is currently 
unknown. Meanwhile, normal ABL1 protein was found to act as a tumor suppressor when co-expressed with 
BCR-ABL, while loss of expression of normal ABL1 results in higher aggressiveness of the disease and reduced 
sensitivity to Imatinib-like TKIs, although we are not sure which isoform is primarily responsible for this effect 
either77,78. These results reinforce the fact that potentially important splicing changes in ABL isoforms can influ-
ence the therapeutic effect of Imatinib-like TKIs, which require further investigation in future studies.

In our analysis of EGFR isoforms, we found almost no or relatively low expression in TCGA samples for two 
previously uncharacterized and structurally different isoforms (EGFR-206 and EGFR-207), when compared with 
the canonical isoform. From structural docking analysis, we found that different drugs can interact with all three 
isoforms differently. Currently, whether the two alternative isoforms function in similar or opposite manner as 
the dysregulated primary isoform (which is oncogenic and often overexpressed) is still unclear. However, the 
alternative isoforms, which displayed varied and higher expression in normal tissues than in cancer samples, may 
function as regulators or tumor suppressors antagonizing the activity of the oncogenic isoform. In such cases, 
direct inhibition of these isoforms may not be desired. Although the exact functions of these isoforms remain 
uncertain at this point, it is conceivable that differentiating targets and non-targets at isoform-level is a critical 
step in early drug-target identification studies.

We also identified a new isoform of MAP2K1 gene (MAP2K1-203), which is annotated across different pub-
licly available genome databases but not reported in the literature. This isoform lacks exon 1-5 including part of 
the kinase domain, indicating that it may have disrupted kinase activity (Figs. 5 and 6). Most importantly, this 
isoform, instead of the canonical long isoform, is the major one expressed in both lung adenocarcinoma and lung 
squamous cell carcinoma samples. PD-0325901, small molecule drug which targets MAP2K1failed the phase 
II clinical trial due to lack of objective responses and severe side effects. It is possible that this highly expressed 
alternative isoform, which remains as non-target due to lack of target sequence and kinase domain, could be an 
important contributing factor for the drug failure. These results demonstrate that designing more effective drug 
requires not only gene-level but isoform-level understanding of the target.
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We have to admit that our current study has a few limitations, due to restrictions on data availability. The ini-
tial problem is that the mapping of isoforms between public online database and previous literatures is poor. For 
instance, the numbering of exons between these two sources often does not agree with each other. Many isoforms 
that were previously documented in literature were not found in public databases such as Ensembl. This creates 
huge difficulty for us in doing structural and functional annotations of these isoforms. As such, our analysis is 
based primarily on two assumptions: (1) isoforms that are more beneficial for cancer progression are commonly 
overexpressed and (2) isoforms that are more expressed in cancer should be the primary targets to be inhibited, 
but not the other way around. This is clearly a limitation as these two assumptions can be wrong, but currently we 
lack better measures to comprehensively evaluate functions of these unknown isoforms. Moreover, it would have 
been more convincing if actual protein-level expression of these isoforms (e.g. from Mass Spectrometry data) are 
included. To the best of our knowledge, so far there is no comprehensive database that contains expression of all 
protein isoforms at a whole proteome scale either. We believe that the significance of understanding drug targets 
on isoform level should be even better highlighted, provided that such data is available. Nevertheless, our findings 
complement those of a recent study that discovered mean mRNA expression across tissues and standard deviation 
of expression across tissues as the two dominant features that discriminate successful drugs from failed ones79.

That being said, we hope that our study can inspire more future research that further explores the potential 
of isoform-level drug design. To achieve this goal, sufficient structural and functional understanding of these 
isoforms is crucial. An essential next step would be to robustly identify more isoform-level cancer biomarkers 
and associate them with sensitivity of drugs via computational approaches. Accurate structural modeling and 
prediction of these isoforms are also very important if isoform-level drug design is desired, given that currently 
no database contains such structural information in a well-annotated manner. Different databases should also 
further integrate isoform-level data and annotation with previous literatures and make sure that they agree each 
other, especially the functional annotations of rare isoforms.

conclusions
Given the limited clinical success with the small molecule inhibitors and inconsistencies in gene-level drug–target 
interaction predictions, integrating isoform expression data along-with genomic, chemical and pharmacological 
data across different databases might be a prudent strategy for improving the confidence of drug target interac-
tion predictions. This study demonstrates how alternative splicing effects target binding residues in the target 
genes, both at sequence and structure level, and how varied expression of target gene isoforms in different normal 
tissues and cancers might lead to missed- and/or off-target effects of the drug molecule. Therefore, with a better 
understanding of the isoform-level expression patterns from transcriptome and proteomics studies, future drug 
target identification studies can increase their success by incorporating isoform-level sequence and structure data.
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