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AbsTrACT
Proportional odds models are commonly used to model 
ordinal responses, but the proportional odds assumption 
may not hold in practice, leading to biased inference. Tests 
such as score, Wald and likelihood ratio (LR) have been 
proposed to evaluate the proportional odds assumption 
based on models without the assumption. Brant has 
proposed an independent binary model- based Wald- type 
test, and Wolfe and Gould have extended the idea to 
propose an LR- type test.
This paper provides a brief review of the Brant and 
Wolfe- Gould tests for evaluating the proportional odds 
assumption and evaluates their performance through 
simulation studies and a real data example. Sample 
programs are provided in SAS, SPSS and Stata to facilitate 
the implementation of these tests using standard statistical 
software packages.
This study highlights the importance of evaluating the 
proportional odds assumption when using proportional 
odds models for ordinal responses. The sample programs 
provided in this paper make it easy for researchers to 
apply these tests in their own analyses using standard 
statistical software packages.

InTroduCTIon
Categorical variables are common in biomed-
ical and psychosocial studies. For regression 
analysis of a binary response, logistic regres-
sion models may be the most popular. In a 
logistic model, the coefficients can be easily 
interpreted in terms of odds ratios (ORs). 
For an ordinal response where the response 
levels are ordered, it is common to model it 
through cumulative probabilities. In other 
words, the response is dichotomised based 
on the order using all possible cutpoints, and 
then regression models are applied to the 
resulting binary responses. More precisely, 
suppose the ordinal response levels of an 
ordinal response Y   are labelled as  1, 2, . . . , J   
according to their order, then for each 

 j = 1, . . . , J − 1 , we may dichotomise the 
outcome into two groups:  y

(
j
)

= 1  if  1 ≤ y ≤ j   
and  y

(
j
)

= 0  if  j + 1 ≤ y ≤ J.  These  J − 1  
dichotomised binaries all together convey 
the original level. Using the binaries allows us 
to model the ordinal outcome using models 
for binaries such as logistic models.

Let 
 
γj = Pr

(
y
(
j
)

= 1
)

= Pr
(
Y ≤ j

)
 
 be the 

cumulative probability for the response to 
take a level up to  j  , then a cumulative logistic 
regression model can be specified as

 
log

(
γj

(
x
)

1−γj
(

x
)
)

= αj + β⊤
j x, j = 1, . . . , J − 1,

  
(1)

where x  is the vector of independent vari-
ables. It is commonly assumed that all the  βj   
in model (1) are the same, resulting in the 
following proportional odds model:

 
log

(
γj

(
x
)

1−γj
(

x
)
)

= αj + β⊤x, j = 1, . . . , J − 1.
  

(2)

The aforementioned equation is also called 
a model with parallel or equal slopes.1

Under model (2), for any two subjects with 
independent variables  x1  and  x2 , the OR
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/
(
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(
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))

γj
(

x2
)

/
(

1−γj
(

x2
)) = exp

(
β⊤ (

x1 − x2
))

, j = 1, . . . , J − 1,
  (3)

is independent of the cut point  j  . This prop-
erty is called the proportional odds property, and 
model (2) is called a proportional odds model. 
This proportional odds property comes from 
the assumption that all  βj   are the same. The 
proportional odds model may be the most 
popular model for ordinal response; however, 
the proportional odds assumption may be too 
strong. Thus, it is generally desired to test the 
proportional odds assumptions.

Based on model (1), the null hypothesis for 
testing the proportional odds assumption is 
given by

 H0 : β1 = β2 = · · ·βJ−1.  (4)

Score, Wald and likelihood ratio (LR) tests 
may all be applied to the hypothesis test. 
However, model (1) may not be estimable; 
when the coefficients of the covariates are 
different across different levels, the fitted 
probabilities for some levels may be negative. 
To overcome the issue, Brant proposed an 
approach which first estimates  βj   separately 
based on the dichotomised binary responses 
and then compares the estimates through a 
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Wald- like statistic based on their joint asymptotic distribu-
tion.2 Wolfe and Gould generalised the idea of obtaining 
an LR test.3

In the section ‘Testing the proportional odds assump-
tion’, we provide a brief description of these tests, as well 
as their availability in R, SAS, SPSS and Stata. In the section 
‘Simulation studies’, simulation studies are carried out to 
assess the performances of these tests. Finally, a real data 
example is given in the section ‘Examples’, and the paper 
concludes with a discussion.

TesTIng The proporTIonAl odds AssumpTIon
Let  

(
xi, yi

)
, i = 1, 2, ..., n,  be an i.i.d. sample with  xi   

being the vector of independent variables and  yi   the 

ordinal response with outcome levels  1, ..., J.  Let  y
(
j
)

i   be 
the dichotomised binary response for  yi   at level  j   and 

 
γij = Pr

(
y
(
j
)

i = 1
)

 
 be the cumulative probability for the 

response to take a level up to  j  , then  Pr
(
yi = j

)
= γij − γij−1.  

Based on the cumulative model (1), the likelihood func-
tion is given by

 
L
(
θ; x, y

)
=
∏ n

i=1
∏ K

j=1

(
γij − γij−1

)I
(
yi=j

)
,
  

where 
 
θ⊤ =

(
α1,β⊤

1 , ...,αJ−1,β⊤
J−1

)
 
 includes all the 

parameters.
The maximum likelihood estimate (MLE) of the 

parameters of the cumulative model can be obtained by 
solving the following score equation:

 
∂logL
∂β∗

j
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∑ n
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I
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(
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πij+1

)
γij

(
1 − γij
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where 
 
β∗

j =
(
αj,β⊤

j

)
 
,  x

∗
i =

(
1, xi

)
  and  πij = γij − γij−1,  

 j = 1, . . . , J − 1.  The asymptotic variance of the MLE 

 ̂θ = (β̂
∗
1, ..., β̂

∗
j−1)  may be estimated by I−1 , where 

 
I =

(
Ijk
)

1≤j≤J−1,1≤k≤J−1 
, with the  

(
j, k

)
  th block 

 
Ijk = − ∂2logL

∂β∗
j ∂β

∗T
k  

, is the Fisher information matrix. Note 

that the size of the block  Ijk  is  
(
s + 1

)
×
(
s + 1

)
 , where 

 s = dim
(
xi
)

. 

Wald test
Based on the asymptotic distribution of θ̂ , we can 
derive the Wald statistic for hypothesis (4). The 
null hypothesis (4) can be written in a matrix form 

 
L ∗

(
β⊤

1 ,β⊤
2 , · · · ,β⊤

J−1

)⊤
= 0,

 
 where

 

L=




Is×s 0s×s · · · 0s×s −Is×s

0s×s Is×s · · · 0s×s −Is×s
...

... · · ·
...

...

0s×s 0s×s · · · Is×s −Is×s




  

is an  
(
J − 2

)
×

(
J − 1

)
  block matrix,  Is×s   is the  s × s   

identity matrix, and  0s×s   the  s × s   matrix with all 

entries 0. Let  V   be the estimated asymptotic variance 

of 
 

(�β⊤
1 , �β⊤

2 , · · · , �β⊤
J−1

)
 
, then the asymptotic variance 

of 
 
L ∗

(�β⊤
1 , �β⊤

2 , · · · , �β⊤
J−1

)
 
 is  L ∗ V ∗ LT  , and the Wald 

statistic can be defined as

 sWald =
(
β⊤

1 , β⊤
2 , · · · , β⊤

J−1

)
L⊤ (

L ∗ V ∗ LT)−1 L ∗
(
β⊤

1 , β⊤
2 , · · · , β⊤

J−1

)⊤
.  

Under the null hypothesis of proportional odds 
assumption, the Wald statistic follows a χ2 distribution 
with  

(
J − 2

)
s   degrees of freedom (df).

likelihood test
The likelihood test is defined based on the LR of the 
data set under models (1) and (2). More precisely, let 

 l
(
θ; x, y

)
= log

(
L
(
θ; x, y

))
  be the log- likelihood function 

of the data, then the LR statistic is defined as

 sLR = 2[l(θ̂; x, y) − l(θ̃; x, y)] , (5)

where θ̂  and 
∼
θ  are the MLEs of the parameters for 

model (1) and model (2), respectively. Under the null 
hypothesis,  sLR   asymptotically follows a χ2 distribution 
with  

(
J − 2

)
s   df.

score test
The score test is defined based on the assumption that 
the null hypothesis is true. The score statistic is defined as

 
sscore = 1

n

(
∂logL
∂θ

(
∼
θ ; x, y

))
I−1

(
∼
θ ; x, y

)(
∂logL
∂θ

(
∼
θ ; x, y

))⊤
,
  

where both the score function and Fisher information 
matrix are evaluated at the MLE under the null hypoth-

esis, 
∼
θ  . Under the null hypothesis, the score statistic also 

follows the χ2 distribution with  
(
J − 2

)
s   df.

Note that only the MLE under the proportional odds 
model is required for the score test. For the Wald and 
LR tests, we need to calculate the MLE for model (1). 
However, this MLE may not exist. In such cases, Wald and 
LR tests are not feasible.

brant test
Brant proposed to fit the  J − 1  logistic models included 
in model (1) for the dichotomised binary response  y

(
j
)
  

separately and then compare the estimated  β
,
j  s.

2 For 

each  j = 1, . . . , J − 1 , let  
ˆ̂βj   be the MLE of  βj   based on the 

logistic model

 
log

(
γj
(
x
)

1−γj
(
x
)
)

= αj + β⊤
j x.

  
(6)

The MLE  
ˆ̂βj   almost always exists, unless there are data 

separation issues.1 Based on the asymptotic linearity of  
ˆ̂βj,  

Brant derived their asymptotic joint distribution, and a 
Wald- type test for the proportionality can be obtained.

This approach is equivalent to modelling all the dichot-
omised binary  y

(
j
)
 s together, but treating them as inde-

pendent. The MLE  
ˆ̂βj   based on the separate logistic 

regression models can be obtained from fitting a single 
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model by treating the dichotomised binary response from 
the subjects as independent:

 
logit

(
Pr

(
y
(
j
)

= 1
))

= αj + β⊤
j x, j = 1, ..., J − 1,

  (7)

This model is called an independent binary model.
Note that some of the dichotomised binary outcomes 

may suffer from the issue of data separation, and the 
MLEs of the corresponding logistic models do not exist. 
In such cases, the Brant test cannot be computed.

Wolfe-gould test
Wolfe and Gould proposed an approximation to the LR 

statistics also using the MLE  
ˆ̂βj   based on the separate 

logistic regression models.3 The likelihood  l(θ̂; x, y)  in (5) 

is replaced with  l(
ˆ̂
θ; x, y) , where ˆ̂θ  is the MLE for indepen-

dent binary model (7). Since ˆ̂θ  is not as efficient as the 
MLE θ̂ , Wolfe and Gould also proposed using an inef-
ficient estimate for proportional model (2) by treating 
all the dichotomised binaries as independent. In other 
words, estimate the following independent binary model:

 
logit

(
Pr

(
y
(
j
)

= 1
))

= αj + β⊤x, j = 1, ..., J − 1.
  (8)

Thus, the Wolfe- Gould statistic is defined as

 l = 2[l(ˆ̂θ; x, y) − l(

∼
∼
θ; x, y)],  

where 

∼
∼
θ  and ˆ̂θ  are the estimates for the independent 

binary models, with or without the proportional odds 
assumption, respectively. Note the parameters are esti-
mated under the independent binaries, but the likeli-
hoods are computed under the multinomial distribution; 

there is no guarantee that  l(
ˆ̂
θ; x, y)  will be larger than 

 l(

∼
∼
θ; x, y) , and it may happen that the statistic may be nega-

tive. When the dichotomised binary outcomes have a data 
separation issue, the MLE of the corresponding logistic 
model does not exist, but the Wolfe- Gould statistic may 
still be calculated.

statistical software
Most statistical software packages can be used to fit 
proportional odds models. However, the availability of 
the tests for the proportional odds assumption varies.

In Stata, all the tests discussed in the last section are 
available in a user- developed module called ‘oparallel’.4 
After estimating a proportional odds model in Stata, one 
may simply call the command oparallel to request all the 
tests. One may also specify specific desired tests.

In SAS, the most popular procedure for cumulative 
logistic models is PROC logistic.5 When a proportional 
odds model is fitted with the procedure, the score test 
for proportionality of the OR is automatically reported. It 
appears that no other statistics are directly available in the 
procedure. However, if the cumulative model without the 
proportional odds assumption can be estimated, then it is 
straightforward to compute the LR statistic based on the 

definition. Using linear contrast statements, one can also 
obtain the Wald statistics. However, it appears the Brant 
and Wolfe- Gould tests are not yet available.

In SPSS, the LR test can be requested when a propor-
tional odds model is fitted.6 However, it seems that all 
other tests are not yet available.

Several packages in R can fit proportional odds 
models.7 For example, packages ‘vglm’, ‘clm’ and ‘polr’ 
can be used to fit proportional odds models. However, it 
appears that tests for proportional odds assumption are 
not directly available, although the Wald and LR tests can 
be easily performed if the corresponding unequal coeffi-
cient cumulative model can be fitted. In addition, there 
is a package named ‘Brant’, which can provide the Brant 
statistic.

sImulATIon sTudIes
The performance of the different tests under various 
scenarios are assessed using Stata. We simulate data from 
cumulative logistic models to assess the performance in 
terms of type I errors and power. Different numbers of 
covariates (1–4), sample sizes (50, 100, 200, 500 and 1 
000) and response levels (3–5) are considered. All simu-
lations are performed with 1 000 Monte Carlo replicates.

The simulation is carried out using Stata.8 Note that 
the original oparallel function will first check if model 
(1) is estimable. If the MLE for model (1) cannot be esti-
mated, then the score, Wald and LR tests will all not be 
computed. Since the score test only requires the MLE 
under the null hypothesis, it may still be computable in 
such cases. Therefore, we removed the model check in 
the simulation study so that all the tests can be calculated 
whenever possible. For Brant and Wolfe- Gould tests, 
the original oparallel function also checks if any of the 
resulting binary responses may suffer from data sepa-
ration. In such cases, the Brant test is not computable. 
However, since the likelihood may still be computed in 
perfectly predictable cases, the Wolfe- Gould statistic may 
still be computable. We also removed the check of data 
separation for the independent binary models from the 
original oparallel function.

We first simulate the covariates and then simulate the 
categorical responses from cumulative logistic models. To 
save space, we only report two scenarios: (1) there is only 
one covariate and the response has three levels; (2) there 
are four covariates and the response has four levels. For 
scenario 1, the following models are used:

 
x ∼ Unif

(
0, 1

)
, log

(
γj

(
x
)

1−γj
(

x
)
)

= αj + βjx, j = 1, 2,
  (10)

where  α1 = −0.5,α2 = 0.5,β2 = 1,  and  β1 = 1 − d  , where 
 d   takes values from 0 to 1, in increments of 0.1. Thus, 
when  d = 0 , the proportional odds assumption is satisfied. 
As  d   increases, the model deviates from the proportional 
odds model. The probabilities for the three levels change 
from (0.500, 0.227, 0.272) when  d = 0  to (0.378, 0.350, 
0.272) when  d = 1 .
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Figure 1 Rejection rates under nominal type I error 5% (0.05). LR, likelihood ratio; WR, Wolfe- Gould ratio.

For scenario 2, we simulate four independent vari-
ables, two continuous variables and two discrete variables: 

 x1 ∼ N
(
0, 1

)
, x2 ∼ Unif

(
0, 1

)
, x3 ∼ Bernoulli

(
0.5

)
,  and 

 x4 ∼ Bernoulli
(
0.5

)
  . The following cumulative models are 

used to simulate the response:

 
log

(
γj

(
x
)

1−γj
(

x
)
)

= αj + β1jx1 + β2jx2 + β3jx3 + β4jx4, j = 1, 2, 3,
  (11)

where α1 = –1, α2=0, α3 = 1, β2 = (β12, β22, β32, β42) = (1, 0, 
–0.5, 0), β1 = β2 – (0, d, d, –d), and β3 = β2 + (0, d, d, –d). 
Again, when  d = 0 , the proportional odds assumption is satis-
fied. As  d   increases, the model deviates from the proportional 
odds model. Note that the first covariate,  x1 , still satisfies the 
parallel coefficient assumption, but the other three do not. 
The probabilities for the four levels change from (0.261, 
0.188, 0.202, 0.350) when  d = 0  to (0.235, 0.214, 0.244, 0.307) 
when  d = 1 .

Shown in figure 1 are proportions of samples where the 
proportional odds assumption is rejected at the nominal 
type I error 5%; in other words, they are proportions of 
samples with p values less than 5% for each of the tests 
and sample sizes. When  d = 0 , the proportional odds 
assumption is satisfied, so these rejection rates should be 
less than 5%. When  d > 0 , the proportional odds assump-
tion is satisfied, and these rejection rates are the power of 
the tests; the higher the rejection rates, the better.

The results in scenario 1 are shown in the plots in the 
first row. When the proportional odds assumption was satis-
fied  (d = 0) , all the tests controlled the type I error very well, 
except when the sample size was 50, where the score and 
LR tests had rejection rates that were much higher than the 
nominal type I error 5%. When the models deviated from the 
proportional odds models, the power in general increased 
with the degree of deviations for all the tests. Also, the power 
in general increased with sample sizes for all the tests. The 
performance of the tests in terms of power was comparable 
except for in the case of sample sizes.

The results in scenario 2 are shown in the plots in the 
second row. In this scenario, we can see similar patterns; 
generally, the Brant and Wolfe- Gould tests controlled 
the type I better when sample sizes were small, and the 
power for all the tests were comparable when the sample 
size was large. Note that there were more covariates and 
more levels in the response; thus, larger sample sizes were 
required for good control of type I error. All the tests have 
elevated rejection rates when sample sizes were 50 and 
100. Even for sample sizes of 200, the rejection rates were 
still much larger than the nominal level for the score, 
Wald and LR tests. Since the Brant and Wolfe- Gould tests 
control the type I better, they are recommended when 
the sample size is small.



5Liu A, et al. General Psychiatry 2023;36:e101048. doi:10.1136/gpsych-2023-101048

General Psychiatry

exAmples
In a study on depression among seniors, the depression 
outcome was diagnosed with three levels (non, minor 
and major depression).9 As an illustrative example, 
we use the baseline information to study how the age, 
gender, marital status (ms, three levels) and medical 
burden (cirs, continuous) will predict the depression 
outcome (dep=0, 1 and 2 for non, minor and major 
depressions, respectively) using the following propor-
tional odds model:

 dep ∼ age + gender + ms + cirs.  

Thus, the covariate vector has five dimensions (note 
that two dummy variables are needed for ms).

The Wolfe- Gould, Brant, score, LR and Wald statistics 
for the proportional odds assumption are 16.96, 15.6, 
17.04, 16.70 and 17.71, respectively. Comparing with χ2 
distribution with 5 df, we obtain p values 0.005, 0.008, 
0.004, 0.005 and 0.003 for the respective tests. Thus, all 
the tests suggest that the proportional odds assumption 
is unlikely to hold for the data. If the proportional odds 
model is applied, we may obtain biased inference on the 
relationship between the depression outcome and the 
predictors. In this case, not only are the p values but also 
the regression coefficients difficult to interpret because 
the proportional odds model does not fit the data. When 
the proportional odds assumption is violated, we need to 
assess the cause of the violation and develop an appro-
priate model for the data.

The Stata program, for the example:

ologit dep gender age cirs i.ms

oparallel

Using the available SAS procedure, we calculated the 
Wald, score, LR and Wolfe- Gould statistics. The calcula-
tion of the Brant is more complicated, and it may be pref-
erable to develop a SAS macro for it.

The following code fit the proportional odds model, 
which provides the score statistic and the likelihood for 
the proportional model:

proc logist data=dos;

class ms;

model dep = age gender ms cirs;

run;

The following code fit the corresponding model with 
unequal slopes (all  βj   can be different). The maximum 
likelihood under the model is reported. Thus, the LR 
statistic can be computed by combining with the output 
from the proportional odds model. The test statement 
computes the Wald statistic.

proc logist data=dos;

class ms;

model dep=age gender ms cirs/UNEQUALSLOPES;

prop: test age_0=age_1, gender_0=gender_1,cirs_0=-
cirs_1, ms1_0=ms1_1,ms2_0=ms2_1; run;

To fit the proportional odds model in SPSS, one may 
choose ‘Analyse’, then ‘Regression’ and ‘Ordinal’ from 
the menu system. After the dependent and independent 
variables are selected, click on the ‘output’ button and 
select the item ‘Test of parallel lines’. Alternatively, one 
may use the following SPSS program. The ‘TPARALLEL’ 
option offers the LR test for the proportional odds 
assumption.

PLUM dep BY Gender ms WITH age cirsttl

/LINK=LOGIT

/PRINT=FIT PARAMETER SUMMARY TPARALLEL.

dIsCussIon
Proportional odds models should not be applied blindly. 
Hypothesis testing may be performed to assess the validity 
of the proportional odds assumption. The score test is 
widely used in practice as it is the only test directly avail-
able in SAS; however, its controlling of type I error is 
not very good. For small samples, generally, it may reject 
much more often than the nominal type I error level indi-
cates. The same is true for the Wald and LR tests. On the 
other hand, the Brant and Wolfe- Gould tests generally 
control the type I error quite well. Thus, the Brant and 
Wolfe Gould tests are usually recommended when the 
sample size is small.

When the proportional odds assumption is rejected, we 
may assess the cause of the violation. For a really large 
sample, we may obtain significant results even when the 
proportional odds assumption is slightly violated. In 
such a case, it may still be practical to apply the propor-
tional odds models. Otherwise, we may need to revise the 
model. For example, model (1), those models with only 
some components of  βj   assumed to be the same across 
different  j  s (so- called partial proportional odds model10) or 
other models for ordinal responses may be considered. 
See the book by Tang et al1 for a detailed discussion on 
modelling of categorical responses.
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