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Abstract 

Breast cancer is the most common cancer in women and the 2nd most common cancer 

worldwide, yearly impacting over 2 million females and causing 650 thousand deaths. It has 

been widely studied, but its epigenetic variation is not entirely unveiled. We aimed to identify 

epigenetic mechanisms impacting the expression of breast cancer related genes to detect 

new potential biomarkers and therapeutic targets. We considered The Cancer Genome Atlas 

database with over 800 samples and several omics datasets such as mRNA, miRNA, DNA 

methylation, which we used to select 2701 features that were statistically significant to differ 

between cancer and control samples using the Monte Carlo Feature Selection and 

Interdependency Discovery algorithm, from an initial total of 417,486. Their biological impact 

on cancerogenesis was confirmed using: statistical analysis, natural language processing, 

linear and machine learning models as well as: transcription factors identification, drugs and 

3D chromatin structure analyses. Classification of cancer vs control samples on the selected 
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features returned high classification weighted Accuracy from 0.91 to 0.98 depending on 

feature-type: mRNA, miRNA, DNA methylation, and classification algorithm. In general, 

cancer samples showed lower expression of differentially expressed genes and increased 𝛽-

values of differentially methylated sites. We identified mRNAs whose expression is well 

explained by miRNA expression and differentially methylated sites 𝛽-values. We recognized 

differentially methylated sites possibly affecting NRF1 and MXI1 transcription factors binding, 

causing a disturbance in NKAPL and PITX1 expression, respectively. Our 3D models showed 

more loosely packed chromatin in cancer. This study successfully points out numerous 

possible regulatory dependencies. 

 

Keywords: breast cancer, chromatin structure, epigenetic regulation, MCFS-ID, Monte Carlo 

Feature Selection, MXI1, NLP, NKAPL, NRF1, PITX1, transcription factor, differentially 

methylated sites. 

Introduction 

In 2021, the WHO announced that for the first time in 20 years the most commonly diagnosed 

cancer in the world was not lung cancer but breast cancer. According to the GLOBOCAN 

report publishing cancer statistics for 2020 based on data from 185 countries and 36 different 

types of cancer, 2.3 million people were affected by breast cancer, and 684,996 people died 

from it [1]. It means that currently almost one in four oncology female patients develops breast 

cancer. Early stage cancer detection is crucial to apply the most effective therapy available 

[2]. Due to the heterogeneous nature of breast cancer and the large amount of information to 

be considered, the implementation of appropriate treatment is extremely difficult [3]. 

The effectiveness of cancer therapies is closely related to diagnostic accuracy. 

Inclusion of molecular features in the classification of cancers [4,5] has allowed for the 

development of targeted treatment. Further molecular studies aimed at detecting cancer 

markers and potential drug targets are essential to further improve the available therapies. 
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Large molecular databases, which are extremely rich in information, but also burdened with a 

certain level of information noise, which is a significant analytical challenge, especially when 

the number of samples available is limited and data dimension is high. In such a case, a risk 

of obtaining false positives and false negatives may be higher, because from the statistical 

perspective the problem is ill-defined [6]. To overcome this challenge, in this research we 

applied the Monte Carlo Feature Selection and Interdependency Discovery (MCFS-ID) 

algorithm [7] to reveal significant signals related to breast cancer in various molecular datasets 

[8]. The MCFS-ID has been successfully used in a broad range of scientific disciplines, 

including oncology, virology and cardiology [9-13]. 

It is a known fact that breast cancer is associated with multiple DNA mutations and 

genome rearrangements that affect cell physiology, resulting in gene expression changes 

[14,15]. Yet, it has been shown that DNA alterations alone cannot fully explain breast cancer 

development, and in recent years there has been accelerated research toward the epigenetic 

regulation of cancer-related gene expression [16-20]. 

One of the most important and well-studied epigenetic modifications is DNA 

methylation. Methylation of gene promoters and regulatory regions plays an essential role in 

regulating gene expression and shows high variation across cell types. Its deregulation is 

associated with tumorigenesis [21-23] and was demonstrated to have a role in predicting 

patient survival [17]. The DNA binding affinity of multiple transcription factors (TFs) relies on 

DNA methylation patterns [24,25]. Interestingly, DNA hypo-methylation is present in the 

regulatory regions of oncogenes promoting tumorigenesis [26-28], while hyper-methylation is 

frequently connected with the silencing of tumor suppressor genes [29-31], but other research 

shows that these patterns may be more complex and depend on genomic location of the 

methylation alterations [32,33]. That is why a further large-scale analysis of locus-specific DNA 

methylation patterns in relation to TF affinity and the level of gene expression may bring novel 

knowledge about cancer biomarkers and deregulated biological pathways that promote 

tumorigenesis. 
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Similarly to DNA methylation, miRNAs can also act as epigenetic regulators [34] that 

may down-regulate gene expression of several genes in breast cancer. Additionally, miRNAs 

may regulate gene expression by inducing mRNA turnover and thus silencing protein-coding 

mRNAs [35] and influencing the development and drug resistance of breast cancer [36,37]. 

Another epigenetic mechanism known to contribute to cancerogenesis is 3D chromatin 

structure alterations, which can be affected by several molecular elements including point 

mutations [38] or DNA methylation levels [39]. Such alterations were shown to disrupt gene 

expression in many cancers [40,41]. Therefore, defining the distances between regulatory 

elements and their target promoters in 3D chromatin structure may provide insights into the 

underlying mechanisms of genomic regulation also in breast cancer.  

In the present study we applied the MCFS-ID algorithm to extract the significant 

transcriptomic and DNA methylation features from The Cancer Genome Atlas (TCGA) dataset 

that could distinguish between healthy and cancerous tissues. Subsequently, we conducted 

analyses of mRNA expression, DNA methylation, detection of TF motifs, miRNA potential 

targeting by drugs and modeling of 3D chromatin structure. This integrative approach helped 

to reveal the biological importance of the selected features, as well as the direct and indirect 

connections between them and their impact on the initiation and development of breast 

cancer. 

Materials and Methods 

Data collection 

This study is based on breast cancer data obtained from The Cancer Genome Atlas (TCGA) 

including: mRNA, miRNA expression and DNA methylation levels 

[https://www.cancer.gov/tcga]. Data was filtered as follows: (1) all attributes having zero 

variance across samples were removed; (2) only female samples were included in the study. 

The final dataset consisted of 1191 samples taken from 1068 female patients (123 patients 

donated both normal and cancerous tissues). Out of 1191 samples only 381 were complete 
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among mRNA, DNA methylation and miRNA data. They consisted of 328 cancerous and 53 

normal samples (Table 1 and Fig 1). The remaining set of samples (incomplete among all 

datasets) were used as testing sets in separated classification experiments described in 

sections ”Detection of significant features using MCFS-ID algorithm” and ”Detection of 

potential breast cancer biomarkers using the MCFS-ID algorithm”. 

 

Table 1. Input data description. 

Data Type 
Unit of 

measurement 

Number of  

total samples 

Number of normal 

samples 

Number of 

features 

mRNA 

expression 

reads per kilobase 

million 

867 99 20524 

DNA 

methylation 

beta-value 870 97 396065 

miRNA 

expressions 

reads per million 

miRNA mapped 

832 86 897 

 

 

Fig 1. Number of samples with the complete data for a given dataset type. The overlap of 381 samples 

that contain the complete data for all three dataset types was used in the feature selection procedure. 
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Detection of significant features using MCFS-ID algorithm 

Our analysis utilized the Monte Carlo Feature Selection and Interdependencies Discovery 

(MCFS-ID). This algorithm allows the user to perform a supervised feature selection 

introduced in [42]. MCFS-ID generates a ranking of features based on their potential to 

distinguish records between classes, e.g., cancerous vs normal. It also enables the prediction 

of continuous values and allows the user to discover possible interdependencies between 

features. 

The algorithm builds thousands of decision (or regression) trees on randomly selected 

subsets of data samples and attributes. The relative importance (RI) score for each feature is 

calculated based on all decision trees and nodes built on that feature: the number of samples 

split by the node, information gain of the node and the predictive quality of the trees using that 

feature. The RI score is used to build the ranking of all input features. The ranking signifies 

which attributes are best to be used in classification or regression tasks. Additionally the 

algorithm provides a RI cutoff that assures that attributes that exceed it are better for 

predictions than attributes with random values, which might distinguish classes by pure 

chance. The upper part of the feature ranking cut off by the RI value constitutes the significant 

features set. 

The Interdependency Discovery function of the MCFS-ID algorithm allows the user to 

find links between features that amplify each other in the classification task. Decision or 

regression trees used for calculation of RI score are also used to generate feature 

interdependency scores. In this case the score for the pair of features (parent/child nodes in 

the tree) is generated using information gain of the child node multiplied by its associated 

number of samples expressed as a fraction of samples in the parent node. 

The resulting scores indicate which features amplify the prediction powers of other features. 

The result of this algorithm has the form of a directed graph where features are visualized as 

nodes, and the thickness of edges symbolizes the strength of this amplification. For better 

clarity, and to avoid false positives, MCFS-ID allows us to cut off edges that are weaker than 

those which might be caused by random patterns occurring in the data. Interdependency 
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graphs were generated using the build.idgraph function from the rmcfs package. For more 

details of the MCFS-ID, see [7].  

To establish a final list of significant features for each data type, four runs of the MCFS-

ID algorithm were performed (Fig 2).  

 

Fig 2. A flowchart describing selection of features identified as significant in cancer prediction, including 

attributes that are significant within one separated type of data and significant when combining all types 

of data together. This procedure will be called the main MCFS-ID experiment later in the paper and 

features selected by the algorithm as the significant set of mRNA/miRNA genes or DNA methylation 

features. 

 

First of all, a selection of features was performed on the full data set consisting of 

mRNA expression, DNA methylation and miRNA expression in 381 samples. This approach 

allowed for capturing the relationships between attributes from different types of data sets. 

Next, a feature selection was performed on the same dataset set but for each data type 

separately (Fig 2), where the sample size differed depending on a data type (Table 1, Fig 1). 

In all of these four runs the features were selected by their ability to differentiate between 

normal and cancerous samples. Running MCFS-ID on data of all types allowed us to find 

features significant in conjunction with features of other types. Attributes derived from this run 

are to be called significant along with all categories. Separate runs for each data type capture 
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these less important (but still important) features that would be under the relevance threshold 

of MCFS-ID algorithm in case they were part of a larger set of features. The analysis was 

conducted using version 1.3.1 of the rmcfs package from the CRAN repository in R 3.6.3. The 

default parameters were used except: splitSetSize=200; mode=2; cutoffPermutations=20. 

Additionally, to validate the quality of selected important features, two different 

classification models: SVM (support vector machines) and RF (random forest) were trained 

on the 381 complete samples and tested later on the test samples that were not used in the 

feature selection phase. For each type of the data there are over 400 unique test-ready 

samples that do not contain values for all categories and were used to obtain weighted 

Accuracy of classification (wAcc) for each category separately. 

 

Descriptive analysis of significant mRNA genes 

To annotate genes as down- or over-expressed in cancer samples, the log2 fold change was 

calculated for each of the significant genes (returned by MCFS-ID). Distribution of gene 

expression was verified with the Shapiro-Wilk test and depending on the obtained results the 

Wilcoxon test was applied. Next, functional annotation of significant genes was performed 

using the Enrichr web server [43] followed by the Benjamini–Hochberg correction for multiple 

testing. Initially the q-value was set to 0.05 but because of a huge number of significant terms 

returned, in one (over-expressed mRNA) analysis the threshold was set to 0.001. Moreover, 

based on the set of significant genes descriptions, gathered from various molecular databases 

provided by BioMart (such as NCBI, Gene Ontology, KEGG, Reactome, WikiPathways, 

Biocarta), Natural Language Processing (NLP) methods were applied to group these genes 

into functionally/descriptively similar clusters and retrieve sets of key words to describe each 

of the returned cluster. To perform this operation, each gene was represented as the text 

document (combined from all available descriptions), and, later, used to calculate TF-IDF 

(term frequency–inverse document frequency), as a bag of words/terms. When each gene is 

represented by a TF-IDF vector it is possible to calculate cosine similarity between the 

documents and a hierarchical clustering model can be built based on these similarities. Finally, 
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discovering a set of unique keywords that characterize each cluster provides a good functional 

biological overview of input genes and groups that should be studied more closely. 

 

Descriptive analysis of significant DNA methylation sites 

DNA methylation sites selected by MCFS-ID (hereafter differentially methylated sites, DMSs) 

were mapped to the specific genomic regions. Original DMSs positions were converted from 

hg19 to hg38 using LiftOver [44]. Intersections of genomic regions i.e. CpG islands (CpGIs) 

or promoters with DMSs were done using bedtools (v2.29.2) [45]. The locations of CpG islands 

(CpGI) were taken from the UCSC database represented in hg38 genome assembly 

(https://hgdownload.cse.ucsc.edu/goldenpath/hg38/database/cpgIslandExt.txt.gz). The 

shores were defined as the regions flanking the CpGI by 2000 bp up- and down-stream, the 

shelves as the regions flanking the shores by +/-2000 bp, and the open seas as the regions 

between the shelves. Next, to prepare the background distribution of cytosines across these 

four region types, all cytosines, which are included in the Human Methylation 450K BeadChip 

(Illumina 450K) were mapped to CpGIs, shores, shelves, and open sea regions. Sites covered 

by the Illumina 450K represented the background distribution of cytosines across the named 

genomic regions and allowed to verify (chi-squared test) whether DMSs show any specific 

distribution. Afterwards, the distribution of 𝛽-values of cancer vs normal samples was 

compared separately for CpGIs, shores, shelves and open sea regions using the Wilcoxon 

test. Just to note, that 𝛽-values represent the ratio of the intensity of the methylated bead type 

to the combined intensity of a locus and obtains values between 0 and 1 [46]. Finally, we 

tested whether the distributions of hypo-, medium- and hyper-methylated cytosines in cancer 

samples differed across the four region types (chi-squared test). Bonferroni correction was 

applied for multiple testing corrections for the aforementioned analysis. 

To annotate DMSs to promoters or gene bodies, the gene positions from Ensembl 

(https://www.ensembl.org/Homo_sapiens/Info/Index) were taken and their promoters were set 

+/-2000 bp around the TSS. DMSs assigned to the promoter or the gene body established a 

pair: a DMS and its target gene. DMSs within intergenic regions were paired with their target 
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genes using bedtools closest function. Assignment of hyper-, hypo-, medium-methylated 𝛽-

values was performed on the basis of the log2 fold change (log2FC) between sample types 

(cancer vs normal). Sites with log2FC ≤ -1 were labeled as hyper-methylated in cancer; log2FC 

≥ 1 as hypo-methylated DMSs in cancer; the remaining sites were labeled as medium-

methylated. To evaluate the significance of the observed log2FC, first the Shapiro-Wilk test 

was used to verify whether the data was normally distributed and, based on the test results, a 

nonparametric Wilcoxon test with FDR correction was chosen to verify the null hypothesis: 

that there is no difference in distribution of 𝛽-values for DMSs between cancer and normal 

samples. 

To detect putative regulatory regions, the association between gene expression and 

𝛽-value of DMSs located 1Mb upstream/downstream from that gene TSS was verified by 

calculation of the Spearman correlation with FDR correction, defining significant correlations 

when Spearman’s |rho| ≥ 0.6 and FDR ≤ 0.05. Moreover, to assign DMSs to specific chromatin 

states, we used chromatin state annotations for the MCF-7 breast cancer cell line 

(GSE57498). The data were converted from original annotation Human GRCh37/hg19 to 

GRCh38/hg38 annotation using LiftOver [44]. Positions indicating acetylation of the lysine 27 

of the histone H3 protein (H3K27ac) for MCF-7 cell line were taken from the ENCODE 

database (https://www.encodeproject.org/files/ENCFF621API/). The sites included in the 

Illumina 450K panel were intersected with the ranges of chromatin states to achieve the 

general distribution of cytosines across chromatin states. Next, from the significant 2006 

DMSs, hyper- and hypo-methylated DMSs were selected and independently intersected with 

chromatin states to unveil their distribution across chromatin states. To verify whether the 

obtained distributions were specific, 2006 random loci were drawn 1000 times from the 

Illumina 450K panel. Each time a set of those drawn loci was intersected with the chromatin 

state ranges to compute the percentage of loci assigned to specific chromatin state. Next, the 

logarithm of fold change between percentage of hyper-methylated DMSs and mean 

percentage of randomly drawn loci for each chromatin state was computed. The same 
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procedure was applied to hypo-methylated sites, generating empirical p-values of significance 

for these overlaps. 

Next, to evaluate the impact of DMSs on the patients' survival, a multivariate log rank 

test (lifelines.statistics.multivariate_logrank_test function in Python) was used. Samples were 

split into high and low methylated groups defined by a median of methylation level. 

Additionally, to confirm that the number of DMSs, discovered to have a significant impact on 

survival, differs significantly from the number of such sites selected randomly, a bootstrapping 

technique (sampling 100 times) was applied. After each sampling of 2006 random sites from 

all sites present in Illumina 450K panel, their impact on survival was tested and the number of 

sites with p-value below 0.05 was noticed. Next, we counted how many times the number of 

significant sites (having impact on survival) found in a random set was greater than the number 

of significant sites (having impact on survival) obtained for 2006 DMSs. 

 

Descriptive analysis of significant miRNA genes 

To study the suppressive impact of significant miRNAs (those returned in the main MCFS-ID 

experiment) on mRNA gene expression, the selection of over-expressed miRNAs genes in 

cancer was performed based on log2FC. The genes were defined to be over-expressed in 

cancer if log2FC ≤ -0.1 (S1A Fig). Next, for the selected miRNAs over-expressed in cancer, 

their mRNA target genes were assigned using the MicroRNA Target Prediction Database [47] 

and Spearman correlation was calculated for the obtained miRNA-mRNA pairs. The 

correlations where rho ≤ -0.2 and adjusted p-value ≤ 0.05 were considered in further analysis. 

Next, for the mRNA genes that significantly correlated with miRNA genes using the STRING 

database [48], the protein-protein interaction identification was performed and based on the 

number of interactions among proteins, the top 50 proteins were selected. Next using KEGG 

pathways and gene ontology biological processes (GO BP) the enrichment analysis on those 

top 50 proteins was performed. Additionally, to discover putative drugs associated with over-

expressed miRNAs, the Enrichr Database was searched with the same set of proteins. 
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Finally, to characterize the set of significant miRNAs returned by MCFS-ID, we 

searched them in the miR+Pathway database [49] that contains information about mRNA-

miRNA connections and 150 KEGG pathways linked with mRNAs. The mRNAs linked with 

the searched miRNAs were intersected with 590 mRNAs returned in the MCFS-ID experiment. 

Biological functions of the resulting mRNAs were verified on NLP cluster key words (described 

in section ”Descriptive analysis of significant mRNA genes”) 

 

Detection of significant miRNA and methylations in the context of predicting mRNA 

expression levels 

To discover more complex interactions between the top 590 most significant mRNA genes 

(obtained from the main MCFS-ID experiment described in section ”Detection of significant 

features using MCFS-ID algorithm”) and two other types of molecular data (DNA methylation 

and miRNA expression) two additional sets of MCFS-ID experiments were performed (Fig 3). 

Both sets of experiments were based on the same idea of running MCFS-ID algorithm on all 

top significant 590 mRNA features obtained from the main MCFS-ID runs. Each of those 

mRNA features was used as a target variable and miRNAs or DNA methylation were used as 

predictor features. Thus finally two different feature rankings were obtained. In the case of 

DNA methylation, for each run on a different target mRNA gene, methylation loci within the 

chromosome of the gene were explored. This limitation heavily reduced the calculation time - 

the number of all DNA methylation sites is almost 400k and it is biologically justified to focus 

on such relations within one chromosome [50]. In both sets of experiments, final cross 

validation of the result was based on a regression tree modeling and calculation of Pearson 

correlation between predicted value and observed mRNA gene expression level. 
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Fig 3. A flowchart describing selection of miRNA genes found to be significant in prediction of mRNA 

gene expression levels. For each significant mRNA (selected by the main experiment described in 

section ”Detection of significant features using MCFS-ID algorithm”) treated as a target variable, a 

separate MCFS-ID experiment was performed. The same procedure was used for DNA methylation as 

predictors instead of miRNA expression levels. 

 

Descriptive analysis of associations between DMS and TFs 

To predict transcription factors (TFs) whose binding affinity to DNA sequence may be changed 

due to differential DNA methylation, the sequences surrounding each DMS (+/- 20 bp) were 

generated using bedtools getfasta function (v2.29.2) [45]. To identify TF motifs, the 

HOCOMOCO database of position weight matrices (PWMs) [51] together with the PWMEnrich 

tool [52] were used with the following settings: (i) sequences background build based on 

randomly selected fasta sequences and (ii) motif significance cutoff p-value ≤ 0.001. Next, to 

detect the exact Transcription Factor Binding Site (TFBS) positions of the motifs that passed 

the threshold, the online FIMO tool [53] from the MEME Suite 5.0.5 was applied with 

significance threshold p ≤ 0.0001. The returned TFBS were intersected with DMS to keep only 

these TFBS within which any DMS was confirmed, to ensure that differential DNA methylation 

may affect binding affinity. To group TF motifs, returned by PWMEnrich, based on the 

heterogeneity of their PWMs, the STAMP tool [54] was used with Pearson Correlation 

Coefficient as a measure of distance. Sequence alignment was performed using an ungapped 

Smith-Waterman algorithm with the iterative refinement multiple alignment strategy. 
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Visualization of the clustering results was performed with UPGMA [54]. Further, functional 

annotation of genes encoding TFs was done using the Enrichr web server [43] with the 

Benjamini–Hochberg correction for multiple testing and significance threshold q-value ≤ 0.05. 

 

Models of regulatory networks 

To investigate whether the putative associations between TFs and DMSs within binding sites 

of these TFs have similar patterns in cancer vs normal samples, the additional analysis using 

the MCFS-ID algorithm was performed. The input decision table consisted of 484 patients for 

whom both mRNA and DNA methylation datasets were available. Features, namely TFs 

coding genes and DMS within DNA sequences of motifs detected for that TFs were analyzed. 

The returned significant features, together with cancer/normal tissue type, were used as 

explanatory variables to train a set of linear models to predict mRNA expression of a target 

gene. Each time a different mRNA gene (target gene), whose promoter overlapped with a set 

of explanatory variables (TFs and DMS), was used as a dependent variable to build a single 

linear model. Finally, for the best fitted models (adjusted p≤0.05, R2 > 0.5), the feasible 

biological relationships between DMS, TFs and their target genes were visualized. These 

target genes were also used to discover direct and the closest indirect associations between 

them and other genes by the literature systematic review and interaction graphs obtained 

through the Pathway Commons online tool [55]. Based on the associations found, a final graph 

of connections between identified target genes and other genes was created and visualized.  

 

The visualization of chromatin 3D structure of selected loci 

In order to visualize the putative functional association between genes, DNA methylations 

significant in breast cancer, and enhancer regions, the chromatin structures of the FXYD1 and 

NKAPL loci were generated using 3D-GNOME [56] and Spring Model (SM) [57] polymer 

simulation methods.  

3D-GNOME is a chromatin 3D structure modeling method that uses a multiscale bead-

on-a-string approach and a Monte Carlo simulated annealing algorithm [56]. It models 
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chromatin interactions mediated by specific proteins, based on high-frequency PET (multiple 

paired end tags mapped on two genomic loci) cluster interactions and singletons (single paired 

end tag). The algorithm uses a tree structure to manage the relationships between different 

levels of genomic organization (chromosomes, segments containing a topological domain, 

and chromatin interaction anchors), simulating their spatial positions independently by 

minimizing an energy function based on high-frequency chromatin PET cluster interactions 

and energy terms. Next, sub-anchor beads are added between neighboring anchor beads to 

model chromatin loops, and their positions are again simulated by minimizing energy. Finally, 

the algorithm refines the loop shape using a singleton interaction heatmap and motif 

orientation. The 3D-GNOME models were generated based on cohesin mediated Chromatin 

Interaction Analysis by Paired-End Tag sequencing (ChIA-PET) data for the hTERT-HME1 

(normal) and MCF-7 (cancer) cell lines (ENCODE Accession ID: ENCSR991JXX - hTERT-

HME1, ENCSR255XYX - MCF-7) [58].  

The Spring Model represents polymers as a collection of points in three-dimensional 

space using the beads-on-chain approach. In the resolution chosen by the user, each bead 

represents a segment of DNA of the same length. In this study, the chromatin models with a 

resolution of 1 kbp were constructed, where each bead represents 1,000 base pairs. If there 

was a spatial interaction between beads in the polymer model, harmonic bonds were used to 

connect pairs of interacting beads by springs. The spring-based pairwise forces are subjected 

to energy minimization in a SM polymer simulation. In order to establish the final 3D structure 

of the polymer fiber with the set of experimentally identified contacts, the SM simulation 

undertakes the global energy minimization given the data-driven forces represented by the 

springs and polymer chain parameters (such as stiffness). The initial conformation of the 

polymer was given as a circular 3D structure of polymer fiber. 3D models generated by the 

Spring Model approach were built using Promoter Capture Hi-C (PCHi-C) [59] data for MCF-

10A (healthy) and MCF-7 (cancer) breast tissues to get a promoter centric view.  
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Results 

Detection of potential breast cancer biomarkers using the MCFS-ID algorithm 

Our study aimed to verify if there are significant molecular features and interactions between 

them that may be important for breast cancer prediction and possibly used as biomarkers. The 

Monte Carlo Feature Selection and Interdependency Discovery (MCFS-ID) algorithm was 

used to select top significant features that distinguish cancerous from normal tissue samples 

from TCGA data. The final feature set was derived by merging MCFS-ID outcomes from two 

independent steps (Fig 2). Firstly MCFS-ID was performed on the joined set consisting of 

mRNA and miRNA expression and DNA methylation. As a result, the feature ranking was 

dominated by the methylation features, followed by mRNA expression (Table 2, S1 Table). 

Only six miRNA expression features were found as relevant in breast cancer prediction. In the 

next step, three more MCFS-ID experiments were conducted on datasets consisting of single 

feature types to verify whether each of those is informative in distinguishing cancer from 

normal samples (S1 Table). With this approach, it was possible to expand the number of 

significant features, especially for miRNA data, and confirm the statistical significance of each 

individual set of attributes in sample classification. Finally, out of 417,486 multi-omics input 

features, 2,701 (2006+590+105) of them (Table 2) were selected by the algorithm as features 

potentially involved in cell physiological changes resulting in breast cancer development. The 

last two columns in Table 2 show significantly high weighted predictive accuracy (wAcc) of 

support vector machines (SVM) and random forest (RF) models, where the test samples were 

not used in the feature selection phase (Fig 1). It is worth underlining that after the MCFS-ID 

run, each feature is evaluated by the RI (relative importance) value so for each data type, 

instead of an unordered set of features, a ranking in which top features are the most 

informative is produced (S1 Table). 
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Table 2. Number of significant features returned by the MCFS-ID rankings together with RF and SVM 

results for classification of samples into cancer vs normal, shown as weighted accuracy (wAcc), 

performed using the features pointed in the “Sum”. 

 Joined-set Individual-set Intersection Sum RF wAcc SVM wAcc 

DNA 

methylation 
1504 1987 1485 2006 0.9068 0.9398 

mRNA 432 588 430 590 0.9347 0.9347 

miRNA 6 105 6 105 0.9848 0.9370 

 

Descriptive analysis of mRNAs having a significant predictive value 

The Machine Learning feature selection process is focused on selection of features based on 

their high statistical significance, however it does not consider their biological meaning, which 

must be examined afterwards. At first, the top 10 mRNA genes from the MCFS-ID ranking 

(ADAMTS5, COL10A1, TMEM220, ARHGAP20, MMP11, CAVIN2, PLPP3, MICU3, MME, 

CD300LG) were screened and all of them were confirmed to have an association to cancer 

prediction and development. The top five were reported as effective cancerous tissue markers 

[60]. There is a number of scientific research, for each of the top 10 mRNA genes, well 

documenting their significance and association with cancerogenesis: ADAMTS5 [61], 

TMEM220 [62], ARHGAP20 [63], MICU3 [64]; or precisely with breast cancer: COL10A1 [65], 

MMP11 [66], CAVIN2 (formerly known as SDPR) [67], PLPP3 [68], MME [69], CD300LG [70], 

confirming the potential usefulness of the implemented approach. 

Subsequent analysis included all significant mRNA genes to unveil their biological role 

in cancerogenesis and to discover new significant bio-functional relationships. Among 590 

mRNA genes returned by MCFS-ID, 576 revealed differential expression, when filtering by the 

required log2FC and adjusted p-value (Fig 4A). Interestingly, these differentially expressed 

genes (DEGs) seem to be strong singularly independent predictors of breast cancer. At the 

level of feature selection performed with MCFS-ID, the returned decision trees (see Methods 

2.2) presented very shallow depth and classical statistical tests confirmed that these genes 
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significantly differed in expression between cancer/normal samples. Moreover, the majority of 

DEGs demonstrated a lowered expression in cancer (n=447), whereas only 129 showed 

increased expression. The down-expressed genes were enriched in 16 pathways from the 

Reactome database [71] that showed a great functional heterogeneity (Fig 4B), whereas over-

expressed genes were enriched in 91 pathways (Fig 4C and S2 Table), in majority related to 

the cell cycle and mitosis. Down-expressed DEGs were enriched in pathways related to lipids 

regulation and transport, neurotransmission and retinoic acid synthesis (Fig 4B). These 

findings were confirmed by a Natural Language Processing approach (NLP). The pathways in 

which DEGs were enriched correspond very well to the unique keywords that describe clusters 

built on the gene function descriptions using NLP methods and hierarchical clustering (see 

”Detection of significant features using MCFS-ID algorithm”). The two most numerous clusters 

(mostly down-expressed) were related to the following terms: ‘the regulation and metabolic 

processes’ and ‘ion transport’ (Table 3). Finally, we confirmed that the set of 590 mRNA genes 

was significantly enriched in genes related (n=79) to immunological processes (chi-squared 

test, p<0.05). This fact confirms well known engagement of immune related genes in 

cancerogenesis. 
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Fig 4. Overview of mRNAs indicated as significant in distinguishing cancer from normal tissue samples 

(A) The volcano plot shows differences in the expression levels of 590 mRNA considered significant in 

the cancer/normal prediction in the feature selection set (adjusted raw p-value>0.05). (B) Enriched 

pathways from the Reactome pathway database for down-regulated genes. (C) Enriched pathways 

from the Reactome pathway database for over-expressed genes. To allow for better readability, the 

number of less enriched pathways in the graph was reduced with the cutoff q-value=0.001 (all terms for 

cutoff q-value=0.05 are available in S2 Table). 
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Table 3. The result of NLP clustering of the significant mRNA genes: gene clusters, their most relevant 

keywords and gene expression statistics.  

Cluster 

ID 

Cluster 

size 

Top words associated with 

genes in cluster 

Keywords 

interpretation 

Mean log fold 

change for 

verification set 

Direction of change in 

expression 

1 393 

regulation, process, 

metabolism, negative, 

negative_regulation, 

response, positive, positive 

regulation, gene, metabolic 

regulation 

and 

metabolic 

processes 

1.5894 
over-expressed: 78 

 down-expressed: 313 

2 38 

transport, ion, 

transmembrane, 

transmembrane_transport, 

calcium, abc, muscle, cardiac, 

ion_transmembrane, 

contraction 

ion trans- 

membrane 

transport 

2.5636 
over-expressed: 4 

 down-expressed: 34 

3 18 

receptor, g, coupled, 

g_protein, protein_coupled, 

gpcr, coupled_receptor, 

receptors, protein, ligand 

receptor 

proteins 
2.8793 

over-expressed: 0 

 down-expressed: 18 

4 24 

transcription, polymerase, 

rna_polymerase, rna, 

polymerase_ii, ii, 

regulation_transcription, 

transcription_rna, 

differentiation, development 

transcription 

process 
1.5496 

over-expressed: 4 

 down-expressed: 20 

5 31 

mitotic, cell_cycle, cycle, g, 

cell, apc, transition, apc_c, c, 

g_transition 

cell cycle 

regulation 
-2.5362 

over-expressed: 28 

 down-expressed: 3 

6 16 

golgi, transport, er, golgi_er, 

retrograde, vesicle, 

vesicle_mediated, 

mediated_transport, 

mediated, traffic 

golgi 

apparatus 

related 

-0.9197 
over-expressed: 11 

 down-expressed: 5 

7 4 
biological_process, biological, 

process 

biological 

processes 
2.7369 

over-expressed: 0 

 down-expressed: 4 

 

The Interdependence Discovery in MCFS-ID algorithm enables the additional identification of 

interdependencies between input features. These interdependencies are presented in a form 

of directed graph that visualizes knowledge derived from thousands of decision trees, 

highlighting feature RI with color intensity, interaction frequency with node size, and interaction 

strength and direction with edge/arrow thickness [7]. We focused on the ID-graph (S2 Fig) 
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representing interdependencies between mRNA features due to their well-established 

functional descriptions. Among the strongest associations, we selected a few to demonstrate 

their biological relevance. For example, the SRPX → HPSE2 interdependency suggests a link 

between the SRPX-encoded extracellular matrix protein, involved in cell adhesion, 

proliferation regulation, and potentially phagolysosome assembly and apoptosis [72], and the 

HPSE2-encoded heparanase enzyme, which degrades extracellular matrix proteoglycans and 

may contribute to angiogenesis and tumor progression [73]. Both genes potentially affect 

extracellular matrix-related biological processes. Another gene pair interdependency, 

PLSCR4 → PDGFA, is known to play a functional role in apoptosis [74]. PDGFA connects 

with ALDH1L2 through PLSCR4, suggesting that EMP2 overexpression activates PDGFA via 

the ALDH1L2-PLSCR4 pathway, initiating fibrin clot and apoptosis recognition [75]. 

Additionally, one may notice another interdependency of PDGFA with another feature 

RNF186, a component of an endoplasmic reticulum stress-activated apoptotic signaling 

pathway [76] and a well-known biomarker in several cancers, especially breast invasive 

carcinoma (BRCA) [77]. Here the functional association of the two features in the apoptosis 

seems reasonable. The final interdependency highlighted in our analysis, to be presented 

here, underscores the significance of LYVE1 and ADGRD2, both membrane-associated 

features. Recent research by Anstee et al. [78] emphasized the role of LYVE-1+ macrophages 

in forming a CCR5-dependent perivascular niche linked to immune exclusion and therapy 

resistance in murine breast cancer. Whereas, the ADGRD2, a G protein-coupled receptor, is 

known to contribute to various aspects of cancer, including proliferation, angiogenesis, 

invasion, and metastasis [79]. This short analysis of interdependencies shows that ID graphs 

(S2 Fig) seem to be a rich source of new useful information, however contextual influence and 

interactions between various biological mechanisms/factors is a part of another extremely 

complex analytical layer that is not in the main focus of this paper. 
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Genomic context of DNA methylations with predictive value 

Feature selection revealed 2006 significant sites that differed in methylation levels between 

cancer and normal samples (Table 2), hereafter called differentially methylated sites (DMSs). 

Out of all DMSs only one locus (cg02025583) is located within the promoter of one of the top 

10 mRNA genes returned in the main MCFS-ID ranking. This promoter precedes TMEM220 

gene and the cytosine cg02025583 is overlapped by a motif of the E2F2 transcription factor 

(TF), which is a good example of altered epigenetic regulation of gene expression. 

The distribution of Illumina Infinium Human Methylation 450K BeadChip probes in 

genomic regions (Illumina 450K array) was compared with the distribution of DMSs and DMSs 

were found statistically significantly enriched in CpG Islands (CpGI) and open seas as well as 

their depletion in shores (chi-squared test, corrected p-value≤0.05, Fig 5A). The indicated sites 

are candidates for modulating activity of regulatory regions therefore we focused on their 

methylation levels in normal vs cancer samples to unveil their putative regulatory role in cancer 

development. We found that DMSs methylation 𝛽-values showed a significant shift towards 

higher values within CpGI and presented significantly different distribution of 𝛽-values within 

shores and open seas between cancer vs normal (Wilcoxon test p-value≤0.05, Fig 5B). There 

were over two times more hyper-methylated DMSs (n=479) than hypo-methylated DMSs 

(n=225) discovered in tumors (Fig 5C). Interestingly, the vast majority of hyper-methylated 

DMSs were located within CpGI, which are well known gene transcription regulators (Fig 5D). 

Medium methylated DMSs showed very high frequency not only in CpGI but also in shores, 

shelves and open seas (Fig 5D).  
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Fig 5. Characteristics of 2006 significant DNA methylation sites (DMSs). (A) Distribution of loci included 

in the Illumina 450K array in comparison to the distribution of DMSs. (B) DMSs 𝛽-values distribution in 

the tumor and normal samples with respect to the specific genomic regions. (C) DMSs assigned to 

hyper/medium/hypo-methylated with respect to log2 Fold Change of 𝛽-values. (D) Number of loci with 

hyper/medium/hypo-methylated DNA in particular types of genomic regions. 

 

To investigate a potential regulatory association of gene expression mediated by DNA 

methylation, the Spearman correlation was measured between mRNA levels of 590 significant 

genes and 𝛽-values of each DMS within 1 Mbp upstream and downstream from TSS of these 
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genes. The correlation cut-off value was set to |rho|≥0.6 and there were 59 pairs meeting this 

condition (S3 Table). The majority of the obtained correlations were negative (n=44) with only 

a few positive (n=15). More frequent negative correlation was expected, if we assume that 

DNA methylation located in promoters or enhancers inhibits gene expression. Among these 

pairs there were 34 unique genes and 55 unique DMS loci. Almost all genes were down-

regulated in tumor samples, but the HN1L and KIFC1 were up-regulated. Out of 55 DMSs five 

were located within one gene promoter. Interestingly, all of them were hyper-methylated and 

were close to each other, within one CpGI in a range of 25 bp, within the NKAPL gene 

promoter (S3 Fig). Two of them (cg18694169, cg10253847) were overlapped by a motif of the 

NRF1 TF. NRF1 normally activates gene expression, but here, due to hyper-methylation, its 

binding to DNA would be inhibited. Accordingly, NKAPL was down-regulated in cancer 

samples, which could be explained by hyper-methylation of the five DMSs [80]. The other 50 

DMSs were not assigned to any promoter and also had a confirmed chromatin state indicating 

possible activity (S3 Table), so they were defined as potential distal regulatory factors. 

In order to have a better understanding of a potential role of the DMSs in gene 

expression regulation, all DMSs were intersected with chromatin states of MCF-7 breast 

cancer cell line (Fig 6A) and simultaneously all sites from Illumina 450K were intersected with 

chromatin states of MCF-7 as well (Fig 6B). The observed distribution of DMSs across 

chromatin states was similar to the distribution of all Illumina 450K sites across the chromatin 

states (chi-squared test p-value>0.2). Comparison of the distribution of hypo- and hyper-

methylated DMSs revealed a visible enrichment of hyper-methylated DMSs in transcriptionally 

inactive chromatin states, like heterochromatin. At the same time, hyper-methylated DMSs 

were depleted within states associated with gene transcription activation, such as enhancer, 

promoter and transcribed regions (Fig 6C). Conversely, for the hypo-methylated DMSs the 

opposite pattern was observed (Fig 6C). 
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Fig 6. Distribution of cytosines across chromatin states obtained for the MCF-7 breast cancer cell line. 

(A) Number of DMS in individual chromatin states. (B) Illumina 450K sites assigned to individual 

chromatin states, representing the background distribution. (C) Differential distribution of hypo- and 

hyper-methylated DMS in specific chromatin states. 

 

Next, the evaluation of the impact of DMSs on survival was tested. Out of 2006 DMSs 

there were 691 (S4 Table) that were found to be significantly correlated with patients survival 

(p<0.05). The number of loci associated with survival in 100 random picks of 2006 methylation 

probes was between 375 and 450, which confirms that MCFS-ID returned an enriched list (S4 

Fig). However, after application of the correction for multiple testing, none of the sites achieved 
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expected statistical significance. Therefore, the prediction of patients’ survival by the DMSs 

should be treated with caution. 

 

Biological role of significant miRNA genes 

To characterize the regulatory functions of 105 miRNAs identified in the MCFS-ID experiment, 

their associations with mRNA from the miR+Pathway database were verified, resulting in 

detection of 822 unique mRNAs. Out of these mRNAs, 43 were shown to be significant in 

predicting breast cancer, in the MCFS-ID analysis (results section ”Detection of potential 

breast cancer biomarkers using the MCFS-ID algorithm”). The intersection with the mRNA 

clusters returned by NLP analysis showed that out of 43 mRNAs, 32 belong to cluster 1, one 

mRNA to cluster 2, two to cluster 3, seven to cluster 5, and one to cluster 6 (Table 3). Most of 

the mRNAs assigned to cluster 1 had decreased expression in the cancer samples but five 

had increased expression. The opposite situation can be observed in cluster 5 where six 

mRNAs were upregulated in the tumor and one down-regulated. 

For 58 miRNAs genes over-expressed in cancer, selected out of the 105 significant 

miRNAs (S1B Fig), the target mRNA genes were assigned to them and the putative 

associations between 46 miRNAs and 126 mRNAs were confirmed with Spearman correlation 

(rho ≤ -0.2, S5 Table). KEGG pathway analysis of these 126 mRNAs returned insignificant 

results (adj. p-value > 0.05). The mRNAs contributing to significant correlations formed a 

protein-protein interaction network consisting of 2265 proteins. For the 50 proteins with the 

highest number of interactions in this network, the miRNAs targeting their mRNAs were 

assigned (S6 Table), resulting in 22 unique miRNAs, all initially obtained as significant in the 

main MCFS-ID run. KEGG pathway analysis of the genes encoding those 50 proteins showed 

significant annotations to breast cancer (p-value = 0.000454), as well as to many other cancers 

e.g. melanoma, renal cell carcinoma, acute myeloid leukemia, colorectal cancer (S5A Fig). 

These proteins were also found to be associated with cancerogenesis-related biological 

processes, e.g. chemical, viral or proteoglycans, as well as pathways known to be crucial for 

cancer development, e.g. p53 signaling pathway (S5A Fig). The returned terms from GO BP 
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analysis were almost all related directly or indirectly to cell cycle, the crucial process for cancer 

development and progression (S5B Fig). Moreover, out of the 50 proteins with the highest 

number of interactions in the miRNA-regulated protein-protein network, 16 are known drug 

targets in breast cancer treatment. The largest number of them was targeted by palbociclib, 

ribociclib [81] and abemaciclib [82], among 19 others drugs (S7 Table). It is worth mentioning 

that both scores showed in S7 Table, i.e. Drug Score (DScore), which measures the suitability 

of the drug according to the genomic profile, and Gene Score (GScore), which reflects the 

biological relevance of genes in the tumoral process, had high values for the majority of 

aforementioned drugs, indicating significant effect of these drugs (S7 Table). The resulting 

miRNA-Protein-Drug network is visualized in the S1C Fig There are two mRNA genes 

CDC25A and BIRC5 specified in this network, whose expression significantly correlated with 

upregulated mi-RNAs, namely hsa-mir-100, and hsa-mir-218-2, respectively, that are also 

known to be breast cancer drug targets (S7 Table, S5A,B Fig) These two miRNAs were 

selected by MCFS-ID main run.  

 

Detection of miRNA and DNA methylation loci significant in the context of predicting 

mRNA expression levels 

The result of 590 MCFS-ID experiments run on 590 significant mRNA features (Table 2), each 

separately used as the target variable, with miRNA expression or DNA methylation set as 

predictors showed that miRNA features are better predictors as compared to methylation. Out 

of 590 mRNA expression features, only 73 can be correctly predicted by miRNA features, 66 

by DNA methylation features, and 39 by both (where Pearson correlation level ≥ 0.8). For each 

target variable (out of 590) a different significant set of features was returned. These sets 

differed in size and contained different features in the top ranking, therefore it was possible to 

analyze the distribution of: significant set size (based on MCFS-ID cutoff), Pearson correlation 

calculated between each mRNA expression and its prediction based on the significant feature 

set. To find out if, for different mRNA, there are common predictive miRNAs or DNA 

methylations the frequency of a single significant feature across all significant feature sets was 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 15, 2024. ; https://doi.org/10.1101/2024.11.12.623187doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.12.623187
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

29 

calculated as well (separate for miRNA and DNA methylation). Histograms show that the 

number of selected significant DNA methylations in the rankings was much greater than for 

miRNA (see Fig 7A,B), which may correspond to the size of the input data sets and to the fact 

that statistical modeling of mRNA expression is much more complex in the case of DNA 

methylation data. However, the quality of the prediction of mRNA expression, based on miRNA 

features (see Fig 7C,D) is comparable to that achieved with the help of DNA methylation data. 

 

 

 

Fig 7. Summary of mass MCFS-ID experiments on 590 mRNA genes. (A) Distribution of the number of 

significant miRNA features returned across 590 experiments. (B) Distribution of the number of 

significant DNA methylation loci returned across 590 experiments. (C) Distribution of the Pearson 

correlations obtained for linear models built on significant miRNA features returned across 590 

experiments (D) Distribution of the Pearson correlations obtained for linear models built on significant 

DNA methylations returned across 590 experiments. 
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To get a better overview of all the selected top features, all MCFS-ID top rankings 

(separated by data category) were combined and, for each predictor feature, a sum of RI, 

mean RI, and frequency (how many times a single feature was found as significant) were 

calculated. The resulting two rankings - separate for miRNA expression and DNA methylation 

are shown in Table 4 (the top 15 features) and supplementary material (S8 Table, S9 Table). 

For 73 mRNA target features (that could be predicted with Pearson correlation level ≥ 0.8), 97 

miRNA predictors were found by MCFS-ID as significant for all 73 mRNAs features, which 

means that the same miRNAs take a part in a successful prediction of expression of the 73 

protein coding genes. The predictive impact of particular miRNAs changes depending on 

mRNA, which is observed as a different position in a single MCFS-ID ranking. Moreover, 81 

out of 97 miRNA genes were also significant in cancer prediction and selected by the main 

MCFS-ID experiment (see section ”Detection of potential breast cancer biomarkers using the 

MCFS-ID algorithm” and Table 2). The last column in Table 4 refers to the ranking of the main 

MCFS-ID experiment (on a given data type) and all the top 15 miRNA genes in the table are 

confirmed as cancer specific in literature according to www.mirbase.org. 

 

Table 4. Top 15 miRNA genes (left table) and DNA methylation (right table) loci from the mass MCFS-

ID experiments where mRNA expression was set as a target variable and prediction of the regression 

tree on the top significant set provided Pearson correlation ≥0.8. 

miRNA gene Freq 

Sum 

RI 

Mean 

RI 

MCFS-ID 

rank  

DNA 

Methylation Freq 

Sum 

RI Mean RI 

MCFS-ID 

rank 

hsa_mir_139 73 65.628 0.899 1  cg07267550 7 3.044 0.435 1234 

hsa_mir_141 73 38.519 0.528 10  cg00914963 7 3.036 0.434 2048 

hsa_mir_10b 73 36.690 0.503 2  cg19533977 7 3.024 0.432 25 

hsa_mir_183 73 33.020 0.452 4  cg08113562 7 2.714 0.388 12061 

hsa_mir_140 73 32.825 0.450 11  cg17901038 7 2.620 0.374 186 

hsa_mir_200a 73 31.182 0.427 15  cg18253799 7 2.584 0.369 2217 

hsa_mir_96 73 28.417 0.389 8  cg20417953 7 2.504 0.358 6490 

hsa_mir_429 73 25.452 0.349 20  cg20524128 7 2.488 0.355 2066 
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hsa_mir_204 73 23.546 0.323 12  cg10520594 7 2.393 0.342 4407 

hsa_mir_99a 73 23.041 0.316 6  cg20701457 7 2.159 0.308 1487 

hsa_mir_592 73 22.352 0.306 16  cg16009970 7 2.090 0.299 13163 

hsa_mir_378 73 22.320 0.306 38  cg06976025 7 2.012 0.287 3878 

hsa_mir_145 73 22.218 0.304 5  cg15601264 7 1.993 0.285 188 

hsa_mir_21 73 21.700 0.297 3  cg22608492 7 1.932 0.276 151 

hsa_let_7c 73 21.686 0.297 13  cg11441693 7 1.913 0.273 12369 

 

 

Tracking associations between DMSs and detected TF motifs 

Depending on the cytosine location in the genome or changes in its DNA methylation level, 

the cytosine loci overlapping transcription factor binding sites (TFBS) may significantly affect 

binding affinity of a TF to the DNA. To investigate this issue, for each DMS a DNA sequence 

covering 41 bp was obtained (site +/- 20 bp) and TF motif search was applied. First, DMSs 

were divided according to their location in genomic regions: promoters, gene bodies and 

intergenic. There were 616 DMS located within promoters, 1037 in gene bodies and 353 in 

intergenic regions, and the motif search returned 48, 54, 21 TF motifs in these three genomic 

regions, respectively. The numbers of returned TF motifs proportional to DMSs reflect no 

significant enrichment in the mentioned specific genomic regions (chi-squared test, p-value = 

0.138). Moreover, it was confirmed that none of the protein families is overrepresented among 

motifs confirmed within the three genomic regions (p-value after FDR correction > 0.05). There 

were 45 common motifs between promoter and gene body regions of which 21 were also 

shared with intergenic. Specifically, we detected three TFs: E2F1, ESR2, NRF1 only in 

promoters and nine: ELK3, HIF1A, ITF2, LYL1, NFIA, NR2C2, SNAI1, ZN341, ZN589 only 

within gene bodies (S10 Table). 

When verifying TF motifs overlapping hyper-methylated (n=479) cytosines, we 

confirmed 48 motifs and for hypo-methylated loci (n=225) there were 5 motifs detected. Only 

one motif, EPAS1_HUMAN.H11MO.0.B was specific for the hypo-methylated set of DMS and 

the remaining four were detected for both cytosine methylation levels (Fig 8A, B). 
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Fig 8. TF motifs overlapping differentially methylated cytosines. 

(A) TF motifs overlapping hyper-methylated DMS. (B) TF motifs overlapping hypo-methylated DMS. In 

(A) and (B), the red horizontal line indicates the p-value cut-off point. (C) Hierarchical clustering of TF 

motifs based on their PWMs. (D) Functional analysis of genes encoding TFs whose motifs overlapped 

DMSs hyper-methylated in cancer (KEGG database). The list of genes related with specific terms is 

shown in S11 Table. 
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To verify the similarities of PWMs of the detected TF motifs (Fig 8A, B) the hierarchical 

clustering was performed and it showed that the majority of motifs overlapping hyper-

methylated cytosines (Fig 8A) constituted two homogenous clusters. The third cluster 

contained motifs overlapping both hypo- and hyper-methylated cytosines, therefore it seems 

that TF motifs have some common characteristics independent from cytosine methylation 

level. Next, using the KEGG database [83] (Fig 8D) it was verified that the majority of biological 

pathways related to genes encoding TF motifs overlapping hyper-methylated DMS were 

precisely connected with cancer (e.g. misregulation in cancer, breast cancer, lung cancer etc.) 

as well as through pathways which are well-known to be connected with tumorigenesis (e.g. 

TGF-β signaling pathway [84], human cytomegalovirus infection [85]). Of note is the group of 

genes SP1, MYC, HEY2, E2F1, E2F2 and HES1 known to be associated with KEGG breast 

cancer functional pathway (Fig 8D). 

 

Models of regulatory networks 

To discover interdependencies between DMSs and genes encoding TF motifs overlapping 

these DMSs in the context of breast cancer prediction, another MCFS-ID experiment was 

conducted (S12 Table). Only the genes encoding TFs that were overlapping significant DMSs, 

as well as the levels of DNA methylations of these DMSs, were considered. The MCFS-ID 

algorithm returned 281 significant features (S13 Table), out of which the vast majority were 

DMSs with only 7 genes encoding TFs, namely: MXI1, EPAS1, PLAGL1, E2F1, NR0B1, 

BHLHE41 and ARNT2. These 281 features were annotated to their closest genes resulting in 

identification of 279 mRNA genes named hereafter target genes. Nine of them: PITX1, 

TGFBR3, PAFAH1B3, TAL1, TDRD10, SHE, LEP, TMEM220 and NKAPL, were previously 

reported in the main MCFS-ID ranking (S1 Table). Only one target gene: PITX1, contained a 

motif of one of the 7 TFs encoded by the significant genes identified in the second MCFS-ID 

experiment, namely MXI1 overlapping hyper-methylated DMS cg00396667 cytosine and the 

remaining 8 target genes were linked only to the DMS, not to TFs. For breast cancer, it was 
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confirmed that down-regulation of PITX1 improves prognosis and it is associated with DNA 

methylation levels [69, 86]. 

To review possible regulatory dependencies, mRNA expression values of these 9 

target genes were used as prediction variables in a set of linear models. As the result, four 

linear models for the following target genes: TMEM220, NKAPL TGFBR3, SHE reached 

statistical significance (p≤0.05, R2>0.5) and these genes were located on 3rd, 44th, 245th and 

311th position in the main MCFS-ID ranking, respectively (S1 Table). All four linear models 

are highly impacted by tissue type value, however after removing this feature from the set of 

explanatory variables, prediction of the models holds on a relatively high level (Pearson 

correlation calculated between target gene expression and predicted value decreases from 

0.7-0.8 to 0.6-0.7 after removing tissue type - see S14 Table). This observation suggests that 

the relation between target gene expression and linked TFs features is noticeably strong and 

specific in the context of tissue type. The four target genes are down-regulated in tumor 

samples, suggesting that they are tumor suppressors regulated by hyper-methylated DMSs 

that reduce TFs binding affinity. Moreover, these DMSs were in heterochromatin regions, 

which is in the line with gene silencing. To illustrate the hypothesis that DMSs located within 

the TF motif causes disruption of TF binding, we visualized features of linear models in a way 

that the symbols of genes that encode TFs were connected with DMSs and then with their 

target gene (Fig 9A). Additionally, based on the Spearman correlation results between the up-

regulated miRNAs and their top target mRNAs (S5 Table), one additional association of hsa-

miR-211 with SHE was detected and added to the visualization (Fig 9A).  

Additionally, to obtain a better insight into tumor suppressive paths involving target 

genes, the gene-gene interactions were established using Pathway Commons and 

aggregated into one network (Fig 9B). At first, the direct interactions with a group of new genes 

were established and then the most frequent of these new genes were used as an input to 

Pathway Commons to obtain levels of indirect interactions. This approach helped to build a 

more dense network to select genes with the largest number of putative interactions: MYC, 

NOG, TGFB1, VIRMA, SRC and AR genes, pointing at their significance in this network. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 15, 2024. ; https://doi.org/10.1101/2024.11.12.623187doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.12.623187
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

35 

Genes: NOG, TGFB1, VIRMA, SRC were over-expressed in cancer, unexpectedly MYC was 

down-expressed and AR showed no significant difference in Wilcoxon statistical test (S6A 

Fig). Genes MYC and AR are known to be over-expressed in specific breast cancer subtypes 

[87-89], but this pattern was not proven for the entire, much more heterogeneous, cohort of 

TCGA breast cancer samples.  

Biological pathway analysis of the aforementioned six genes, and target genes used 

in linear models (TMEM220, NKAPL TGFBR3, SHE) showed enrichment of biological 

pathways related to various cancer types (e.g. bladder cancer, chronic myeloid leukemia, 

proteoglycans in cancer) and to signaling pathways whose alterations are often associated 

with carcinogenesis e.g. TGF-β signaling pathway [84], erbB signaling [90] or relaxin signaling 

pathway [91] (Fig 9C). 

Finally, the Interdependency Discovery function of the MCFS-ID algorithm was used 

to find statistically significant, nonlinear interactions between features that amplify each other 

in the classification task. S2 Fig in the supplementary materials provides four ID-graphs 

created for top 50 features and top 50 strongest links between the features. These figures 

were created as an additional result of four main MCFS-ID experiments (described in Fig 2) . 

Fig 9D shows a part of the ID-graph created for the NKAPL gene and its neighbors, connected 

by edges that represent the power of interaction between them. Recently, this gene has been 

shown as a significant driver of cancer development [92], a prognostic marker [93] and an 

important factor associated with resistance to pharmacotherapy [94]. The visible directions of 

interactions show that the NKAPL gene expression plays the major role in classification of 

normal and tumor tissues and the remaining DNA methylation and miRNA features boost its 

predictive power. Notice that hsa_mir-7_3 is known as a significant factor contributing to 

cancerogenesis [95]. S6B Fig provides additional ID-graphs created for genes that were used 

as target genes in linear models: TMEM220, TGFBR3, and SHE genes. 
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Fig 9. Target genes interactions, biological functions and graphical representation of their putative 

regulatory elements. (A) Visualization of interactions driven from linear models. (B) The network of 

gene-gene interactions created for the identified target genes visualized on A. (C) KEGG pathway 

analysis for 10 genes highlighted in B. (D) ID-graph for NKAPL gene. 
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Epigenomic Regulatory Spatial Model 

The expression of a gene is directly associated with the distances between its body and 

regulatory regions, and these distances differ in three-dimensional space as compared to linear 

space [96]. Therefore, measurable and quantitative variations in spatial distance are 

subsequently responsible for changes in gene expression. Epigenetic processes, such as 

DNA methylation, impact the transcription machinery to influence gene expression [97]. 

Therefore, the spatial proximity of genes to some of the features identified as significant in the 

main MCFS-ID analysis, as discerning between breast cancer and normal samples, was 

verified at the level of 3D chromatin structure.  

In the mass MCFS-ID analysis, several genes, whose expression was well predicted 

by DNA methylation levels, were found. One of them was FXYD1 which was selected as an 

example to visualize in 3D the putative functional association between regulatory features and 

mRNA expression. (Fig 10A.i). To achieve this, an ensemble of 100 models was built using 

the 3D-GNOME approach [98, 99]. From this ensemble, the most representative spatial 

conformation was selected for visualization purposes in UCSF Chimera [100]. The gene 

promoter region and cg23866403 DNA methylation loci were observed to be in close proximity 

to the enhancer of the FXYD1 gene in the normal sample, as compared to the longer distance 

between the regulatory elements in breast cancer, where FXYD1 gene is down-regulated and 

cg23866403 loci is hyper-methylated, as shown in the box plots (Fig 10A.ii). The spatial 

distance distribution between enhancer-promoter and methylation site-promoter was also 

calculated, to see how these distances vary within the ensemble of 100 models (Fig 10A.iii). 

To thoroughly investigate the contrast between the 3D structure of cancer and normal 

cells, a model was constructed around the NKAPL gene, which contributes considerably to 

the classification of normal and tumor tissues [80, 93] (also shown in the previous section 

”Models of regulatory networks”). To do this, two specific datasets - ChIA-PET and PCHi-C 

were considered. ChIA-PET data identifies 3D contacts (in this particular experiment mediated 

by the RAD21 protein), which provides a chromosome-wide 3D view of the target gene and 

its spatial connectivity. PCHi-C experiments provided a promoter-centric view of a target gene, 
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with interactions between each gene promoter regions and other distal DNA segments, 

including regulatory elements. 

Cohesin-mediated chromatin loops were explored by application of chromatin 

interaction analysis with use of paired-end tag sequencing data (ChIA-PET) downloaded from 

Encode [58] for two cell lines: MCF-7 (cancer) and hTERT-HME1 (normal); aligned to hg38 

reference genome. It was confirmed that the identified cohesin-mediated loops (significant 

interactions) connecting two distant genomic fragments (anchors) surrounding the NKAPL 

gene were stronger and higher in number in hTERT-HME1 (normal) as compared to the MCF-

7 (cancer). Moreover, visual examination of the loops in the genome browser illustrates that 

loops anchored by distal enhancers were confirmed only for hTERT-HME1 (Fig 10B.i). These 

enhancer-specific interactions in the hTERT-HME1 cell line work together with the promoter 

to control the expression of the NKAPL gene, and they are absent in the MCF-7 cell line (Fig 

10B.i). Additionally, 3D models from ChIA-PET were constructed using 3D-GNOME algorithm 

to examine and annotate the resulting structures (Fig 10B.ii). We generated a spatial model 

of the NKAPL gene region for both cell lines by 3D-GNOME, and these models suggest that 

chromatin in this regions is more condensed in the normal cell line compared to the cancer 

cell line, in which it is loosely packed in three-dimensional space (Fig 10B.ii). 

Next, the spatial distances in Euclidean space between: (1) the NKAPL gene body and 

DNA methylation sites or (2) NKAPL gene body and enhancer were calculated for the two cell 

lines MCF-7 and hTERT-HME1 (Fig 10B iii). These distances were obtained by mapping the 

beads from the 3D model representing gene body (NKAPL), enhancer (NKAPL) and DMS 

(S15 Table, S7 Fig) and calculating them for respective pairs of beads. The hypothesis that 

chromatin around this gene is more loosely packed in the cancer cell line than in the non-

cancer one was confirmed by the box plots of the distance distributions (Fig 10B.iii, S7 Fig) 

for MCF-7 and hTERT-HME1 Cohesin ChIA-PET interaction sets. 

To further investigate the differences between the 3D structure of this locus in cancer 

and normal cells, we examined promoter interactions with distal regulatory elements using 

PCHi-C datasets obtained from Javierre et al. [101] and Beesley et al. [59,102]. In PCHi-C, 23 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 15, 2024. ; https://doi.org/10.1101/2024.11.12.623187doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.12.623187
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

39 

interactions around the NKAPL gene in MCF-7 and 91 interactions in MCF-10A (normal tissue) 

were detected (Fig 10C.i). In this case 3D models were constructed using the Spring Model, 

which is based on the OpenMM molecular dynamics simulation engine based on a beads-on-

string representation [57] (Fig 10C.ii). Additionally both 3D models are showing the loci with 

differential DNA methylation around the NKAPL gene reflecting higher DNA methylation in 

cancer (S15 Table, S7 Fig). Again, the distributions of the Euclidean distance (calculated as 

previously for ChIA-PET data) confirmed the hypothesis that chromatin in this locus is more 

loosely packed in cancer than in normal cell lines (Fig 10C.iii). The high concordance between 

the resulting box plot for PCHi-C and that of the ChIA-PET dataset confirms the reliability of 

the previous result. 
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Fig 10. Spatial Regulatory Model of chromatin – (A) (i) The most representative chromatin 3D 

computational model from the ensemble of 100 spatial models generated by the 3D-GNOME method 

for the FXYD1 gene with labeled promoter (blue), gene body (yellow) cg23866403 methylation loci 

(purple) and potential enhancer region (orange). (ii) The box plots show cancer and healthy samples 

FXYD1 expression (left) and cg23866403 loci methylation levels (right). (iii) The spatial distance 

distribution between the FXYD1 gene promoter and its enhancer region (left) and the cg23866403 
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methylation loci (right). (B) (i) Cohesin-mediated chromatin interactions around the NKAPL gene in the 

integrative genomics viewer for hTERT-HME1 (healthy) and MCF-7 (cancer) cell lines. Green color 

annotates enhancer-promoter loops, blue color promoter-promoter loops. (ii) The representative 

chromatin 3D model based on Cohesin ChIA-PET data for the NKAPL gene. (iii) The spatial distances 

between promoter-methylation (left) and promoter-enhancer (right) for cancer and healthy cell lines. (C) 

(i) PCHi-C interactions around the NKAPL gene in the integrative genomics viewer for MCF-10A 

(healthy) and MCF-7 (cancer) samples. (ii) Chromatin 3D model of the NKAPL gene in MCF-10A (left) 

and MCF-7 (right) cell lines. (iii) The spatial Euclidean distances between the NKAPL gene body and 

DMS (left); the NKAPL gene body and the enhancer (right) both for MCF-7 and MCF-10A. 

Discussion 

In this study, the MCFS-ID algorithm was applied to return a ranking of statistically significant 

molecular features distinguishing cancerous and normal tissue samples deposited in The 

Cancer Genome Atlas (TCGA) [https://www.cancer.gov/tcga]. Using this algorithm we could 

select a small number of multi-omics features significantly different between cancer and 

normal, reducing the dimensionality of these datasets from 417k initial features to only 2.7k of 

ranked features. Our further effort focused on verifying whether these significant features also 

have a substantive meaning in the context of cancerogenesis. It was shown that almost all 

(n=590) mRNA significant genes returned by MCFS-ID reflected differential expression (Fig 

4A) between cancer and normal samples. Nevertheless MCFS-ID also explores the 

interactions, therefore, the statistical significance of individual features for the entire group of 

samples is not obvious. Meanwhile, a large part of the DMSs did not show differential 

methylation levels (Fig 5C). This suggests that mRNA significant features may be standalone 

breast cancer predictors, while DNA methylation loci features must be considered in 

interaction with others to obtain highly predictive features (Table 2). This finding seems logical 

in the context of the regulatory functions of DNA methylation. The top n=10 of 590 significant 

mRNA genes from MCFS-ID ranking were verified and confirmed (based on the literature) to 

have a meaningful impact on cancerogenesis which implies that the choice of implemented 
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feature selection approach is meaningful. In the METABRIC cohort [103] authors reported 

significant enrichment of immunologically related genes, which was also confirmed in our 

study, showing 79 of 590 mRNA genes being related to immunological processes. Over 75% 

of 590 mRNAs were down-regulated in cancer samples, which suggests that DNA hypo-

methylation in cancer leads to derepression of gene expression, although such a high 

participation of down-expressed genes in cancer is quite surprising compared to the previously 

described patterns [104]. Most of the mRNAs that were up-regulated in cancer samples 

contributed to the cell cycle and mitosis. It fits well with the cancer cells’ specificity - increased 

cell division and growth. However, such a generalization may lead to erroneous conclusions. 

We found that a group of up-regulated genes CCNB2, CCNB1, PLK1, and CDK1 was 

associated with the Reactome pathway “Activation Of NIMA Kinases NEK9, NEK6, NEK7” (S2 

Table). Up-regulation of PLK1 in some of the breast cancer subtypes may inhibit tumor 

development by interfering with cytokinesis and mitosis [105,106] as well as one of the NIMA 

Kinases NEK9, which is associated with tumor growth prevention, when upregulated [107]. 

Additionally, a group of genes from cluster 5, identified with the NLP clustering analysis (Table 

3), showed a link with tumor suppressors, e.g. APC gene that, through association with other 

proteins, prevents the uncontrolled growth of cells [108]. Concluding, depending on the 

biological context, up-regulated genes may result in activation as well as repression of 

processes contributing to cancer development.  

As mentioned before, the majority of significant mRNAs (n=590) were down-regulated 

in cancer cells. Pathway analysis showed that they can perturb the regulation of a wide range 

of Reactome metabolic pathways including ethanol oxidation [109], lipid metabolism 

[110,111], which are linked to breast cancer development, and also retinoid acid or 

neurotransmission, specifically connected with breast cancer treatment methods [112-115]. In 

addition to the results from the Reactome database, the NLP clustering approach unveiled a 

very interesting group of genes down-regulated in cancer (cluster 3, Table 3) associated with 

G protein-coupled receptors (GPCRs), which are cell surface receptors that detect ligands 

outside of the cell and initiate cellular response [116]. Moreover, in pathological states, GPCRs 
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are over-expressed and activated in an aberrant way. This may imply certain aspects of 

cancer, including growth, invasion, migration, angiogenesis and metastasis [117,118]. In 

breast cancer multiple specific GPCRs were confirmed to participate in a plethora of autocrine 

and paracrine physiological effects or through activation of various ligands modulate cellular 

functions, which was associated with mRNA gene over-expression (revised in [119,120]). 

Interestingly, the genes from cluster 3 related to GPCRs were down-regulated, which is in 

contrast to known studies and that inconsistency should be tested in vivo. Another group of 

genes (cluster 2 Table 3) was described by keywords related to the ATP-binding cassette 

transporters (ABC transporters) of which some are used in ion transport that is important for 

muscle contraction and cardiac processes. The majority of genes in this group were down-

regulated. There is evidence in the literature that ABC transporters and related to functions 

returned by NLP as single terms: ‘ions’, ‘transport’, ‘muscle’, ‘contraction’ and ‘cardiac’ are 

known to be linked with cancer biology [121]. For the ABC transporters family, both decreased 

and increased expression levels may be unfavorable for cancer patients, and some of the 

genes from this family are already molecular targets for anticancer drugs [122,123]. In this 

study, their levels were decreased in cancer samples, and there are reports that this may 

contribute to the occurrence of a more aggressive form of cancer, which was shown in 

TMPRSS2-ERG-negative prostate cancer [124]. For decreased expression of the ABCA9 

gene in epithelial ovarian cancer, a significantly shorter time to progression was observed 

[125]. Interestingly, in breast cancer patients the reduced ABCA8 expression lowers 5-year 

patients survival rate, is present in older patients (>60 age) as well as in the three breast 

cancer subtypes: ER-negative, PR-negative, HER-positive [126]. Among the keywords 

describing the remaining clusters of genes (Table 3), both general and very specific phrases 

were present. It seems that NLP based clustering analysis allows for efficient linking of even 

small gene groups with their related processes, which we find as a big advantage. The 

obtained clustering results allow for a precise selection of genes having a general role from 

once having specific functions Further development of this NLP-based gene ontology analysis 
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seems promising, especially as NLP is already widely and successfully used in other fields 

e.g. supports disease diagnosis [127]. 

 In breast cancer samples, DNA hyper-methylation in the regulatory regions of tumor 

suppressor genes and hypo-methylation of oncogenes has been shown [128]. In this study 

MCFS-ID returned a ranking of 2006 DMSs that were significant predictors of breast cancer. 

They were located noticeably more often in CpG Islands (CpGI) and open seas and less often 

in shores than would be expected by the cytosines distribution in the entire Illumina panel. 

This result shows that the chance for a change in the methylation level between the tumor and 

the control samples depends on the genomic location. Overall, a small fraction of the returned 

significant DMSs was hypo-methylated in cancer samples (Fig 5C) while the majority was 

hyper-methylated. DMSs located in CpGIs were the most differentiated between normal and 

tumor samples in terms of methylation level (Fig 5B). This result corresponds very well to the 

pattern of generally dominant DNA hyper-methylation in breast cancer and only local disorders 

of DNA hypo-methylation (revised in [129]).  

There were discovered putative functional associations between 59 DMS-mRNA pairs, 

out of which over 90% of DMS were located in distal genomic regulatory regions. DNA 

methylation changes of these loci may potentially affect the activity of enhancer-like regions, 

influencing the target-gene expression. Out of 34 genes under such enhancer-like regulatory 

effect, only two KIFC1 and HN1L were over-expressed in cancer, both with significant negative 

correlation with DNA methylation. Up-regulation of KIFC1 expression is well known for breast 

cancer [130] and the protein has been suggested as a chemotherapy target [131], while over-

expression of HN1L is related to tumor invasion in breast cancer [132]. Next, based on the 

discovered association among DNA methylation sites within the promoter of NKAPL gene and 

TFBS of NRF1 TF shown in this study, we are confident about the presence of putative 

functional dependency of these molecular elements. In the proposed regulatory model, 5 

hyper-methylated cytosines inhibit NRF1 binding within the NKAPL promoter resulting in its 

down-expression in tumor samples. Competition between DNA methylation and NRF1 binding 

to DNA sequences was confirmed [133], supporting the proposed regulatory model of NKAPL. 
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Moreover, based on the results from the extensive use of MCFS-ID, it was possible to select 

23 cytosines significantly associated with NKAPL expression (r=0.81). Among all of them only 

one was located within NKAPL promoter (cg18675097) and all the others were in the range 

from 1369587 to 130556755 base pairs from NKAPL TSS, suggesting their presence in distal 

regulatory regions of NKAPL. By using this approach we additionally selected 66 mRNA 

genes, whose expression was well predicted by DNA methylation and 39 of them by miRNA 

expression as well (see results section ”Detection of miRNA and DNA methylation loci 

significant in the context of predicting mRNA expression levels”). 

To review the significant set of n=105 miRNA returned by MCFS-ID, the analysis of 

associations between miRNA to mRNA was conducted resulting in the list of proteins targeted 

by drugs used for breast cancer treatment. For example, palbociclib (DB09073), a drug for 

treating metastatic breast cancer which targets proteins encoded by genes such as CCNA2, 

CCND1, CDC25A, CDK1, CHEK1, ESR1, KRAS and PLK1 has a DScore of 0.99 while the 

GScore of the genes is 0.85. At the same time, other drugs with high DScore, used in breast 

cancer treatment, eg. ribociclib [81], abemaciclib [82], tamoxifen [134] etc. were found to be 

linked to miRNA reported as significant in this study (S1C Fig). 

Methylated/unmethylated nucleotides within the TFBS may disturb TF binding to DNA 

sequence. This may change TF binding affinity, and shift the factor binding site, resulting in 

alternative protein complex formation, binding prevention or other TFs binding to such locus 

[135,136]. At the same time, it is not clear what the order of these events is, what initiates the 

process and what is the result [24]. In this study we identified many more TF motifs overlapping 

hyper-methylated DMSs than hypo-methylated, which reflects the much higher frequency of 

hyper-methylated cytosines among the 2006 DMSs. Moreover, almost all motifs, except 

EPAS1, containing hypo-methylated cytosines were identical to the TF motifs containing 

hyper-methylated cytosines. There are reports indicating that EPAS1 may support 

proliferation, migration and increase tumor cell invasiveness [137,138]. Genes encoding TFs 

that bind to motifs identified in sequences containing hyper-methylated cytosines (Fig 8D) 

belonged to, among others, cell cycle signaling pathways, transcription misregulation in 
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cancer, the TGF-β pathway, cellular senescence, and several cancer types, including breast 

cancer q-value=0.0000234 (Fig 8D and S10 Table). 

In the second MCFS-ID experiment, the association between DMSs and expression of 

genes encoding TFs, whose motifs overlapped these DMSs, was exposed. There were 7 

genes encoding TFs: MXI1, EPAS1, PLAGL1, E2F1, NR0B1, BHLHE41 and ARNT2. PLAGL1 

has been reported as a possible epigenetically regulated tumor suppressor gene [139] and 

NR0B1 (also known as DAX-1) has been repeatedly indicated as a potential target for anti-

cancer therapy in breast cancer patients [140,141]. Likewise, there is evidence that low 

expression of BHLHE41, which was also observed in the results of this study, promotes breast 

cancer tumor invasion [142]. The other four EPAS1, MXI1, ARNT2 and E2F1 are connected 

with the signaling pathways involved in the processes of tumor formation and development 

[143].  

Using the epigenetic variables that functionally interact with each other, here DMSs 

and TFs, together with MCFS-ID and linear regression models allowed for the identification of 

mRNA target genes under probable epigenetic regulation (see results Fig 9A, S12 Table). 

Among nine target genes, four were confirmed to have linear models with high goodness of 

fit: TMEM220, NKAPL, SHE, TGFBR3. These genes were down-regulated in tumor samples 

and seem to be tumor suppressors whose activity can be regulated by DNA methylation 

located within TFBS of specific TFs. 

 Hyper-methylated DMSs may reduce these four TFs binding affinity and change gene 

expression. Moreover, these DMSs are located in heterochromatin regions, known to 

contribute to gene silencing. NKAPL (NKAP-like) is a cell-specific transcriptional suppressor 

in Notch signaling [144] and its reduced expression in cancer has been indicated by several 

articles, same as the relationship between DMS hyper-methylation and demonstrated change 

in NKAPL expression [93,145]. Transforming growth factor beta receptor III encoded by 

TGFBR3, binds inhibin and can mediate functional antagonism of activin signaling [146]. 

Decreased expression of TGFBR3 (former ETDL1) causes a decreased TβRIII expression in 

tumor tissue resulting in tumor progression because of increased invasiveness, angiogenesis, 
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and chance of metastasis [147,148]. Next, the SH2 (SHE) domain-containing adapter protein 

E possesses the Src homology 2 (SH2) domain identified in the oncoproteins Src and Fps. It 

functions as a regulatory module of intracellular signaling cascades by interacting with 

phosphotyrosine-containing target peptides [149]. The Transmembrane protein 220 

(TMEM220) is involved in the FOXO and PI3K-Akt pathways [150] and promotes regeneration 

[151]. Down-expression of TMEM220 and SHE genes (also in connection with hyper-

methylation) has been repeatedly indicated as a significant factor important in the formation 

and development of cancer, but not necessarily breast cancer [62,150,152; Supplement Table 

S1 153]. Our results would therefore be the first to indicate the impact of these two genes in 

breast cancer development.  

To extend the analysis of functional importance of the four genes the gene-gene 

interactions were used to build the network of 17 new genes connected to the initial four (Fig 

9B). The functional investigation of genes with the highest number of connections (MYC, NOG, 

TGFB1, VIRMA, SRC and AR) in the network showed an overrepresentation of signaling 

pathways related to cancer processes, mainly associated with cell cycle disorders namely: 

proliferation, growth, differentiation, migration or apoptosis as well as patients survival. The 

returned KEGG pathways were consistent with the previously discussed gene biological 

functions. For example, the hyperactivation of the Mitogen Activated Protein Kinase (MAPK) 

pathway is frequently observed in many cancers, including breast cancer. It is an oncogenic 

pathway, and at the same time, it is crucial for the signal transduction of the ErbB protein 

family [154]. Some proteins from the ErbB family are oncogenes associated with proliferation 

and apoptosis. They are also related to cancer treatment resistance in some breast cancer 

subtypes [155]. At the same time, the MAPK is associated with PI3K-AKT-mTOR, i.e. the 

pathway which is directly related to TGFB1 and MYC and indirectly with TMEM220 and AR. 

PI3K-AKT-mTOR is associated with the processes of oncogenesis and breast cancer 

development, and many inhibitors of this pathway are currently in clinical trials [156,157]. 

Another overrepresented pathway was Hippo, which is linked with proliferation, migration and 

apoptosis [158] and metastasis changes [159]. The Hippo pathway is well-known for having 
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an impact on the transforming growth factor beta (TGF-β) signaling pathway through which 

they may control tumor development [160,161]. Additionally, components of the TGF-β 

pathway play a significant role in the proliferation, cell growth and differentiation of cells, but 

also affect the immune system, enabling the repair or development of ongoing processes that 

were shown to negatively affect the patient's condition [160,162,163]. Members of the TGF-β 

protein family play an essential role in apoptosis and migration, the regulation of which can 

have a vast impact on breast tumor development, especially at its later stage [160,163,164]. 

Additionally, one of the miRNA genes (hsa-miR-211) that was pointed out as significant in the 

presented regulatory network (Fig 9A, S5 Table), is known to participate in the TGF-β pathway 

[165]. The hsa-miR-211 is involved in the regulation of proliferation, migration, invasion, 

apoptosis and drug resistance [166] and we discovered its association with the SHE gene. 

Alterations in the expression level of hsa-miR-211 have been repeatedly reported in the 

context of various cancer types, but the direction of its expression level changes depending 

on the type of cancer. SHE was confirmed as an oncogene and/or tumor suppressor 

depending on cancer type [167]. In breast cancer, change in SHE expression, no matter if 

decreased or increased, results in metastasis and poor prognosis [166]. We are convinced 

that the analysis of hsa-miR-211 with the SHE, whose role is little known, should become the 

subject of detailed studies. Additionally, one of the terms related to the obtained gene-gene 

network was “chemical carcinogenesis”, which is connected to many environmental and 

chemical factors having a strong impact on the oncogenic processes including DNA 

methylation. Therefore, there are multiple indirect confirmations that the created network 

demonstrates interplay among detected epigenetic disorders, which in turn lead to subsequent 

changes affecting target gene expression and in turn result in disease development. 

From the massive MCFS-ID computational approach, we discovered an association 

between cg23866403 loci and FXYD1 and, to verify that functional putative association, we 

built a chromatin spatial model, using the 3D-GNOME approach. Based on the obtained 

results (Fig 10), we hypothesize that, in normal tissue, the lower level of cg23866403 loci 

methylation in the FXYD1 gene promoter results in a shortened spatial distance to the gene 
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enhancer and, as a result, FXYD1 increased expression compared to cancer tissue. The 

significant impact of DNA methylation on chromatin structure in cancer is well studied [168], 

showing the appearance of changes for example due to CTCF binding disruption [169]. 

Moreover, the length of the DNA loops may change depending on the cohesin presence in 

gene expression regulatory machinery as well as the presence of CTCF in one or both anchors 

of a loop [170]. The relationship between distance change and gene expression change is 

very poorly understood and the only example we found was in Drosophila [171]. Based on our 

result, one could suggest that the change in DNA methylation affected protein binding and in 

consequence changed the length of the loop. Through the results presented in this study, the 

NKAPL gene was found to appear in multiple contexts making it an interesting target, 

especially in its transcription relation due to altered DNA methylation. Therefore, we built 

spatial models for it using two different experimental chromosome conformation capture 

protocols-ChIA-PET and PCHi-C (Fig 10). The first model allowed us to observe the change 

in loop length and discover that cohesin-mediated loops surrounding the NKAPL gene were 

longer in normal cell line (hTERT-HME1) than in cancerous (MCF-7), and also that loops 

anchored by enhancers are present only in the normal cell line. Thanks to the second model, 

it was noticed that in normal cell lines (MCF-10A) around the NKAPL gene, several times more 

interactions can be identified compared to the cancer cell line (MCF-7) with a simultaneous 

higher level of DNA methylation in cancer. Based on the spatial models obtained by both 

methods, we hypothesize that the reduced level of methylation in normal cells results in the 

formation of a much larger number of stable interactions, which translates into a more 

condensed chromatin region. However, this increased level of chromatin condensation in 

normal cell line cannot be interpreted as closed chromatin, preventing transcription and 

expression regulation processes. It is tighter because of the higher number of established 

connections. In contrast to the cancer cell line, where fewer connections result in looser 

chromatin structure, putatively unstable and due to that, exposed to unexpected transcriptional 

changes that may result in the development of potentially oncogenic changes. Chromatin 

organization has a significant impact on organism functioning [172], and its disruption may 
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support pathogenic processes, e.g. through chromosomal instability which intensifies 

deregulation of gene expression [173]. Changes in DNA looping may cause errors in gene 

regulation both during cancer initiation and development [40,174]. Both the absence of such 

loops and the change in chromatin interaction frequency in cell lines was demonstrated to 

have connection with carcinogenesis [58]. Moreover, more loosely packed chromatin may 

reduce nuclear stiffness and at the same time increase chromatin mobility [175, 176]. This 

may cause chromosomal translocations and changes in transcription landscape which may 

contribute to oncogenic events [173,177]. This may explain why we observed more loosely 

packed chromatin in the cancer cell line related to the NKAPL gene promoter. Cohesin-

mediated chromatin structures are known as regulators of Epithelial-Mesenchymal Transition 

(EMT) related genes, whose expression changes influence cancer progression, including 

breast cancer [178]. EMT may also be influenced by disturbances in the TGF-β signaling 

pathway, which may suggest the multilayer nature of the cohesin-mediated chromatin 

structures disorder [178,179]. Finally, it has to be noticed that we used TCGA tissue samples 

and they represent various cell heterogeneity. This may influence the study, because some of 

the observed values might be averaged and not confirmed as significant. At the same time, 

we are sure that presented here altered transcriptomic and epigenetic signals are of great 

value and studied further at the level of specific cell populations will bring detailed insight into 

gene expression regulation during breast cancer development. 

Summary 

Our studies have allowed us to extract a very rich set of molecular features including mRNA 

expression, miRNA expression, DNA methylation allowing for a precise classification of breast 

cancer vs normal samples. We are certain that among them are new targets for further 

functional research in the context of breast cancer development and drug studies. In addition 

to known features validating our methodology, we have listed new candidates, and for some 

of them we presented possible mechanisms of their regulation. The most interesting seems to 
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be the proposed regulatory model of NKAPL, PITX1 and TMEM220. The computational results 

of 3D chromatin structure models deserve attention, which in our opinion are very interesting 

candidates for further studies. 
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