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Abstract

Quantification of amyloid load with positron emission tomography can be useful to assess

Alzheimer’s Disease in-vivo. However, quantification can be affected by the image process-

ing methodology applied. This study’s goal was to address how amyloid quantification is

influenced by different semi-automatic image processing pipelines. Images were analysed

in their Native Space and Standard Space; non-rigid spatial transformation methods based

on maximum a posteriori approaches and tissue probability maps (TPM) for regularisation

were explored. Furthermore, grey matter tissue segmentations were defined before and

after spatial normalisation, and also using a population-based template. Five quantification

metrics were analysed: two intensity-based, two volumetric-based, and one multi-paramet-

ric feature. Intensity-related metrics were not substantially affected by spatial normalisation

and did not significantly depend on the grey matter segmentation method, with an impact

similar to that expected from test-retest studies (�10%). Yet, volumetric and multi-paramet-

ric features were sensitive to the image processing methodology, with an overall variability

up to 45%. Therefore, the analysis should be carried out in Native Space avoiding non-rigid

spatial transformations. For analyses in Standard Space, spatial normalisation regularised

by TPM is preferred. Volumetric-based measurements should be done in Native Space,

while intensity-based metrics are more robust against differences in image processing

pipelines.

Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the most common

pathology leading to dementia in the elderly. Past [1] and current [2] guidelines provide

means for the diagnosis of probable AD via clinical assessment of symptomatic patients. While

proved pathological AD is demonstrated via post-mortem assessment [2,3], a research frame-

work was proposed in which AD is defined by the pathological process underlying the patient’s
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symptoms [4]. This definition is achieved with an in-vivo assessment of AD biomarkers, where

positron emission tomography (PET) imaging plays an important role in the quantification of

abnormal β-amyloid (Aβ) plaques depositions in the brain [5–7], one of the hallmarks of AD

[8]. With the combination of PET/computed tomography (CT) with magnetic resonance

imaging (MRI), it is possible to obtain detailed regional quantitative information about AD

biomarkers in the brain. This hybrid imaging approach provides powerful means for the char-

acterisation of early-stage AD and disease progression [9–11].

PET imaging can be assessed using fully quantitative methods applied to dynamic scans or

semi-quantitatively with standardized uptake value ratios (SUVR) in static images that have

shown to achieve high diagnostic accuracy, success for early disease detection, and differential

diagnosis of AD [5,6,12–17]. While PET imaging provides quantitative data about the biologi-

cal process under investigation, the anatomical volumes of interest cannot always easily be

defined on the PET image due to its restricted spatial resolution and the fact that the PET sig-

nal is not always directly related to anatomy. On the other hand, MRI provides highly detailed

anatomical images that can be aligned with PET images to perform a hybrid analysis, combin-

ing anatomical and functional data. Thus, it becomes possible to define anatomically derived

volumes of interest on the MRI and perform PET quantification using these volumes.

Additionally, it is also possible to spatially normalise the images from the Native Space
(defined by the MRI or the PET, and specific for each subject) to a Standard Space, commonly

defined by the Montreal Neurological Institute (MNI) Space [18] that was created based on

healthy young volunteers. With images in the Standard Space, it is possible to perform voxel-

wise analysis to compare subjects, while regional analysis (based on anatomical volumes of

interest) is possible in both Native Space and Standard Space. These spatial transformations

are commonly calculated with the subject’s anatomical MRI as reference. However, there is no

consensus on the best approach for PET+MR image processing and only a few studies are

exploring the impact of image processing approaches on PET quantification results [19–23].

Notably, there has been an initial exploration of a MR-less approach for spatial transformation

of brain PET images into the MNI space using the low-dose CT acquired for attenuation cor-

rection during the PET/CT scanning [24]. However, in our study we focussed on pipelines for

which both PET and MRI data are available, including the use of grey and white matter seg-

mentations that are most commonly derived from T1-weighted MR images.

Non-rigid spatial transformations change the voxel volume, while the voxel intensities can

be modulated. Some spatial transformation methods preserve the PET voxel concentrations

and are expected to have less effects on voxel-wise analysis and metrics related to the activity

concentration measured in the PET image. Other approaches preserve the total signal in the

image and are expected to have less influence on measurements of total regional activity [25–

28]. Furthermore, when carrying out analysis in Standard Space the tissue segmentation can

be performed on the MR images before or after their non-rigid spatial transformation. This is

not expected to strongly affect metrics, however, when pre-defined templates in Standard
Space are used to delineate regions of interest on the PET images, a significant impact on met-

rics is expected. Unfortunately, the methodology applied to process the images and to define

the volumes of interest is frequently underreported in literature and vary depending on the

specific scientific question under investigation, rendering reproducibility and comparison

between studies difficult.

The current study aimed to assess the influence of different image processing pipelines on

quantification of amyloid burden with PET and to what extent various quantitative tracer

uptake and volumetric measurements are affected by performing the feature extraction in

Native or Standard Space, by using different spatial transformation methods, and by employ-

ing different grey matter tissue segmentation approaches.
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Materials and methods

Subjects

Twenty-eight subjects underwent dynamic [11C]PiB PET/CT scans for amyloid imaging, as

well as a T1-Weighted 3D MRI scan. Twelve subjects were clinically diagnosed with AD fol-

lowing the National Institute on Aging and Alzheimer’s Association (NIA-AA) criteria [2] and

classified as β-amyloid positive based on visual inspection of the [11C]PiB images, while sixteen

subjects were healthy volunteers (HC) with no cognitive complaints and classified as β-amy-

loid negative. Healthy volunteers were recruited via advertisement on local newspapers and

within the University Medical Center Groningen (UMCG). All subjects were considered com-

petent (MMSE > 18) to give informed consent to participate in the study and a written

informed consent was obtained. Subjects’ demographics can be seen in Table 1. No statistically

significant difference was found for age, weight, BMI, and injected activity between HC and

AD subjects, while the MMSE difference was statistically significant (two-tailed t-test). The

current cohort is a subset of a larger study at the memory clinic, Alzheimer Centre of the

UMCG, Groningen, The Netherlands. Ethical approval was obtained from the Medical Ethical

Committee of the UMCG (2014/320).

Image acquisition and pre-processing

All PET/CT scans were performed with Siemens Biograph 40mCT or 64mCT scanners (Sie-

mens Medical Solutions, USA) at the UMCG. Both systems were from the same vendor and

generation; the acquisition and reconstruction protocols were harmonized, and the systems

were (cross-)calibrated. No significant differences between the images provided by these two

different scanners were found, as shown also in a previously published study using the same

dataset [29]. Scans were performed under standard resting conditions with eyes closed. PET

acquisition started at tracer injection and lasted at least 60 minutes. List-mode PET data was

reconstructed with 3D OSEM (3i24s) including point spread function resolution modelling

and time-of-flight. More details on the PET acquisition and reconstruction can be found else-

where [30]. Using PMOD (version 3.8; PMOD Technologies LLC), the 40 to 60 minutes inter-

val of the dynamic PET images was averaged to obtain a static PET image. MRI acquisitions

were performed at the UMCG and nearby hospitals following local clinical routine 3D

T1-weighted MRI acquisitions. MR images were re-sliced to a voxel size of 1.0 × 1.0 × 1.0

mm3, since some clinical scans had different voxel spacing (0.98 × 0.98 × 1.0 mm3,

1.01 × 1.01 × 1.0 mm3, and 0.49 × 0.49 × 1.0 mm3).

Native Space and Standard Space

In this study, the quantification of images was performed in two different reference spaces:

Table 1. Subject demographics (mean ± standard deviation).

AD HC

Gender (M:F) 8:4 11:5

Age (years) 64±8 69±5

Weight (kg) 81±14 77±12

BMI 26±5 25±3

MMSE 24±3 30±1

Minimum MMSE 19 28

Injected activity (MBq) 352±75 386±46

https://doi.org/10.1371/journal.pone.0248122.t001
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1. Native Space: the T1-MRI image was used to define the reference space of each specific sub-

ject. In this Native Space, all the subject’s brains are anatomically unique, and they all have

their individual coordinate systems.

2. Standard Space: the T1-MRI of each subject was used to estimate the non-rigid spatial

transformations needed to align and warp each subject-specific brain image into the MNI

space. In this Standard Space, all the subject’s brains are anatomically equivalent, and they

share a single common coordinate system.

Spatial transformations

Using Statistical Parametric Mapping version 12 (SPM12, Wellcome Trust Centre for Neuro-

imaging, UK), static [11C]PiB images were spatially aligned to the subjects’ MRI (i.e. Native
Space) using rigid transformations with a Normalised Mutual Information objective function

and linear interpolation. Then, non-linear transformations were estimated to adjust each sub-

ject’s MRI to the Standard Space using three different methods (details on the settings used

can be found in Tables A and B in S1 File). Two methods are based on a maximum a posteriori

(MAP) approach [25,26] that provides the same spatial transformation parameters while treat-

ing the voxel values differently: one method modulates the voxels to preserve the total amount

of signal in the image (MAPa), while the other preserves the voxel concentrations (voxel inten-

sities) of the original image (MAPc). The third spatial transformation method is a unified seg-

mentation method (USM) that uses tissue probability maps (TPM) as deformable spatial

priors for regularisation of the non-linear deformations and that preserves the voxel concen-

trations of the original image [27,28].

Volumes of interest: Grey matter and cerebellum

For each subject, different volumes of interest (VOI) were created for the grey matter (GM)

defined by a binary mask based on a 50% threshold of the GM TPM. The GM TPM was deter-

mined by either segmenting the subject’s MRI (using the tissue segmentation tool in SPM12)

or by using a GM template [31]. As such, three methods for defining GM tissue were used:

1. GM TPM in Native Space obtained from the tissue segmentation of the subject’s MRI in its

Native Space (MRn)

2. GM TPM in Standard Space obtained from the subject’s spatially transformed MRI to Stan-
dard Space (MRs)

3. GM TPM from a template available in Standard Space (TEs)

After the definition of GM tissue, (inverse) spatial transformations were applied to move

GM TPMs between Native and Standard Space using the three different methods (MAPa,

MAPc, and USM) as described above. Thus, five sets of GM tissue maps were available: GM

from MRn in both Native and Standard Space, GM from MRs in Standard Space, and GM

from TEs in both Native and Standard Space. Notice that since spatial transformations were

carried out with three different methods, three GM TPMs were available after moving to a dif-

ferent space. In this study, the cerebellum VOI was defined based on the Hammers atlas [31],

which is available in the Standard Space (CERs) and can be transformed into Native Space
using each of the three inverse spatial transformations.

Image processing pipelines

The extraction of metrics was performed for each possible combination of reference space,

spatial transformation method, and GM definition. Each of these combinations will be referred
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to as an image processing pipeline. Fig 1 shows a diagram of the different image processing

pipelines assessed in the present study. Notice that spatial transformations can impact even the

results obtained in the Native Space since the inverse transformations are applied to move the

GM and the cerebellum VOI from the Standard Space into the Native Space. Two pipelines

were considered as the main/reference pipelines: Native Space + MRn + USM and Standard
Space + MRn + USM. In the first main pipeline, all images and pre-processing were performed

in the patient Native Space. The second main pipeline involves a rigid transformation of the

PET and MRI in Native Space, a GM segmentation using USM in Native Space followed by a

non-rigid transformation of the PET, MRI, and GM images to Standard Space. These main

pipelines represent the most commonly used ones for PET+MR data analysis in either refer-

ence space, as the tissue segmentation is performed before transformations, and a state-of-the-

art method is used for spatial normalisation.

Fig 1. Image processing pipelines scheme. Scheme of the different image processing pipelines applied to the PET image, MRI, and grey matter (GM) tissue maps. The

rigid transformation is shown by a dotted line, elastic transformations by continuous lines, and tissue segmentation by dashed lines. Images were transformed from Native
Space into Standard Space using one of three possible spatial normalisation methods (upper and middle section). Spatial transformation matrices were calculated based on

the MRI T1 image and these matrices were then applied to the other relevant images, while the inverse matrix was applied to transform the images from Standard Space to

Native Space, for example when moving the GM derived from a standard template image or the cerebellum (CER) volume-of-interest (bottom section). Note that

subscripts ‘s’ and ‘n’ denote the space in which the tissue images were defined.

https://doi.org/10.1371/journal.pone.0248122.g001
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Metrics

At each image processing pipeline, a set of SUVR images were generated by dividing each

voxel value of the [11C]PiB image by the average SUV obtained from the whole cerebellum’s

VOI. Then, the voxels with SUVR� 1.5 were defined as PiB positive (Aβ+) [32–34] and corre-

sponds to a high sensitivity for AD classification [35,36]. Finally, three sets of metrics were

extracted from the GM VOI: intensity-based, volumetric, and multi-parametric.

Intensity metrics:

• Average SUVR of all voxels within the GM VOI (SUVRmean)

• Average SUVR of Aβ+ voxels within the GM VOI (SUVRmeanAβ+)

Volumetric measurements:

• Volume of Aβ+ voxels within the GM VOI (in mL)

• Amyloid Fractional Volume (AFV): the ratio between the Aβ+ volume and the GM VOI

volume

Multi-parametric feature that combines intensity and volumetric metrics:

• Total Amyloid Burden (TAB) = SUVRmeanAβ+ × Aβ+ volume

The extraction of these metrics was performed by in-house developed MATLAB (version

R2018b) scripts based on SPM functions.

Data analysis

Image processing pipelines were explored with boxplots and descriptive statistical analysis

(mean and standard deviations are shown in the S1 File). The lower and upper whiskers of the

boxplots extend to the 1.5×IQR (interquartile range), data beyond that are plotted individually.

Additionally, an inferential statistical analysis was performed to explore the impact of the dif-

ferent pipelines on the metrics using a Generalised Estimating Equations (GEE) model [37–

39]. The GEE model is known to achieve higher statistical power with small sample sizes than

ANOVA [39] and does not require data normality [37]. For the present study, the GEE model

was built with a linear scale response and an independent working correlation matrix. Space of

analysis, spatial transformation method, and grey matter definition were included in the

model as independent variables, as well as their interactions. The model was then applied inde-

pendently to each metric (i.e. dependent variable). The overall results of the GEE model were

reported with the mean difference, the 95% confidence interval, and the p-value in a table.

These results are mentioned in the text were appropriate with the mean difference and p-

value. A p-value of 0.05 was used as the threshold for considering statistical significance (Wald

method, without correction for multiple comparisons in the pairwise comparisons). The

results from the two main pipelines are presented in the main text in depth with the mean dif-

ference, 95% confidence interval, and p-value. The boxplot and descriptive statistical analyses

were carried out with R (version 3.5.1, Rstudio version 1.1.456), while the GEE analyses were

performed with SPSS (version 26.0.0.1, IBM Armonk, NY, USA).

Results

In this section we will address the impact of using different reference spaces, spatial transfor-

mation methods, and GM definition methods separately for each of the amyloid burden

uptake metrics, being intensity (SUVR), Aβ+ volume, amyloid fractional volume, and total

amyloid burden. A collection of overall comparisons is presented in Table 2 and the two main
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pipelines (Native Space + MRn + USM vs. Standard Space + MRn + USM) are compared in

Table 3. At the end of this section, an overview summary of the main results is provided.

Intensity metrics

Comparing reference spaces. The global effects from the GEE model (i.e., no interaction

of the independent variables) found a small statistically significant overall difference of 0.92%

(p = 0.007) in the SUVRmean values obtained in the different reference spaces, with Native
Space having lower values than those in Standard Space (Table 2). Fig 2 and Table B in S1 File

show SUVRmean distribution for different image processing pipelines and splits the subject

Table 2. Overall comparisons of different pipelines.

Metric Comparison Difference (%) 95% Confidence interval (%) p

SUVRmean Reference Spaces Standard—Native 0.9 0.3–1.6 < 0.01

Spatial Transformations MAPc—MAPa 0.6 -0.4–1.6 N.S.

USM—MAPa 10.5 5.5–15.5 < 0.001

USM—MAPc 9.9 5.2–14.6 < 0.001

Grey Matter Definitions MRs—MRn† -0.2 -0.3–0.0 N.S.

TEs—MRn 5.7 -8.0–3.4 < 0.001

TEs—MRs 5.6 -8.0–3.3 < 0.001

SUVRmeanAβ+ Reference Spaces Standard—Native -0.6 -0.9 –-0.3 < 0.001

Spatial Transformations MAPc—MAPa -0.0 -0.5–0.5 N.S.

USM—MAPa 4.8 2.0–7.6 < 0.01

USM—MAPc 4.8 2.2–7.4 < 0.001

Grey Matter Definitions MRs—MRn† -0.1 -0.2 –-0.0 < 0.01

TEs—MRn 0.9 0.2–1.7 < 0.05

TEs—MRs 1.3 0.4–2.1 < 0.01

Aβ+ Volume Reference Spaces Standard—Native 13.8 5.9–21.7 < 0.01

Spatial Transformations MAPc—MAPa 3.6 -1.8–8.9 N.S.

USM—MAPa 36.0 16.5–55.4 < 0.001

USM—MAPc 32.5 14.9–50.1 < 0.001

Grey Matter Definitions MRs—MRn† 5.3 2.9–7.7 < 0.001

TEs—MRn 30.8 20.9–40.8 < 0.001

TEs—MRs 18.0 10.6–25.3 < 0.001

Amyloid Fractional Volume Reference Spaces Standard—Native 0.3 -2.6–3.1 N.S.

Spatial Transformations MAPc—MAPa 1.1 -3.7–5.9 N.S.

USM—MAPa 35.6 16.6–54.6 < 0.001

USM—MAPc 34.6 16.8–52.3 < 0.001

Grey Matter Definitions MRs—MRn† -1.5 -2.0 –-1.0 < 0.001

TEs—MRn -9.9 -18.1 –-1.7 < 0.05

TEs—MRs -8.3 -16.7–0.1 N.S.

Total Amyloid Burden Reference Spaces Standard—Native 13.4 5.6–21.2 < 0.01

Spatial Transformations MAPc—MAPa 3.8 -2.3–10.0 N.S.

USM—MAPa 45.0 21.0–68.9 < 0.001

USM—MAPc 41.3 19.5–63.1 < 0.001

Grey Matter Definitions MRs—MRn† 5.2 2.7–7.7 < 0.001

TEs—MRn 30.4 19.9–40.8 < 0.001

TEs—MRs 17.7 10.1–25.3 < 0.001

†These comparisons were made in Standard Space. Statistical significance is presented in tiers: Non-significant (N.S.), p < 0.05, p < 0.01, and p < 0.001.

https://doi.org/10.1371/journal.pone.0248122.t002
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groups by diagnosis. It was also possible to see that there was not a substantial difference in

SUVRmean between the two main pipelines (0.8%, p<0.001, Table 3), that is, the change was

less than what is expected from a repeatability analysis, even if it was statistically significant.

Similarly, SUVRmeanAβ+ was not substantially affected by analysis in different reference spaces

Fig 2. Distribution of [11C]PiB mean uptake ratio in grey matter tissue (SUVRmean). On the left panels, values from images analysed in the

Native Space, on the right images that were spatially normalised to Standard Space. The different spatial normalisation methods are represented in

sub-columns within each column, notice that spatial transformations for images in Native Space are required to transform template images from

Standard Space. Rows show the different grey matter mask definitions. Diagnosis is indicated on the legend.

https://doi.org/10.1371/journal.pone.0248122.g002

Table 3. Comparing the main pipelines.

SUVRmean SUVRmeanAβ+ Volume Aβ+ AFV TAB

Difference (%) 0.8 -0.2 19.3 1.6 19.1

95% CI (%) 0.5–1.0 -0.3 –-0.0 11.5–27.1 0.5–2.7 11.0–27.2

p < 0.001 < 0.05 < 0.001 < 0.01 < 0.001

Comparing the two main pipelines: [Standard Space + MRn + USM]–[Native Space + MRn + USM].

https://doi.org/10.1371/journal.pone.0248122.t003
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(Table 2). Fig 3 and Table B in S1 File show similar behaviour for SUVRmeanAβ+ as previously

described for SUVRmean. Difference between the two main pipelines was statistically signifi-

cant, though with a very small effect size of -0.2% (p = 0.024, Table 3).

Comparing spatial transformation methods. Overall, the SUVRmean values were only

statistically and substantially affected by spatial transformation between the USM and the

MAP methods, with USM yielding higher SUVRmean values (p<0.001, 10.5% and 9.9%, respec-

tively for MAPa and MAPc). Fig 2 and Table B in S1 File show that there was a better separa-

tion between the subject populations when USM was used for spatial transformations, which

also resulted in a larger spread of SUVRmean values. Likewise, there was not an overall statisti-

cally significant difference in using MAPa or MAPc for SUVRmeanAβ+ estimation. Meanwhile,

USM produced slightly higher values than both MAP methods, however there was not a sub-

stantial impact in the metric (Table 2).

Fig 3. Distribution of Aβ+ mean uptake in all grey matter tissue (SUVRmeanAβ+). On the left panels, values from images analysed in the Native
Space, on the right images that were spatially normalised to Standard Space. The different spatial normalisation methods are represented in sub-

columns within each column, notice that spatial transformations for images in Native Space are required to transform template images from

Standard Space. Rows show the different grey matter mask definitions. Diagnosis is indicated on the legend.

https://doi.org/10.1371/journal.pone.0248122.g003
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Comparing GM definition methods. Overall (global effects from the GEE model), slightly

lower SUVRmean values were obtained using TEs than when the subject’s MRI was used to

define the grey matter tissue, either from MRn (-5.7%, p<0.001) or MRs (-5.6%, p<0.001). For

analysis in Standard Space, there was no statistical difference on SUVRmean values between

MRn and MRs. This can be seen in Table 2, Fig 3 and Table B in S1 File, which also show that

all pipelines involving TEs make the separation between the two subject populations more diffi-

cult and set the average SUVRmean value below the Aβ positivity threshold (SUV = 1.5). Differ-

ences in overall SUVRmeanAβ+ values estimated from different GM tissue segmentations were

not substantial, that is, smaller than that expected from a repeatability assessment (Table 2).

Aβ+ volume

Comparing reference spaces. The overall mean Aβ+ volume obtained in Standard Space
was 13.8% (p = 0.001) higher than that from Native Space. Fig 4 and Table 3 in S1 File show

Fig 4. Volume of high [11C]PiB deposition region in grey matter (Aβ+ volume in GM). On the left panels, values from images analysed in the

Native Space, on the right images that were spatially normalised to Standard Space. The different spatial normalisation methods are represented in

sub-columns within each column, notice that spatial transformations for images in Native Space are required to transform template images from

Standard Space. Rows show the different grey matter mask definitions. Diagnosis is indicated on the legend.

https://doi.org/10.1371/journal.pone.0248122.g004
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that, as expected, AD subjects presented a higher Aβ+ volume than HC subjects for any image

processing pipeline with analysis in either reference space, and indicates that Aβ+ volume

measurements on AD subjects were more susceptible to spatial normalisation than HC sub-

jects. Additionally, there was a significant difference between the two main image processing

pipelines, with 19% (p<0.001) larger Aβ+ volumes in Standard Space than in Native Space.
Comparing spatial transformation methods. Overall larger Aβ+ volumes were obtained

using with USM than with the MAPa and MAPc (36% and 33%, respectively; p<0.001 for

both), and there was no significant difference between the two MAP methods themselves

(Table 2). Spatial transformation with USM noticeably increased the separation between the

two subject populations when compared with the MAP methods (Fig 4 and Table C in

S1 File).

Comparing GM definition methods. Overall, Aβ+ volumes estimated with GM from

TEs were 31% (p<0.001) larger than those that used MRn and 18% (p<0.001) larger than

MRs. For analysis in Standard Space, there was no substantial difference between tissue seg-

mentation from the T1-MRI before spatial transformation (MRn) or after (MRs).

Amyloid fractional volume

Comparing reference spaces. Overall, the AFV values were robust and not statistically

significantly affected by the estimation at Native Space or Standard Space. Fig 5 and Table C in

S1 File show that the invariability of AFV against estimation on different reference spaces was

not dependent on subject diagnosis. Comparing the two main image processing pipelines,

only a 1.6% (p = 0.005) difference was found, with higher values in Standard Space.
Comparing spatial transformation methods. AFV was strongly affected by the spatial

transformation method, with USM showing higher values than MAPa and MAPc methods

(36% and 35%, respectively; p<0.001 for both). However, there was no statistically significant

difference between the MAP methods (Table 2). Subject group separation was larger when

using USM for spatial transformations when compared against the MAP methods (Fig 5 and

Table C in S1 File).

Comparing GM definition methods. In general, AFV was only substantially and statisti-

cally significantly affected by GM definition when comparing TEs and MRn segmentation

methods (-9.9%, p = 0.017, with lower values using TEs). In Standard Space, there was no sub-

stantial difference between GM segmentation before or after spatial normalisation of the MRI

(Table 2).

Total amyloid burden

Comparing reference spaces. TAB estimation was affected by analysis in different refer-

ence spaces, with 13% (p = 0.001) higher values in Standard Space than in Native Space. Fig 6

and Table D in S1 File show that TAB of AD subjects was slightly more impacted by the analysis

in different spaces than that of HC subjects. Comparing the TAB estimated from the two main

pipelines, 19% (p<0.001) higher values were found in Native Space than in Standard Space.
Comparing spatial transformation methods. There was no significant difference in TAB

estimations between images processed with the MAP methods (Table 2). However, USM

resulted in overall higher TAB values than MAPa (45%, p<0.001) and MAPc (41%, p<0.001).

Fig 6 and Table D in S1 File indicate that there was a larger subject group separation when

using USM than one of the MAP methods, regardless of reference space or GM tissue segmen-

tation approach. However, USM did show a larger spread in TAB values for AD subjects than

the MAP methods (TAB descriptive statistics for each pipeline available in the Table D in

S1 File.
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Comparing GM definition methods. TAB values were highly dependent of GM tissue

definition, with overall TAB values from TEs being higher than those from MRn (30%,

p<0.001) and MRs (18%, p<0.001). For the analysis in Standard Space, there was a statistically

significant difference on TAB estimated from MRn and MRs, though without a substantial

effect size (Table 2). Fig 6 and Table D in S1 File show that there was a larger spread of TAB

values from AD subjects when TEs was used in comparison to MRn and MRs.

In summary, it was found that the intensity metrics were not substantially affected by

changes in the image processing pipeline, with a variability smaller than that expected from

test-retest studies (~10%). Meanwhile, the volumetric metrics were heavily dependent on

image processing pipeline (up to 36% overall differences). AFV showed more robustness to

pipeline changes than Aβ+ volume, and only differences in spatial transformation methods led

to substantial differences. TAB was also substantially impacted by image processing pipeline

Fig 5. Amyloid fractional volume (percentage of voxels within grey matter classified as Aβ+) values distribution. On the left panels, values

from images analysed in the Native Space, on the right images that were spatially normalised to Standard Space. The different spatial normalisation

methods are represented in sub-columns within each column, notice that spatial transformations for images in Native Space are required to

transform template images from Standard Space. Rows show the different grey matter mask definitions. Diagnosis is indicated on the legend.

https://doi.org/10.1371/journal.pone.0248122.g005
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with overall variability reaching 45%. However, there was no substantial difference from

MAPa to MAPc and MRn to MRs when estimating either Aβ+ volume or TAB. The two main

pipelines resulted in statistically significantly different estimations for all metrics, but only Aβ
+ volume and TAB were substantially different, presenting 19% (p< 0.001) higher values in

Standard Space.

Discussion

In this study, the impact of different PET/CT+MR imaging processing pipelines on the quanti-

fication of intensity and volumetric-derived metrics was explored. These metrics were

extracted after processing the images with different pipelines, that is, choosing a reference

space (Native Space or Standard Space), a spatial transformation method (MAPa, MAPc, or

USM) and a grey matter delineation, i.e. based on the subject’s MRI (MRn and MRs) or using

Fig 6. Total amyloid burden value distribution. On the left panels, values from images analysed in the Native Space, on the right images that

were spatially normalised to Standard Space. The different spatial normalisation methods are represented in sub-columns within each column,

notice that spatial transformations for images in Native Space are required to transform template images from Standard Space. Rows show the

different grey matter mask definitions. Diagnosis is on the legend.

https://doi.org/10.1371/journal.pone.0248122.g006
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a standard template (TEs). Overall, it was found that intensity metrics were not substantially

affected (i.e., changes were less than the expected test-retest (<10%) by the use of different

image processing pipelines, while features using volumetric information were susceptible to

the specific image processing pipeline used.

Quantification of intensity metrics, such as SUVRmean and SUVRmeanAβ+, provided equiva-

lent values when extracted in Native Space or Standard Space. A higher influence on the inten-

sity metrics was observed when different spatial transformations were used, with overall

differences reaching a difference of 10% when USM was used instead of one of the MAP meth-

ods. Furthermore, the definition of the grey matter tissue did not affect the intensity metrics in

a substantial way (that is, less than what is expected from test-retest studies). As expected,

there was no substantial difference between the two methods that used the subject’s MRI for

GM definition (MRn and MRs), though they did result in slightly different intensity metrics

(<6%) than a GM definition from a standard template (TEs). These (pairwise) differences

were found to be statistically significant, however, the measured effect size was within the

expected variability from [11C]PiB test-retest studies [40–42] and, therefore, cannot be reliably

measured. Comparing the two main image processing pipelines (Native Space + MRn + USM

vs. Standard Space + MRn + USM), there were no clinically relevant differences in intensity

metrics between them. Based on these results, it seems reasonable to conclude that SUVRmean

and SUVRmeanAβ+ are not notably affected by the image processing pipeline used, as the effect

size observed was much smaller than the test-retest variability and will, therefore, have little

impact on group studies.

The two volumetric measurements studied behaved differently. On one hand, Aβ+ volume

was significantly affected by analysis in different reference spaces, showing that the images spa-

tially transformed to Standard Space resulted in larger brain volumes than those in their Native
Space. This can have an effect on the analysis of non-healthy brains in Standard Space, since

the spatial transformations warp the brains into the MNI space [18], which was built with

young healthy brains. Therefore, differences between healthy and non-healthy brains (that

have smaller grey matter volumes due to atrophy, for example) are reduced on spatially trans-

formed images. Hence, analysis of volumetric measurements should preferably be carried out

in Native Space since spatial transformations may lead to bias, especially for AD subjects with

strong atrophy. As such, studies reporting volumes or using the volumetric extend to deter-

mine disease stage should be interpreted with caution when comparing their results with data

extracted in a different reference space. On the other hand, AFV values were not notably dif-

ferent from Native Space to Standard Space (�4% difference, although statistically significant).

Those volume-ratio metrics were more robust than the Aβ+ volume measurement when ana-

lysed in different reference spaces, and it is not surprising since the Aβ+ and GM VOI volumes

will be scaled and spatially transformed similarly. It is important to notice, however, that local-

ised brain atrophy information may be lost when spatially transformations into Standard
Space are performed. Moreover, the use of spatial transformations based on USM method

resulted in roughly 33–36% higher Aβ+ volumes and AFV values as compared to those

obtained using the MAP methods, indicating that image transformation regularisation with

TPM has a strong and significant impact on volumetric measurements, even when the ratio

between volumes is considered. Note that USM is the most up-to-date spatial transformation

method tested in the present study and previous literature suggest that it is an improvement

over MAP methods [23]. Furthermore, the grey matter tissue definition heavily affected the

estimation of the Aβ+ volume, with overall differences between pipelines on the range of 18–

31% if a template GM was used instead of tissue segmentation directly from the subject’s

T1-MRI. This was expected as these GM templates are made such to guarantee the full inclu-

sion of the actual GM regions of the subject and thereby overestimating the actual GM. AFV
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values were somewhat less influenced by the grey matter definition, with around 9–10% differ-

ence between the GM estimation from the subject’s MRI against a standard template. This

reflects another consequence of the GM volume overestimation by these predefined templates,

i.e. including voxels outside the actual subject’s GM and that had a lower tracer uptake

(SUVR< 1.5). Finally, comparing the two main image processing pipelines there was a signifi-

cant and measurable difference in Aβ+ volume (19%, p<0.001), but the volumetric normalisa-

tion aspect of AFV made it robust between these pipelines (1.6%, p = 0.005). These results

highlight the importance of harmonising the order in which the spatial transformations and

the grey matter tissue segmentation are performed to obtain reproducible volumetric estima-

tions for amyloid burden volumes.

Total amyloid burden combines SUVRmeanAβ+ with Aβ+ volume and could potentially pro-

vide similar information to what Total Lesion Glycolysis gives in oncological [18F]FDG studies,

such as being a prognostic factor for disease progression, recurrence and death [43,44]. How-

ever, the variability due to changes in image processing pipeline observed for Aβ+ volume was

reflected in TAB, which was significantly different between pipelines: overall significant

changes from the analysis in different reference spaces was at 13%, due to different spatial

transformations at 4–45%, and due to GM definitions on the range of 5–30%. By processing

the images with the two main pipelines, a strong effect on TAB estimation between the two ref-

erence spaces (19%, p<0.001) was found. As such, the multi-parametric aspect of TAB did not

compensate the variability from its volumetric component, but the other way around, it was

amplified by its intensity component. Thus, it is uncertain to confirm the usefulness for an

amyloid burden assessment with [11C]PiB using a metric that is so susceptible to image pro-

cessing methodology.

The effects of the image processing pipeline on the diagnostic discrimination power of each

feature were not statistically evaluated since the HC and AD populations in the present study

were chosen to have maximum separation and represent rather extreme cases, that is, no sub-

jects with a doubtful classification or mild-cognitive impairment were included. As such, the

statistical analysis was carried out pooling together both diagnoses to investigate the impact of

different image processing pipelines on metrics regardless of clinical diagnosis. In any case, it

was observed in the boxplots and descriptive statistics of each population that, in general, met-

rics from HC subjects were less affected by changes in image processing pipeline than mea-

surements from AD subjects (Figs 2–6 and Supplementary Tables B–D in S1 File). This was

expected as most features only included voxels with SUVR above 1.5 and AD subjects have

more voxels that fit this criterion and a larger range of values above this threshold. A previous

study [45] suggested that a lower SUVR threshold (SUVR�1.2) for amyloid positivity and the

use of the grey matter cerebellum as the reference tissue could improve sensitivity for diagnosis

without impairing specificity. In the current study, the metrics were also assessed with a lower

positivity threshold (SUVR�1.2; see available data) and the general behaviour of the metrics

was similar as the ones already presented (i.e. SUVR�1.5). Therefore, changes in the SUVR

threshold for amyloid burden positivity do not seem to overcome the variability observed in

quantification from different image processing pipelines. That same study provides an answer

about the use of different reference regions by stating that the use of the grey matter cerebel-

lum as the reference region (instead of the whole cerebellum) increases the [11C]PiB SUVR val-

ues by approximately 6%, thus simply rescaling the positivity threshold. Consequently, the

impact of different image processing pipelines on metrics should remain similar to the one

presented here if the GM cerebellum was considered as reference region.

The results obtained in the present study are in line with those published by Nørgaard et al.

[19,20], where the influence of acquisition (PET scanner, acquisition protocol, reconstruction,

and MR field strength), pre-processing steps (motion correction, co-registration, volume of
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interest delineation strategy, and partial volume correction), and analysis (kinetic model and

statistical analysis) on [11C]DASB studies was explored. However, that study used a different

tracer and metrics. The results of Nørgaard et al. and those observed in the present study dem-

onstrate that different image processing methodologies can have a significant effect on PET

quantification and support the idea that these findings are not restricted to a specific radio-

tracer or disease. Other studies [22,23] explored different methods for the spatial transforma-

tion of brain images and observed that methods which do not use TPM for regularisation of

the transformations had worse performance than the regularised transformations, supporting

the observed difference between the MAP and the USM methods in the current study. Further-

more, rigid transformation alignment errors can have an effect on SUVR quantification and

lead to a bias related to clinical severity [46]. This may also be the case for non-linear transfor-

mations, possibly explaining why data from AD subjects were more affected by differences in

image processing pipeline than those of HC subjects in the present study.

A possible limitation of this work is that the reference region and grey matter template

masks were spatially transformed from Standard Space to Native Space using the inverse trans-

formation calculated from the subjects’ MRI. Therefore, MR-less pipelines which would bene-

fit from template masks were not explored. However, it is uncommon to have MR-less

dementia PET studies. Regional metrics were not evaluated, and target regions could be more

sensitive to image processing than reference regions or global regions (as explored here).

In summary, the main finding of the present study is that intensity metrics (SUVRs) are

rather robust against variations in image processing pipelines, and regional SUVR variability

was within that expected from test-retest studies. In contrast, volumetric measurements are

more sensitive to the image processing pipeline used. Based on the current results, regional-

based studies should preferably be conducted in Native Space and tissue segmentation should

be estimated from each subject’s MRI when available, while standard VOIs (available in Stan-
dard Space) should be transformed into Native Space. Nevertheless, an inter-subject voxel-

based analysis must be conducted in Standard Space and, for that matter, a standardised

approach for spatial transformations must be employed, preferably using the Unified Segmen-

tation Method (USM) since it uses tissue probability maps for transformations’ regularisation.

In either case, volumetric-based metrics should be avoided for studies in Standard Space.
When comparing data and results with previous reports in the literature, interpretations

should be made carefully since different conclusions could arise from methodological differ-

ences rather than from the biological process under investigation.
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