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Analytical expressions and approximations from simple models have
performed a pivotal role in our understanding of infectious disease epidemio-
logy. During the current COVID-19 pandemic, while there has been
proliferation of increasingly complex models, still the most basic models
have provided the core framework for our thinking and interpreting policy
decisions. Here, classic results are presented that give insights into both the
role of transmission-reducing interventions (such as social distancing) in con-
trolling an emerging epidemic, and also what would happen if insufficient
control is applied. Though these are simple results from the most basic of epi-
demic models, they give valuable benchmarks for comparison with the
outputs of more complex modelling approaches.

This article is part of the theme issue ‘Modelling that shaped the early
COVID-19 pandemic response in the UK’.
1. Introduction
During the firstwaveof theCOVID-19pandemic,manyanalysesweremadeon the
potential impact of the pandemic and possible mitigation measures, for example
reports considered by SAGE (the UK government’s Scientific Advisory Group
for Emergencies) in February 2020 ([1]).Manyof these analyses depended on intri-
cate models which take into account some of the complexity of transmission of
COVID-19 in the UK human population ([1] and subsequently [2]). While so
many of these complexities were potentially of importance for predicting the
likely future trajectory of the pandemic, elaborate models—and the consequent
strong dependence on the details of computational implementation—are open to
criticism regarding the robustness of their results. At the other end of the spectrum,
the simplest models can be used to give broad insights and will be robust to
implementation, and the dependence on assumptions is transparent. While the
simplest models are rarely appropriate for precise projections, they can give valu-
able benchmarks against which results from more complex models can be
evaluated: when they are broadly similar both qualitatively and quantitatively
this gives confidence that shared results are robust, and when they differ that
may highlight some elements of the more intricate models having substantial
effect in the context considered.

In this paper,we expand on some classic resultswhichwere presented to SAGE
inFebruary2020 (Gog [3])which in turndrewonHollingsworth et al. ([4]).Analytic
results can be obtained from the classic SIR (susceptible-infected-removed) model
which depend only on the single epidemiological parameterR0. Here, we consider
the impact of interventions which have the effect of reducing transmission (called
NPIs—non-pharmaceutical interventions—for example ‘lockdowns’). The inter-
ventions themselves are modelled here in minimal complexity, for example that
the effect on transmission starts instantly and is constant in time. Early in
COVID-19, the focus was on assessing what might be ahead of us, to understand
what levels of intervention were necessary to bring under control both the peak
prevalence (thinking of critical care capacity) and also the total number of people
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infected over the epidemic (thinking of cumulative impact
of illness and number of deaths). We consider both of these
measures below.

In this paper, we aim to provide accessible analytical
results for two key policy questions, which were posed at
various stages of the COVID-19 pandemic in the UK:

— In the early stages of a new epidemic, what is the effect of
some kind of social distancing or ‘lockdown’ on the
dynamics? Can we wait before introducing interventions,
if so how long should we wait? What does this mean for
how ‘harsh’ the lockdown has to be?

— If we introduce a lockdownwhen there is partial immunity
in the population, how much does this change the
dynamics?

We first present classic analytic results from the classic SIR
model which give baseline results for an unmitigated epi-
demic and set up the mathematics needed for subsequent
analyses. Next, we consider the effect of interventions that
are applied part way into the outbreak. Finally, we consider
the effect of interventions in the context of partial population
immunity, arising through natural immunity through
infection or through vaccination.
3

2. Classic results without intervention
The classic model for an outbreak is described by the SIR
system. Here, we just need the equations for S(t), the pro-
portion of the population susceptible at time t, and I(t), the
proportion of the population infected and infectious at time
t. Rescaling time so that the infectious period has mean
duration 1, the system is given by:

_S ¼ �rSI
_I ¼ þrSI � I,

where r here denotes the basic reproduction ratio (R0). This
basic but elegant model includes many simplifying assump-
tions, particularly no latent period, exponential distribution
of infectious period, homogeneous mixing and enduring
immunity following infection. However, while some simple
assumptions are clearly ‘wrong’ for COVID-19, the SIR
system provides a parsimonious approximation: a benchmark
towhich the effects ofmore elaboratemodels can be compared.
This is particularly true during the early, exponential growth
phase of an epidemic.

The crux of the approach taken here is to sidestep the
time-dependence. From the above equations, the function
F(S, I ) is constant in time

F(S, I) ¼ Sþ I � r�1 log S: (2:1)

Although this no longer captures the full-time evolution of
the system, when combined with suitable boundary
conditions this result is enough to give both the peak
prevalence and also the final size of the epidemic.

For the case without intervention, initially nearly every-
one is susceptible, and a very small number of infecteds are
introduced, i.e. (S, I )≈ (1, 0), thus solutions are close to

F(S, I) ¼ F(1, 0) ¼ 1:
The peak prevalence is the maximum value of I over time,

which is also the maximum value of I as S is varied.
Differentiating equation (2.1) with respect to S on constant
F, we see this must be achieved at S = r−1 (for r≥ 1 only, for
r < 1 there is no epidemic and peak prevalence is zero).
Hence solving F(r−1, Imax) = 1 for peak prevalence Imax:

Imax ¼ 1� (1þ log r)
r

:

For final size, the classic approach is to seek the solution
at the end of the epidemic, for S∞≠ 1 when I = 0. We know
from consideration of the initial conditions that F(S, I ) = F(1,
0) = 1, and, since F(S, I ) is constant, then F(S∞, 0) = 1 and so:

1 ¼ S1�r�1 log S1:

For r≤ 1, there is no real solution with S∞ < 1 (no
epidemic can happen, in which case final size is zero). For
r > 1, the solution for S∞ can be written as

S1 ¼ �W[�r e�r]=r,

where W is the Lambert W-function (or product logarithm).
The so-called final size is the proportion of population
infected at any time during the epidemic, which for the
SIR model is one minus those left still susceptible, and here
r =R0, hence the final size (FS) is given by

FS ¼ 1� S1 ¼ 1þW[�R0e�R0 ]=R0:

These classic results for an unmitigated epidemic are
plotted in figure 1.
3. Effects of intervention
If interventions are brought in during the epidemic, we can still
make some headway with informative analytical expressions
but as before, again under particular simplifying assumptions
about the form and effect of the intervention. Again, these can
serve as approximations and benchmarks for more realistic
models of intervention. We assume that the intervention has
the effect of reducing the reproduction ratio by a proportion
ϕ (so now r = (1− ϕ)R0). This could be through a reduction in
transmission rates, or shortening of duration of infectiousness.
To take full advantage of the time-independence of the above
results, assume that the intervention is applied for long dur-
ation (mathematically, effectively through to the end of the
epidemic). We identify the time that the intervention is started
by there being a proportion θ that has been infected, i.e.
S� ¼ 1� u. It could be that this itself is the description of con-
trol strategy: apply intervention when cumulative incidence
reaches this trigger threshold. Or it could be that there is
some other extrinsic trigger, but the effect is that intervention
is applied at this point in the epidemic.

With this form of intervention, rather than just matching
from initial to final state of the epidemic, we match in two
separate sections: from initial to start of intervention, and
then start of intervention to final. For the first period,
before intervention, r =R0. We take again (S, I )≈ (1, 0)
initially, and at time that the intervention begins, we have
(S, I) ¼ (S�, I�) and we find I� using F(1, 0) ¼ F(S�, I�) with
equation (2.1) and S� ¼ 1� u. Solving for I�:

I� ¼ uþ R�1
0 log (1� u):

For the second phase, from start of intervention to end of
epidemic, we find I∞ using F(S�, I�) ¼ F(S1, 0), this time with
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Figure 1. Baseline peak prevalence and final size, as functions of the reproduction ratio, R0. Peak prevalence (a) and final size (b) against reproduction ratio R0, both
given as a proportion of the population. The dotted line on the final size plot gives the susceptible proportion when peak prevalance is achieved, which is also the
herd immunity threshold. (Online version in colour.)
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Figure 2. Effect of intervention, by strength of intervention. The relative peak prevalence (a) and relative final size (b) as function of the transmission reduction of
the intervention (ϕ) for R0 = 3. In each, the different coloured lines represent different trigger values for application of the intervention θ.
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r ¼ r� ¼ (1� f)R0:

r�(1� S1)þ logS1 ¼ f log S�:

Again, we can write the solution using a W-function:

S1 ¼ �W[�r�Sf� e
�r� ]=r�,

hence now the final size, written out in full, is given by

FS ¼ 1� S1 ¼ 1þW[�(1�f)R0 (1� u)fe�(1�f)R0 ]
(1�f)R0

:

It is useful to look at this relative to the unmitigated final
size, so that we can give a sense of how much a given inter-
vention would reduce epidemic size. The relative final size is
simply the final size of a mitigated epidemic divided by the
original final size (given above):

Relative FS ¼ R0 þW[�(1�f)R0 (1� u)fe�(1�f)R0 ]=(1�f)
R0 þW[�R0e�R0 ]

Some care is needed when calculating the peak prevalence
under intervention as there are multiple cases as to when the
peak occurs. If the intervention is applied very late, the peak
will already have occurred as per the unmitigated case. If the
intervention is initiated before the original peak but is a weak
intervention, the peakwill be in the future during themitigated
phase. If the mitigation is applied early and is strong, then the
epidemic can immediately turn from growing to shrinking and
then the peak prevalence is the time when intervention begins
(i.e. Imax ¼ I�). The solutions for peak prevalence thus follow
analogously to above, but with care over these cases:

Imax ¼
1� (1þlog r�þf log (1�u))

r�
if u , 1� 1

r�

uþ ( log (1�u))
R0

if 1� 1
r�
, u , 1� 1

R0

1� (1þlogR0)
R0

if 1� 1
R0

, u

8>><
>>:

where r� ¼ (1� f)R0. Note that if the intervention is strong
enough that r� , 1, the first condition above cannot occur.
Then again just take the appropriate ratio with the peak preva-
lencewithout intervention to find the relative peak prevalence.

relative Imax

¼

R0�(1þlog [R0(1�f)]þf log (1�u))=(1�f)
R0�1�logR0

if u , 1� 1
r�

uR0þlog (1�u)
R0�1�logR0

if 1� 1
r�
, u , 1� 1

R0

1 if 1� 1
R0

, u

8>><
>>:

These results are illustrated in figures 2 and 3 for an R0 of 3.
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Figure 3. Effect of intervention, by strength and timing of intervention. The relative peak prevalence (a) and relative final size (b) as function of both the trans-
mission reduction of the intervention (ϕ) and trigger for application of the intervention (θ) for R = 3. For the peak prevalence plot (a), the additional dotted red
and blue lines separate the different cases for the timing of peak incidence relative to intervention timing: below the red line, cases are rising at the time inter-
vention is applied and the intervention is not strong enough to immediately turn over the epidemic; between the red and blue lines, the intervention is enough to
immediately turn over the epidemic (and hence the contours are horizontal in this region); above the blue dotted line, the epidemic has already peaked before
intervention is applied, so the intervention does not affect the peak prevalence.
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4. Results in the context of COVID-19
in early 2020

For the illustrative plots presented above, we have used a
value of the reproduction ratio R0 = 3. This is a higher value
than the R0 = 2.2 used in the analysis which was presented
to policy in February 2020 [3]. That value of R0 was matched
to that used in the Imperial College paper which was sub-
mitted to the same meeting of SAGE [1]. Davies et al.
performed a meta-analysis of available studies and estimated
that R0 was 2.7 (95% credible interval 1.6–3.9) and the Imper-
ial College analysis used 2.2 as a base value (driven by a 5
day doubling time), but investigated values from 2 to 2.4
(their subsequent report used 2 to 2.6) [1,5,6]. A subsequent
systematic review and meta-analysis, published in November
2020, gave a summary estimate of 2.87 (95% CI, 2.39–3.44) [7].
Therefore, the value used here, R0 = 3, is at the higher range of
values used at the time, but in keeping with both original and
current estimates.

Inspection of the analytic results demonstrates there will
be no qualitative changes in using different R0 (so long as
R0 > 1), but there will be qualitative changes corresponding
to a change in R0. For figure 2, the effect of a higher reproduc-
tion ratio would be to require a stronger transmission
reduction for the same effect sizes—the plot is qualitatively
the same but the lines will move mainly to the right.

For the purposes of historic comparison, and also to show
how this simple approach can be used in practice as a bench-
mark for outputs from other models, figure 4 gives the classic
results for R = 2.0, 2.2 and 2.4 and the y-axis is given in terms
of percent reduction, to aid a side-by-side comparison with
table 1 of the Imperial College analysis [1]. Final size is not
exactly the same as the reduction in attack rate over 26
weeks, but if the main wave of the epidemic is mostly over
by that time, then it will be a fair comparison. Similarly,
prevalence and incidence are of course different, but their
proportional reduction in peak should be comparable for an
acute infection.

As specific example, in the first row of table 1 of the
Imperial College report [1], intervention ‘PC’ (closure of
schools and universities) is reported to give a reduction in
attack rate of 11%, 8% and 6% for the three values of R0.
Reading off figure 4, this would correspond in the simpler
model to a transmission reduction of around 10–15%. This
is broadly consistent with the range required for the reported
peak incidence, though the values do not exactly match up,
suggesting that some additional factor in the Imperial College
analysis [1] means that the effects on overall attack rate are
weaker, or on peak incidence are stronger, than that expected
in the model presented here. A key difference is that in our
analysis NPIs applied indefinitely whereas for the Imperial
College analysis they are for 13 weeks only [1]. However, if
this is the crux of any differences, then this raises questions
about the necessary duration of interventions and what
happens after they are lifted.

Finally, figure 4 allows the reader to see that results in any
model are likely to be highly sensitive to the assumptions
about strength of transmission reduction, and, in particular
in the range here, any strengthening of transmission
reduction would have a better than linear effect on the final
size (the lines in figure 4 curve upwards). This is more
immediate than rerunning many simulations of a complex
model, and makes robust insights available to non-specialists.
5. Intervening in the presence of population
immunity

As the pandemic is progressing, the question arises to what
extent the predicted effects of intervention are changed if
there is some immunity in the population, either through
natural infection or vaccination. Here, intervention starts
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early (θ = 0) but there is some prior immunity. Mathemat-
ically, this follows on easily from the above results, just
using more general initial conditions: S(0) = S0, and note
now that final size is S0− S∞. Also, care is needed for both
peak and final size calculations to check that effective repro-
duction ratio, R, or the number of transmissions per infected
individual at this point in the epidemic, is greater than 1
initially [8,9]. In this context, this means that the epidemic
growth rate is positive (i.e. the epidemic is growing) at the
time that the interventions are introduced. The results are
shown in figures 5 and 6.

The results here are intuitive, given the classic threshold
results for epidemics: if there is some prior immunity, then
even a previously weak intervention might be enough to
greatly reduce or even prevent the epidemic. The crux is
whether or not effective R is greater or less than 1. And if
only just greater, the peak prevalence and final size could
be small.

These results are qualitatively robust to different assump-
tions on how the immunity has come about, but we know that
different dynamics can arise depending on the duration of
immunity [10], and how acquisition of immunity is correlated
with transmission [11]. The sensitivity to the reproduction
ratio is similar to that described in §4, above.
6. Discussion and conclusion
Transmission reduction by non-pharmaceutical interventions
can be captured in the simplest epidemicmodels, giving a ball-
park estimate for the size of the effect both in terms of
reduction of overall attack rate and peak incidence. There are
clear insights gained from these classic analyses’ simple
models: (a) effective, long-term interventions must be both
strong enough (to bring R < 1) and applied early (figure 3) to
have minimal total cases and peak prevalence; (b) in the pres-
ence of pre-existing population immunity, less stringent
interventions are needed (figure 6); and (c) if an intervention
is both applied early and is strong enough to reduce the effec-
tive reproduction ratio to below 1, then there is diminishing
additional benefit from using an even stronger intervention
(figures 2 and 5). These insights are intuitive to disease mod-
ellers, but perhaps they have only become intuitive as the
field of infectious disease modelling is built upon models
such as these. The outputs of these parsimonious models can
give more though: for example they show the mathematical
interdependence between intervention strength, timing and
host immunity on the dynamics of the system—insights
which lie beyond just the direction of dependence, as the
nonlinear results in §5 demonstrate.
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For detailed application for policy design, clearly more
elaborate models would be appropriate to give more precise
quantitative estimates. Perhaps the most immediate necessary
extension from the classic SIR model to COVID-19 is popu-
lation heterogeneity, both in terms of contact and mixing
patterns (age, geography, households, context) and in terms
of biological susceptibility and infectiousness, plus many
other considerations such as vulnerability to disease by
age and other factors. Much of the explosion of modelling
preprints in 2020 focused on these host heterogeneities,
for example reporting that ‘herd immunity’ can be achie-
ved with fewer people immune than that predicted by
homogeneous mixing (‘the most rediscovered result in epide-
miology’, V. Andreasen 2020, personal communication).
However, insights are still possible to be gained from math-
ematical approaches (e.g. [12]).

Even with far more complex models with parameter
uncertainty, we advocate a role still for simplified models as
benchmarks. For example, from a complex model, a predic-
tion is made that a social distancing strategy could reduce
overall attack rate by 23% for R0 = 2.2 ([1], example entry in
first table); then a benchmark comparison with classic
model results would confirm that this is consistent with a
measure that caused a net reduction to transmission of
about 30% with interventions applied early ([3], reading off
top figure). While the simple models are clearly not a replace-
ment for detailed simulations from complex models, they can
thus give ‘rule of thumb’ checks which can either lend confi-
dence to results, or reveal some particular dependence on the
assumptions of the more complex model.

In summary, simple models continue to yield valuable
insights and can be used alongside more complex models.
Perhaps ideal would be a nested approach: a series of
models and outputs ranging from the complex and simplify-
ing step-wise towards a fully tractable model. However, such
an approach is unlikely to be practical under time pressure. In
this case, we advocate a pragmatic approach of at least
having the simplest model as a benchmark to compare and
contrast. This partnership has the potential to bring in the
best of all worlds.
7. In context
By late February 2020, it was apparent that some interven-
tions would be required to slow the spread of COVID-19 in
the UK and elsewhere. Mathematical models were an essen-
tial tool in the policy discussion of when interventions
would be needed, how much interventions would be
needed, and how long they would have to be held in place.

The UK was fortunate in having a number of world-lead-
ing modelling groups providing advice to the government,
mainly through the Scientific Pandemic Influenza Group on
Modelling (SPI-M). Imperial College London, and the
London School of Hygiene and Tropical Medicine provided
detailed predictions on the dynamics of the epidemic for
different impact and timing of interventions, but compari-
sons between predictions were difficult due to different
assumptions on the dynamics of the epidemic [1,13,14]. In
addition, historic modelling suggested that if you could
only intervene for a short period of time, then minimizing
peak prevalence (to avoid overwhelming hospital capacity)
might be best achieved by initiating interventions a little
later [4].

In parallel, there was a debate emerging about key par-
ameters, such as the doubling time of the epidemic, and the
resulting estimates of the reproduction number, with the
Imperial College model being driven by a doubling time of
5 days, giving a reproduction ratio of 2.2, and theManchester
University researchers suggesting that doubling times in
Europe were closer to 3 days, suggesting a higher reproduc-
tion ratio and that action was more urgently needed.

In this context, there was a need for simple approxi-
mations and clarity of presentation in the general dynamics
of the system. This led to the analysis which was submitted
to the Scientific Group for Emergencies (SAGE) upon which
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this paper is based [3]. Later in the year the need for
additional lockdowns, this time in the presence of immunity
required additional consideration and some detailed model-
ling [10], and once again the approximations in this article
helped communicate the dynamics of the epidemic in
response to such interventions.

The recent history of mathematical epidemiology has
been the joint evolution of both complex models and
simple approximations which balance each other by provid-
ing insight, validation and rigorous comparisons. The
mathematics in this article is neither groundbreaking nor
novel, but it partners with a wealth of the literature to pro-
vide a simplifying framework from which to explain key
insights on the impact of NPIs on an emerging, or re-emer-
ging epidemic.
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