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ABSTRACT

As high-throughput genomics assays become more
efficient and cost effective, their utilization has be-
come standard in large-scale biomedical projects.
These studies are often explorative, in that relation-
ships between samples are not explicitly defined a
priori, but rather emerge from data-driven discov-
ery and annotation of molecular subtypes, thereby
informing hypotheses and independent evaluation.
Here, we present K2Taxonomer, a novel unsuper-
vised recursive partitioning algorithm and associ-
ated R package that utilize ensemble learning to iden-
tify robust subgroups in a ‘taxonomy-like’ structure.
K2Taxonomer was devised to accommodate differ-
ent data paradigms, and is suitable for the analy-
sis of both bulk and single-cell transcriptomics, and
other ‘-omics’, data. For each of these data types,
we demonstrate the power of K2Taxonomer to dis-
cover known relationships in both simulated and hu-
man tissue data. We conclude with a practical ap-
plication on breast cancer tumor infiltrating lympho-
cyte (TIL) single-cell profiles, in which we identified
co-expression of translational machinery genes as a
dominant transcriptional program shared by T cells
subtypes, associated with better prognosis in breast
cancer tissue bulk expression data.

GRAPHICAL ABSTRACT

INTRODUCTION

As high-throughput transcriptomic assays become more ef-
ficient and cost-effective, they are being routinely integrated
into large-scale biomedical projects (1–4). Bulk gene ex-
pression profiling by RNA sequencing (RNAseq) has been
widely adopted in multiple high-throughput genomics stud-
ies, the paramount example being The Cancer Genome At-
las (TCGA) data commons, which currently include 10,558
bulk RNA sequencing (RNAseq) profiles across 33 cancer
types (https://portal.gdc.cancer.gov/). Furthermore, since
its first published application in 2009 (5), the size of single-
cell RNA sequencing (scRNAseq) studies has exploded,
such that it is now commonplace for studies to generate
tens of thousands of profiles (6). As the scale of these stud-
ies and the associated datasets increases, so does their util-
ity as a resource from which biological information can
be extracted through the application of machine learning
approaches. Common deliverables of these types of analy-
sis include the discovery and characterization of molecular
subtypes, which are prevalent in both bulk and single-cell
gene expression studies. For example, TCGA bulk expres-
sion data have been utilized to characterize subtypes of nu-
merous cancers (7), including but not limited to: breast (8),
colorectal (9), liver (10) and bladder cancer (11,12). Simi-
larly, the characterization of molecular subtypes is a stan-
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dard component of the scRNAseq data analysis workflow,
insofar as estimation and annotation of subpopulations of
cells is one of the primary goals of the assay (13).

The general framework for subtype characterization can
be summarized in two steps: (i) estimation of data-driven
groups of observations via application of an unsupervised
learning procedure, followed by (ii) annotation of each
group based on the identification of distinct patterns of gene
expression relative to other groups. While most approaches
focus on discovering a ‘flat’ set of non-overlapping groups
or subtypes, in this manuscript we present an alternative ap-
proach, devised to emphasize ‘taxonomy-like’ hierarchical
relationships between observations to discover nested sub-
groups.

Whereas a wide range of unsupervised learning algo-
rithms is available for the analysis of bulk gene expression
data, the considerable sparsity of scRNAseq data has mo-
tivated the development of novel methods specifically tai-
lored to the analysis of this type of sparse, high-dimensional
data. Popular software packages, such as Seurat (14) and
Scran (15), generate ‘flat’ clusters, in which a finite set of mu-
tually exclusive cell types is estimated. In so doing, they fail
to capture the ‘taxonomy-like’, hierarchical structure that
may exist among subgroups of observations at multiple lev-
els of resolution, driven by transcriptional signatures based
on different factors, including but not limited to: shared
lineage, cell state, pathway activity, or morphological ori-
gin. Complementary methods exist to model such relation-
ships, such as Neighborhood Joining (16,17) and more recent
single-cell trajectory inference approaches (18), which esti-
mate ‘pseudo-temporal’ states of individual cells indicative
of developmental progression. Given the stringent interpre-
tation of such models, their suitability depends on the as-
sumption that the measured similarity between neighbors
of cell profiles arises from a distinct continuous progres-
sion of molecular activity. However, the relative similarity
between cell profiles may be confounded by numerous fac-
tors, including: cell cycle, spatial patterning, cell stress, and
batch effects (19). To overcome these shortcomings, one re-
cent method, partition-based graph abstraction (PAGA) (20),
was devised to model complex topologies by estimating a
graph of ‘high-confidence’ connections between labeled cell
types based on their shared nearest neighbors. This method
has the advantage of being able to first identify disconnected
subgraphs from which to model separate trajectories. Even
so, a ubiquitous attribute of trajectory inference approaches,
including PAGA, is that all distances between cell profiles
are computed based on a single set of features, generated
by selection filtering and/or dimensionality reduction (21),
thus precluding the discovery of nested structures defined
by distinct transcriptional programs shared by relatively few
cells.

Hierarchical clustering (HC) algorithms at face value
address the need for a multi-resolution representation of
the relationship among observations, and while originally
adopted for the analysis of bulk gene expression data (22),
numerous packages have also been developed for scR-
NAseq analysis, such as pcaReduce (23), ascend (24) and
BackSPIN (25). However, since the number of possible sub-
groupings increases with the number of observations, ro-
bustly identifying such relationships can be challenging. As

a result, tree-cutting methods are often applied, ultimately
yielding a flat set of non-overlapping clusters. Furthermore,
as with trajectory inference, the bottom-up nature of HC’s
sample aggregation procedure forces the use of the same set
of genes/features to drive the agglomeration at all levels of
the hierarchy. Finally, HC methods do not support the clus-
tering of groups of samples, or group of cell profiles repre-
senting cell types in scRNAseq, nor the identification of an
interpretable taxonomic hierarchy over these groups or cell
types.

Here, we introduce K2Taxonomer, a novel taxonomy dis-
covery approach and associated R package for the estima-
tion and in-silico characterization of hierarchical subgroup
structures in both bulk and single-cell data. An important
feature of the approach is that it can analyze both individ-
ual samples as well as sample groups such as, but not lim-
ited to, those corresponding to scRNAseq cell types. The
package employs a recursive partitioning algorithm, which
utilizes repeated perturbations of the data at each parti-
tion to estimate ensemble-based K = 2 subgroups. For scR-
NAseq analysis, K2Taxonomer utilizes the constrained k-
means algorithm (26) to estimate partitions of the data at
the cell type level, while preserving the influence of each
individual cell profile. A defining feature of the method
is that each recursive split of the input data is based on
a distinct set of features selected to be most discrimina-
tory within the subset of samples member of the current
hierarchy branch. This makes the approach quite distinct
from both standard clustering algorithms and trajectory in-
ference algorithms, and particularly apt to discover nested
taxonomies. K2Taxonomer thus fills a methodological gap
and provides a rigorous way to further resolve biological
insights from clustered scRNA-seq data. In addition, the
package includes functionalities to comprehensively char-
acterize and statistically test each subgroup based on their
estimated stability, gene expression profiles, and a priori
phenotypic annotation of individual profiles. Importantly,
all results are aggregated into an automatically generated
interactive portal to assist in parsing the results.

In this manuscript, we assess the performance of
K2Taxonomer for partitioning both bulk gene expression
and scRNAseq data, using both simulated and publicly
available data sets, and we compare it to agglomerative clus-
tering procedures. For bulk gene expression data, perfor-
mance is assessed in terms of unsupervised sorting of breast
cancer subtypes and established genotypic markers, using
breast cancer patient tumor tissue data from the Molecu-
lar Taxonomy of Breast Cancer International Consortium
(METABRIC) (27) and the TCGA compendia. For scR-
NAseq data, performance is assessed in terms of recapit-
ulation of established relationships between 28 annotated
cell types of the airway of healthy subjects (28). We con-
clude with a case study where we perform a K2Taxonomer-
based analysis of breast cancer tumor infiltrating lympho-
cytes (TILs) profiled by scRNAseq (29). Our analysis signif-
icantly expands upon previously published results and iden-
tifies a phenotypically diverse subgroup of CD4 and CD8
cells, characterized by constitutive up-regulation of a sub-
set of translation machinery genes. We further show that
high expression of these genes in breast cancer tissue bulk
expression is associated with better survival, supporting re-
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cent findings on the role of the translation machinery assem-
bly in T cell activation (30,31), and demonstrate that this
coordinated expression of the translation machinery is per-
vasive among T cell subpopulations to such an extent that
the expression levels of these genes in bulk measurements
of tumor tissue is predictive of the degree of immune infil-
tration. The complete suite of analysis results is accessible
through an automatically generated and publicly accessible
portal (https://montilab.bu.edu/k2BRCAtcell/).

While we focus on the analysis of transcriptomics data,
we emphasize that our approach is applicable to other
‘omics’ data, such as those generated by high-throughput
proteomics and metabolomics assays. Moreover, applica-
tions of K2Taxonomer are not limited to cancer-centric
studies. For example, we applied an earlier prototype of
K2Taxonomer to the analysis of a toxicogenomic study on
the effects of environmental exposures on adipocyte activ-
ity, and the tool proved to be instrumental to the identifi-
cation of chemical subgroups and the pathways contribut-
ing to either their deleterious or beneficial effects on energy
homeostasis (32).

MATERIALS AND METHODS

K2Taxonomer algorithm overview

K2Taxonomer implements a recursive partitioning algo-
rithm that takes as input either a set of individual obser-
vations or a set of sample groups and returns a top-down
hierarchical taxonomy of those samples or groups (Figure
1). Here we summarize the K2Taxonomer algorithm. A de-
tailed description of the method is provided in the following
three subsections.

To achieve robust model estimation, each partition is de-
fined based on the aggregation of repeated partition estima-
tions from distinct perturbations of the original set. Each
of these partition estimates is created in three steps. First,
a perturbation-specific data set is generated by bootstrap-
ping features, i.e. sampling features from the original data
set with replacement. Next, this perturbation-specific data
set undergoes variability-based feature selection filtering.
Finally, a K = 2 clustering algorithm is run, producing a
perturbation-specific partition estimate. These three steps
are repeated, generating a set of perturbation-specific par-
tition estimates, which are aggregated into a cosine similar-
ity matrix. The aggregate partition is then estimated based
on a K = 2 tree cut following hierarchical clustering of the
transformed cosine similarity matrix into a distance matrix,
calculated as 1 - cosine similarity, with a user-specified ag-
glomeration method.

The K2Taxonomer package supports both observation-
level and group-level analysis modalities, depending on
whether the analysis end-points are single samples or
groups of samples, respectively. In the group-level modal-
ity, the algorithm is applied to data sets where observations
have a priori-assigned group labels, and the objective is to
identify intermediate relationships between these groups.
This functionality was specifically incorporated to enable
partitioning and annotations of cell types estimated by scR-
NAseq clustering algorithms, but it is applicable to any data
set with group-level labels.

For further customization of analyses, the K2Taxonomer
R package permits the use of user-specified functions for
performing perturbation-specific partition estimates.

K2Taxonomer feature filtering

A distinguishing property of K2Taxonomer when compared
to other methods, such as traditional agglomerative hierar-
chical cluster or trajectory inference (21) is the manner in
which feature selection is implemented. Even in large stud-
ies of high-throughput data sets, the number of features
is typically much larger than the number of observations.
This generally requires filtering the data set prior to model-
ing in order to reduce variance and computational expense
of model fit. One way to do this is through feature selec-
tion, in which features suspected to contain more informa-
tion about the relationship between observations are cho-
sen for down-stream analysis. For unsupervised learning,
relative information estimation is commonly calculated via
variability-based metrics. Assuming the amount of noise is
consistent across features, these metrics will capture the rel-
ative magnitude of the signal of individual features. Two
common choices are standard deviation (SD) and median
absolute deviation (MAD), of which the former is more sta-
tistically efficient with a small sample size and the latter is
more robust to outliers (33). Implementation of these fea-
ture selection techniques prior to modeling may be prob-
lematic when learning hierarchical models. The magnitude
of variability-based metrics is influenced by the frequency
of observations for which the signal-to-noise ratio is higher,
such that the subset of features is more likely to capture
broader relationships between larger sets of observations
and less likely to capture relationships between smaller sets
of observations. This can obscure important relationships
within smaller sets of observations, as when evaluating a
sub-group of samples in a hierarchical procedure. In addi-
tion, an appropriate choice of the number features to use
for modeling is difficult to determine a priori and may be
obscured by many factors, including: the number of sub-
groups, number of observations belonging to each sub-
group, and the number of features distinguishing individual
subgroups.

To overcome these challenges, K2Taxonomer produces a
model fit for each partition independently, such that fea-
ture selection is only performed within the subgroup of ob-
servations being evaluated at a given step. In particular, at
each recursive step, the objective of partition estimation is
to split the data based only on the dominant relationship
between two subgroups. Since the selected features need
only capture one relationship, a much smaller subset of fea-
tures will be sufficient to discover this partition. By default,
K2Taxonomer uses the square root of the total number of
features, which is used in a related albeit supervised learn-
ing method, random forests (34). In doing so, the percentage
of filtered features is dependent on the total number of fea-
tures. For example, if the data set consists of 1,000 or 10,000
features, K2Taxonomer will estimate partitions using 3.2%
or 1.0% of the total number of features, respectively. The ap-
propriateness of using the square root of the total number
of features against fixed percentages is later assessed with
simulation-based testing.

https://montilab.bu.edu/k2BRCAtcell/
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Figure 1. Schematic of the K2Taxonomer recursive partitioning algorithm. For each partition, K2Taxonomer generates an ensemble of K = 2 estimates
from the feature bootstrapped data followed by variability-based feature selection. This ensemble is aggregated to a cosine matrix followed by hierarchical
clustering and tree cutting. A stability estimate, indicative of the consistency of K = 2 estimates, is calculated based on an eigendecomposition of the cosine
matrix. See supplementary methods for a more thorough description of the elements of this procedure.

The K2Taxonomer package includes options to perform
both SD and MAD based feature selection. In the case of
group-level analysis, K2Taxonomer can perform F-statistic
based feature selection based on the ratio of between-group
to within-group variability implemented by the limma R
package (35).

K2Taxonomer data partitioning

To estimate each partition, K2Taxonomer, performs
feature-level bootstrap aggregation, similar to that of con-
sensus clustering (36). More specifically, each data partition
represents the aggregation of a set of partitions estimated
from perturbations of the original data set in which features
have been sampled with replacement. Feature selection and
K = 2 clustering are independently performed within each
perturbation-specific data set. The final partition estimate
is calculated by aggregating the set of perturbation-specific
partitions into a cosine similarity matrix (defined below),
which further undergoes hierarchical clustering, followed
by a K = 2 tree cut.

K2Taxonomer package implements separate clustering
methods tailored to analysis of either observation-level
and group-level data input. For observation-level data, the

perturbation-specific partitions are estimated via hierarchi-
cal clustering of the Euclidean distance matrix, followed by
a K = 2 tree cut. By default, Ward’s agglomerative method
is performed at this step because it has been shown to gen-
erally perform well compared to other hierarchical meth-
ods (22). For group-level data, perturbation-specific par-
titions are estimated via constrained K-means clustering
(26). This algorithm performs semi-supervised clustering,
in which group-level information is included as a pairwise
‘must-link’ constraint, preserving relationships between ob-
servations from the same group.

To assess the robustness of the partitioning of the ag-
gregated results, hereby referred to as partition stability, as
well as to facilitate interpretability, a cosine similarity ma-
trix is computed, with each pairwise cosine similarity mea-
surement functionally equivalent to the Pearson correlation
of standardized variables.

Let an ‘item’ denote a single observation or group, de-
pending on whether observation- or group-level analysis
is being performed, respectively. The cosine similarity of
two items is a measure proportional to the number of
times across perturbation iterations that the two items are
assigned to the same group in the perturbation-specific
dichotomous partitions. It takes its maximum/minimum
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value when the two items are always/never assigned to the
same group.

If we represent with ‘−1’ and ‘1’ the assignments of an
item to one or the other group in a dichotomous partition,
we can then represent, and compare, the complete set of as-
signments of any two items across p perturbation-specific
partitions as the vectors

Xi = (xi1, ..., xi p|xi ∈ {−1, 1})
Xj = (xj1, ..., xj p|xj ∈ {−1, 1}),

where Xi and Xj represent the ith and jth item, respectively.
We can then define the cosine similarity of Xi and Xj as

CS(Xi , Xj ) = Xi · Xj

||Xi ||||Xj || .

where Xi · Xj represents the dot product and ||Xi ||||Xj ||
represents the product of the Euclidean norms of Xi and
Xj . Next, we prove the equivalence of the cosine similar-
ity and Pearson correlation of two assignment vectors. The
cosine similarity can be rewritten as follows:

CS(Xi , Xj ) = Xi · Xj

||Xi ||||Xj || = (p − Z) − Z
p

= 1 − 2Z
p

.

In the above derivation, since Xi and Xj only take values
in {−1,1}, their dot product, X · Y, is equal to the differ-
ence between the number of iterations, Z, the two items are
assigned to the same group, and the number of iterations,
p − Z, the two items are assigned to different groups. Fur-
thermore, the product of the Euclidean norms of Xi and Xj ,
||Xi ||||Xj ||, is equal to p.

Similarly, taking advantage of the relationship between
Pearson correlation of standardized variables, r (), and Eu-
clidean distance, d(), we have

r (Xi , Xj ) = 1 − d2(Xi , Xj )
2p

= 1 − (Xi − Xj )
2

2p

= 1 − 4Z
2p

= 1 − 2Z
p

,

where we used the fact that the squared Euclidean distance
of Xi and Xj , d2(Xi , Xj ), is equal to (Xi − Xj )2. Further-
more, for Xi − Xj , the difference between mismatched ad-
jacent elements is 2 and the difference between matched ad-
jacent elements is 0. Therefore, (Xi − Xj )2 = 4Z.

The function, 1 − 2Z
p , is the Hamann similarity index

(37). Consistent with Pearson correlation, the range of pos-
sible values for the Hamann similarity is between 1 and −1;
these extremes occur if Z is equal to p and 0, respectively,
indicating that Xi and Xj are either identical or fully dissim-
ilar. Furthermore, if elements of Xi and Xj share 50% of
their matching assignments, then Z = p

2 and the Hamann
similarity is equal to 0, indicating a lack of a relationship
between their perturbation-specific partition estimates. This
is not true for the related phi similarity (38), another corre-
lation metric for dichotomous variables, the calculation of
which includes adjustment for the marginal distribution of

Xi and Xj . In this case, the marginal distribution of Xi and
Xj is irrelevant because the elements of Xi and Xj are only
meaningful in relation to their matching assignments.

K2Taxonomer partition stability

To assess the robustness of partition estimates, indicating
the consistency of the perturbation-specific partition re-
sults, we developed a partition stability metric, which is cal-
culated using the eigen-decomposition of the matrix of pair-
wise cosine similarities, Q, of dimension, N, the number of
items. The eigen-decomposition of Q satisfies

QU = diag(�)U,

where U is the matrix of eigenvectors corresponding with
�, the vector of rank-ordered eigenvalues

� = (λ1, ..., λk, ..., λN|λk > λk+1).

Each eigenvalue is proportional to the ‘variance ex-
plained’ by each eigenvector, such that the cumulative sum
of variance explained by the first k eigenvectors, vk, is given
by

vk =

k∑
l=1

λl

N
.

In this context, the variance explained by eigenvectors
captures the consistency with which pairs of items received
the same or different assignments across perturbation-
specific partitions. Therefore, we can summarize this con-
sistency by evaluating the difference between the variance
explained by the eigenvectors of the estimated cosine ma-
trix and the variance explained by these eigenvectors if there
was no consistency across perturbation-specific partition
assignments. We denote this deviation as the partition sta-
bility, PS, calculated as the maximum difference between
vk and k

N , the null value corresponding to all items being
linearly independent,

PS = max
k

(
vk − k

N

)
.

The possible values for the partition stability range be-
tween 1 − 1

N and 0, with the former representing the case in
which λ1 = N, where every perturbation-specific partition
is identical, i.e., all values of the cosine matrix are either
−1 or 1. Conversely, a partition stability of 0 represents the
case when the perturbation-specific partition assignments
are random, i.e., all values of the cosine matrix are close
to 0. The maximum value for a given partition is depen-
dent on the number of items in the partition, approaching
1 when N is large, and equal to 0.5 when N = 2. Using the
K2Taxonomer package, partition stability can be used to set
stopping criteria for creating new partitions, thereby serving
as a way to control the number of terminal subgroups with-
out prior knowledge.

Finally, partition stability is used as a heuristic for cal-
culating branch heights in dendrogram creation of the
K2Taxonomer output. For a series of m partitions result-
ing in a given partition, zm, the branch height, hm, is
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calculated as

hm = log(Nm) +
m∑

l=1

log(PSl ) + c,

where c is a constant added to ensure that the minimum
height for a node is equal to 1.

K2Taxonomer R package functionalities

In addition to running the recursive partitioning algorithm,
the K2Taxonomer R package provides functionalities for
comprehensive annotation of the estimated subgroups, via
subgroup-level statistical analyses, including: differential
analysis, gene set enrichment analysis, and phenotypic vari-
able testing. Differential analysis of gene expression is car-
ried out using the limma R package, which is well-suited to
the analysis of normally distributed data such as microarray
gene expression, as well as log-transformed and normalized
RNAseq data (35). Gene set enrichment analysis is carried
out on a set of user-provided gene sets and implemented
in two ways: over-representation analysis based on a hy-
pergeometric test, and differential analysis of single-sample
gene set projections scores based on the GSVA R package
(39). Finally, phenotypic variable testing is carried out on
user-provided variables labeling individual observations or
groups, supporting both continuous and categorical vari-
ables. Testing of association between continuous variable
and taxonomy subgroups can be performed based on the
parametric Student’s t-test or the nonparametric Wilcoxon
rank-sum test, while categorical testing is carried out us-
ing Fisher’s exact test. All subgroup-level statistical anal-
yses are corrected for multiple hypothesis testing based on
the FDR procedure (40). The full set of results are compiled
into an interactive-web portal for exploration and visualiza-
tion. Differential analysis comparisons are carried out at the
partition-level, i.e., comparing only the two subgroups at a
particular node. However, the web portal includes function-
ality for performing post-hoc differential analysis of any
combination of user-selected subgroups.

Statistical analysis

The implementation of K2Taxonomer for this manuscript
was run with R (v3.6.0), limma (v3.42.2), and GSVA
(v1.34.0). All P-values reported in this manuscript are two-
sided.

Simulation-based performance assessment

The performance of K2Taxonomer was assessed in compar-
ison to Ward’s agglomerative method for recapitulating in-
duced hierarchical structure in simulated data. See supple-
mentary methods for a comprehensive description of the
strategy implemented for data generation and performance
assessment for observation- and group-level analyses.

Performance assessment using breast cancer primary tumor
bulk gene expression data

K2Taxonomer was evaluated in its observation-level modal-
ity for its ability to recover the Pam50 subtypes, as well ER-,

PR-, and HER2-status, and the aggregate three-gene geno-
type of ER-, PR-, and HER2-status, in the METABRIC
and TCGA breast cancer datasets, independently (41,42).
Distribution of these variables, as well as additional clin-
ical variables for METABRIC and TCGA data sets are
summarized in Supplementary Tables S1 and S2, respec-
tively. See supplementary methods for a detailed descrip-
tion of these two data sets, as well as methods for acquisi-
tion and preprocessing. K2Taxonomer was also compared
to two agglomerative clustering algorithms, Ward’s and av-
erage. These specific methods were chosen because they
have been previously shown to outperform other common
agglomerative methods (22,43). Given the sensitivity of hi-
erarchical clustering to the level of feature filtering, anal-
yses included individual runs on four filtered data subsets
of the total number of features: 100%, 25%, 10% and 5%,
while K2Taxonomer was only run on the full set (i.e. 100%)
of features. This should be kept in mind when comparing
performances, since the best-performing pre-filtering level
is not known a priori, and it is in general dataset depen-
dent. For every pre-filtering level, the median absolute de-
viation (MAD) score was used for feature selection, and
Euclidean distance was used to estimate observation-level
distance. Performance was assessed as the entropy of each
of the phenotypes (e.g., PAM50 labels), induced by the in-
ferred sample sub-grouping, with lower entropy indicating
‘purer’ subgroups, hence better performance (44). The dif-
ferent methods were evaluated and compared by the rela-
tive decrease in entropy as the number of mutually exclusive
clusters, K, increased from 2 to 8 based on tree cuts of the
dendrograms produced by each model.

Healthy airway tissue scRNAseq gene expression analysis

K2Taxonomer was applied in its group-level modality to
partition scRNAseq gene expression profiles of 28 esti-
mated cell types from a publicly available data set of air-
way tissue of healthy patients (28), was evaluated against the
known relationships among the included cell types, and was
compared to the partitioning obtained by two agglomera-
tive methods, Ward’s and average, as well as PAGA, a graph-
estimation and trajectory inference algorithm (20), and as-
cend, a fully unsupervised scRNAseq hierarchical clustering
algorithm (24). See supplementary methods for a detailed
description of this data set, as well as methods for acqui-
sition and preprocessing. For agglomerative methods, cell
type-level data processing and feature selection were per-
formed consistent with the results of group-level analysis of
simulated data (see supplementary methods). As with ag-
glomerative methods, PAGA was run on F-statistic-based
pre-filtered feature sets at different percentages of the full
18,417 genes: 100%, 25%, 10% and 5%. Due to limitations
of computational resources, ascend analyses excluded those
based on 100% of genes. Moreover, PAGA and ascend were
each applied using three sets of the top principal compo-
nents: 10, 15 and 20, such that a total of 12 and 9 unique
PAGA and ascend models were estimated, respectively.

Analyses with PAGA were carried out using the scanpy
(v1.6.0) python package. Neighborhood graphs were esti-
mated from the component-based dimensionality reduced
data sets using ‘pp.neighbors()’. Finally, the PAGA algo-
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rithm was run, setting the ‘group’ argument of ‘tl.paga()’
to the cell type labels.

Analyses with ascend were carried out using the ascend
(v0.99.69) R package. The ascend-based hierarchical mod-
els were estimated from the component-based dimensional-
ity reduced data sets using the ‘runCORE()’ function. Given
that, unlike K2Taxonomer and PAGA, ascend can only be
carried out as a fully unsupervised analysis without group-
level input, concordance of these models with those of other
methods was evaluated based on purity-based assignment
of cell type labels to individual subgroups of each ascend
model. Cell types were assigned to individual partitions
based on two criteria: first, if at least 75% of the profiles
of a given cell type were assigned to the subgroup and, sec-
ond, if the total number of cell profiles across individual cell
types that met the first criteria made up at least 75% of the
total cell profiles in the subgroup.

Breast cancer immune cell scRNAseq gene expression analy-
sis

Publicly available scRNAseq gene expression of raw counts
from immunocytes of two TNBC patients was obtained
from GEO, accession number GSE110938 (29). The data
was processed in accordance with the original manuscript
(29), recapitulating the reported 5,759 individual cells, 4,844
and 915 from either sample, with 15 623 genes passing QC
criteria, selection of 1675 highly variable genes, and 10 la-
tent variables estimated by ZINB-WaVE (v1.8.0) (45). To
enable exploration of the data at finer resolution, cluster-
ing of the latent variables with Seurat (v1.3.4) was modi-
fied by setting the ‘resolution’ argument of ‘FindClusters()’
to 1.1, rather than the default, 0.8 (46). This resulted in 13
estimated cell clusters. Of the 10 cell clusters reported in the
original manuscript, two cell clusters, ‘CD4+ FOXP3+’ and
‘CD4+ IL7R+’, were further split into three and two indi-
vidual clusters, respectively (Supplementary Table S3).

K2Taxonomer was applied in its group-level modality
to partition these 13 estimated cell subtypes based on the
normalized count matrix estimated by ZINB-WaVE. Ac-
cording to the developers, ZINB-WaVE, normalized count
estimates are not recommended for differential analysis
(45), hence differential analysis was performed based on
drop-out imputed and batch-corrected normalized counts
estimated using the bayNorm (v1.4.14) R package (47).
Pathway-level analysis was carried out using Reactome gene
sets downloaded from mSigDB (v7.0) (48). Signatures of
up-regulated genes were derived from each subgroup based
on their FDR corrected P-value (FDR < 1e−10) and min-
imum subgroup-specific expression, (mean[log2 counts] >
0.5), then restricted to a maximum of 50 genes.

To investigate the concordance between K2Taxonomer
estimated model and that estimated by a fully unsupervised
scRNAseq hierarchical clustering method, we ran ascend on
the same ZINB-WaVE reduced dimension data set that was
used as input for Seurat. Subgroup-level cell cluster assign-
ments in the resulting ascend estimated model was carried
out using the same criteria employed for the healthy airway
tissue scRNAseq analysis.

To validate the clinical relevance of signatures of TILs
derived by K2Taxonomer, we performed survival analysis

based on gene signature projection scores, as well as on se-
lected genes in the METABRIC breast cancer primary tu-
mor gene expression data set. Gene set projection was car-
ried out using GSVA (39). Multivariate Survival analysis
was performed using Cox proportional hazards tests. All
models included age and Pam50 subtype as covariates. To
account for possible confounding effects of inflammation
and proliferation, we generated separate patient-level activ-
ity scores for each, using a gene set projections of published
signatures of deleterious breast cancer inflammation mark-
ers (49) and breast cancer proliferation (50) (Supplementary
Table S4).

RESULTS

We report here our extensive evaluation of K2Taxonomer
on both simulated and real data. We evaluated the method’s
performance both on data where the analysis end-points
were single samples (observation-level), and groups of sam-
ples (group-level). The latter corresponds to scenarios where
the goal is to define a taxonomy over sample groups, such
as cell types in single-cell experiments, or chemical pertur-
bations profiled in multiple replicates (51).

K2Taxonomer discovers hierarchical taxonomies on simu-
lated data

We first evaluated K2Taxonomer’s capability to recapitu-
late hierarchical relationships induced in simulated data,
as measured by the Baker’s gamma coefficient estimate
of similarity between the structure of two dendrograms,
where the structure of each dendrogram is quantified by
a matrix based on the number of partitions separating
each pair of leaves (52). As a term of reference, we com-
pared K2Taxonomer’s performance to Ward’s agglomera-
tive method.

For observation-level analysis, K2Taxonomer demon-
strated robust performance for moderate levels of back-
ground noise, e.g., standard deviations equal to 0.5 and
1.0, regardless of the proportion of features with signal
or the number of terminal clusters (Figure 2a, Supple-
mentary Table S5). For higher levels of background noise,
e.g., standard deviations equal to 2.0 and 3.0, the per-
formance of K2Taxonomer was more dependent on ei-
ther parameter, performing better with more features with
signal and fewer terminal clusters. K2Taxonomer signif-
icantly outperformed Ward’s method in 221 out of the
400 combinations of parameters tested (FDR < 0.05),
while Ward’s performed better for 17 combinations (Fig-
ure 2A, Supplementary Table S5). Furthermore, the dif-
ferences between Baker’s gamma coefficients for the 221
results significantly in favor of K2Taxonomer were gen-
erally larger than the 17 results significantly in favor of
Ward’s method, with median differences of 0.14 and 0.03,
respectively. In general, K2Taxonomer significantly outper-
formed Ward’s method when the background noise, the
number of terminal groups and percent features with signal
increased.

Remarkably, for group-level analysis K2Taxonomer out-
performed Ward’s method for all 400 combinations of vari-
ables tested (Figure 2b, Supplementary Table S6).
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Figure 2. Simulation-based performance assessment of K2Taxonomer and Ward’s agglomerative method. Mean Baker’s gamma correlation estimates
measuring the similarity of either K2Taxonomer and Ward’s agglomerative method estimates to the true hierarchy from which the simulated data was
generated. Each combination of parameters was simulated 25 times. The red and blue lines are indicative of statistically significant differences between the
correlation estimates (FDR < 0.05) based on a Wilcoxon signed-rank test. (A) Observation-level analyses with 300 observations and 10,000 features. (B)
Group-level analyses with 1000 observations and 10,000 features.

Using the square root of the total number of fea-
tures as the partition-specific feature filtering parameter for
running K2Taxonomer demonstrated stable performance.
When compared to selecting a fixed percentage of the to-
tal number of features (Supplementary Figure S1, Supple-
mentary Table S7), the square root outperformed larger per-
centages when the number of features was large, and out-
performed smaller percentages when the number of features
was small.

K2Taxonomer accurately sorts breast cancer subtypes with-
out pre-filtering of features

We evaluated K2Taxonomer’s ability to sort Pam50 sub-
types, ER-status, PR-status, and HER2-status from bulk
gene expression data from METABRIC and the TCGA
BRCA bulk gene expression data, separately. A fourth vari-
able, defined by the Cartesian product of ER-status, PR-
status and HER2-status was also assessed. Performance
was assessed in terms of the decrease in entropy as the num-
ber of cluster estimates, K, increased from 2 to 8 (Figure 3A
and B). We also compared K2Taxonomer’s performance to
two agglomerative clustering methods, Ward’s and average.
Since standard hierarchical clustering is sensitive to the level

of feature filtering, the comparison was repeated for multi-
ple pre-filtering levels.

In general, K2Taxonomer accurately segregated the
known subtypes and phenotypes, performing as well or
better than either method (Figure 3B, Supplementary Ta-
bles S8 and S9). When applied to the METABRIC data,
K2Taxonomer analysis yielded the lowest entropy score
compared to all other methods for K = 3 and higher with
few exceptions. Other methods produced similar entropy
measurements at selected higher levels of K. For example,
Ward’s method resulted in similar entropy scores for Pam50
subtypes and HER2-status at K = 4 and K = 5, respectively,
but for different pre-filtering levels, 5% and 100%, respec-
tively. When applied to the TCGA BRCA data, the differ-
ence in performance was less pronounced. K2Taxonomer re-
sulted in the lowest entropy score for Pam50 scores, geno-
type, ER- and PR-status for K = 4. Ward’s method at 5%
pre-filtering level produced the smallest entropy score for
HER2-status for K = 4.

It should be emphasized that the pre-filtering level to
be used with hierarchical clustering is not known a pri-
ori, and it would thus preclude us in practice from select-
ing the level yielding the best results shown in the above
comparison.
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Figure 3. Breast cancer subtyping performance assessment of bulk gene expression data. Comparison of sorting of breast cancer Pam50 subtypes and
genotypes (ER-, PR- and ER-status) for two bulk gene expression data sets, METABRIC and TCGA. An aggregate, three gene genotype status was also
included by combining the individual genotypes. Performance was assessed based on reduction of entropy as the number cluster estimate increased based
on tree cutting. K2Taxonomer was only run on the full set of features, while either agglomerative method, average and Ward’s, were run on three additional
subsets of the data. (A) Illustration of the results generated by K2Taxonomer and Ward’s method for the METABRIC dataset. These results reflect Ward’s
method run on 5% of the total number of features, which demonstrated the best performance among agglomerative methods. (B) Entropy measurements
for each method as K increased across the METABRIC and TCGA data sets.

K2Taxonomer accurately identifies and organizes subgroups
of shared progenitors and epithelial cells from healthy airway
scRNAseq cell clusters

To assess the capability of K2Taxonomer to recapitulate
biologically relevant subgroupings of cell types estimated
from scRNAseq data, we ran group-level analysis using 29
cell types estimations assigned to 77,969 cells of airway tis-
sue from 35 samples across 10 healthy subjects and multi-
ple locations (Figure 4A, B) (28). In addition to agglomer-
ative methods, we evaluated K2Taxonomer’s performance
against that of partition-based graph abstraction (PAGA)
(20), which has been shown to outperform similar meth-
ods, especially for analyzing large-scale scRNAseq data sets
(18).

K2Taxonomer was remarkably accurate in capturing the
higher-order organization of the 28 cell types. The first
partition separated all epithelial cell subtypes from non-
epithelial cell types (Figure 4B). Further partitioning of the
17 epithelial cell subtypes yielded five subgroups, charac-
terized by shared morphology, labeled as ‘Ciliated’, ‘Basal’,
‘Submucosal’, ‘Brush-like’ and ‘AE’ (Alveolar Epithelium).
The ‘Ciliated’ subgroup was comprised of differentiated
multiciliated cells and their precursor, deuterosomal cells
(28). The ‘Basal’ subgroup was comprised of epithelial cell
progenitors, basal and cycling basal cells, as well as ep-
ithelial cell intermediary, suprabasal cells (53). The ‘Brush-
like’ subgroup was comprised of three rare airway epithe-
lial cell types: brush, ionocyte, and pulmonary neuroen-

docrine cells (PNECs), as well as their likely shared ‘brush-
like’ precursor cells (54), as suggested in the original publi-
cation of these data (28). Further partitioning of the 11 non-
epithelial cell types yielded two main subgroups character-
ized by shared progenitor cells: immune (55) and mesenchy-
mal stem cells (56), with the immune cell subgroup also in-
cluding endothelial cells. Further partitions of the immune
cell subgroup included progeny of monoblasts: monocytes,
dendritic cells, and macrophages (57), followed by endothe-
lial cells separated from all non-monoblast progeny immune
cells subtypes in the adjacent subgroup.

In contrast, agglomerative hierarchical clustering of these
cell clusters, even if evaluated at multiple F-statistic-based
pre-filtering levels, yielded significantly different results
poorly reflective of the known taxonomic cell type orga-
nization (Figure 4C, Supplementary Figure S2). While the
mesenchymal stem cell subgroup, comprised of fibroblasts,
smooth muscle, and pericytes, was identified by Ward’s
method, and while there were other instances of concordant
subgroups, none of these consisted of more than two cell
types.

PAGA-based trajectory analysis (20) of the cell types per-
formed better than agglomerative clustering, and demon-
strated both improvements and drawbacks compared to
K2Taxonomer. (Figure 4D, Supplementary Figure S3). Fig-
ure 4D shows what we selected to be the ‘best’ PAGA
result for runs on a grid of F-statistic-based pre-filtering
levels (25% of genes) and principal component-based di-
mensionality reduction size (15 principal components).
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Figure 4. Subgrouping of healthy airway cell types from scRNAseq data. (A) tSNE dimensionality reduction of healthy airway scRNAseq data with labels
for 28 cell types annotated by (29). Note cell types labelled ending in ‘N’ indicate those which only included cells from nasal samples. (B) K2Taxonomer
results with nine annotated subgroups. The ‘*’ in the ‘Immune’ subgroup label indicates the impurity of this subgroup caused by the presence of endothelial
cells. (C) Ward’s agglomerative clustering results for a selected analysis performed on 10% of the total number of genes. The results for both Ward’s method
and Average method run on additional gene subsets: 100%, 25%, 10% and 5%, are shown in Supplementary Figure S2. (D) PAGA graph-based trajectory
results for a selected analysis performed on 15 principal components estimated from 25% of the total number of genes with four annotated disconnected
subgraphs. The ‘*’ in the ‘Epithelial’ subgroup label indicates the incompleteness of this subgraph caused by the absence of basal cells and submucosal
cells. Edges indicate PAGA connectivity estimates >0.8. The results for analyses run on additional numbers of principal components: 10, 15 and 20, as well
as additional gene subsets: 100%, 25%, 10% and 5%, are shown in Supplementary Figure S3.

In this case, PAGA recapitulated four subgroups iden-
tified by K2Taxonomer as disconnected subgraphs: ‘Im-
mune’, ‘Epithelial’, ‘Submucosal’, and ‘Mesenchymal’. Un-
like K2Taxonomer, this model accurately segregated en-
dothelial cells as its own disconnected vertex. However, all
PAGA models failed to include basal cells in the epithelial
cell subgraph (Figure 4D, Supplementary Figure S3). Fur-
thermore, PAGA segregated the histologically separated
submucosal cells lines: SMG goblet and serous, from the
other epithelial cell lines. The most apparent difference be-
tween the K2Taxonomer and PAGA results is the high con-
nectedness of the PAGA subgraphs, especially considering
that these are all ‘near perfect-confidence’ connections. As
a result, subgroup relationships within these subgraphs are
difficult to distinguish, and approaches to estimate tree-like
graphs, such as minimum spanning tree algorithms, yield
multiple equivalent solutions. Finally, the PAGA results var-
ied based on the feature pre-filtering level and the number
of principal components, most notably in the estimations of
connections between immune cells and epithelial cells (Sup-
plementary Figure S3).

While models generated by ascend-based hierarchical
clustering were also able to recapitulate some of the sub-
groups, we did not observe any improvements compared

to K2Taxonomer or PAGA (Supplementary Figure S4).
Whereas the first K2Taxonomer partition segregated all ep-
ithelial cell types, each of the ascend models separated mul-
ticiliated cells from all other cell types at the first split.
Moreover, in six out of nine of these models, the multicil-
iated cells did not subgroup with deuterosomal cells. Like
PAGA, the structure and subgroups identified by individual
ascend models varied widely based on feature pre-filtering
level and number of principal components, such that a ‘best’
model wasn’t discernable. For example, the ascend model
run with 25% of genes and 10 principal components was
the only model capable to identify a purely ‘Immune’ cell
subgroup, but did not include the ‘Basal’ or ‘Monoblast’
subgroups identified by some of the other models. In terms
of interpretability the ascend models presented additional
challenges. As expected, individual profiles with the same
cell type label were scattered throughout the ascend mod-
els, such that a purity-based heuristic approach was used
to assign cell type labels at individual partitions. As a re-
sult, in most cases individual cell type labels ‘dropped-out’
of models before segregating in cell type-specific subgroups.
Moreover, this assignment procedure required considerable
ad hock manipulation of the objects generated by the ascend
R package.



PAGE 11 OF 17 Nucleic Acids Research, 2021, Vol. 49, No. 17 e98

K2Taxonomer identifies subgroups of TILs characterized by
differential regulation of TNF signaling, translation and mi-
totic activity from BRCA tumor scRNAseq cell clusters

We performed K2Taxonomer analysis on scRNAseq data of
13 TIL cell clusters reflecting further subdivision of the 10
cell types reported in the original study (29). The higher res-
olution was achieved by reproducing the reported methods
(29) with the exception of selecting a higher resolution pa-
rameter when performing clustering with Seurat (14) (Sup-
plementary Table S3). The full set of results is also avail-
able through the interactive portal at https://montilab.bu.
edu/k2BRCAtcell.

The results of K2Taxonomer partitioning and annotation
of breast cancer TIL cell clusters estimated from scRNAseq
data is summarized in Figure 5a. Biologically informative
subgroups, characterized by strongly significant differen-
tial expression of gene expression and sample-level path-
way enrichment are highlighted and labeled within each
boxed sub-dendrogram. The full set of differential results
for genes and pathways across all partitions are reported
in Supplementary Tables S10 and S11, respectively. Three
distinct multi-cell subgroups emerged, labeled as: ‘Trm All’,
‘CD4+ CCL5-’ and ‘Translation+’, characterized by consis-
tent up-regulation of PD-1 signaling (Reactome PD-1 sig-
naling, FDR = 1.1e−241), translation (Reactome eukary-
otic translation initiation, FDR = 5.6e-137), and TNF sig-
naling (Reactome TNFS bind their physiological receptors,
FDR ∼ 0.00), respectively (Figure 5B). ‘Trm All’ and ‘Treg’
subgroups each included a mitotic cell subgroup character-
ized by high cell cycle activity (Figure 5B). Furthermore,
the ‘CD4+ CCL5−’ subgroup, comprised of the ‘CD4+
CXCL13+’ cell cluster and ‘Treg’ subgroup, is characterized
by consistent down-regulation of CCL5 (FDR ∼ 0.00) and
up-regulation of TNFRSF4 (FDR ∼ 0.00) (Figure 5C, D).
Furthermore, additional up-regulation of TNFRSF4 (FDR
= 1.1e−7) and RGS1 (FDR = 4.3e−55) distinguish non-
mitotic ‘Treg’ subgroups (Figure 5C). Gene-level markers
of the ‘Translation+’ subgroup included numerous riboso-
mal proteins, epitomized by up-regulation of RPS27 (FDR
= 9.6e−246) (Figure 5C, D).

We compared the subgroup discovery of this model to
that of ascend (24) (Supplementary Figure S5). The mod-
els differed substantially. Notably, unlike K2Taxonomer,
ascend-based models did not segregate monocytes from T
cell subtypes in the first partition and segregated mitotic
Treg cells, CD4+ FOXP3+ (3), from the two other Treg
cell subtypes in the second partition. Moreover, the ascend-
based model segregated individual profiles of CD4+ Trm
cells, such that this cell type ‘dropped-out’ out of the model
early in partitioning.

Confounding effects of inflammation and proliferation on the
association between tumor infiltrating cell activity and patient
survival

To assess the clinical relevance of K2Taxonomer annota-
tion of single-cell immune cell subgroups, we performed sur-
vival analysis, via Cox proportional hazards testing, model-
ing the relationship between K2Taxonomer subgroup gene
signature scores and patient survival in the METABRIC
breast cancer bulk gene expression data set.

For these models, we examined two possible sources
of confounding factors. First, inflammation has a well-
described paradoxical role in breast cancer progression (58),
such that the content of different subpopulations of lym-
phocytes has been associated with both better and worse
prognosis (59). Given the physiological similarities be-
tween different lymphocyte subtypes (60), we hypothesized
that expression patterns associated with tumor-promoting
inflammation could mask those associated with tumor-
suppressing TILs subsets. Second, we hypothesized that the
signatures of the two mitotic T cell subgroups were sim-
ilar enough to signatures of proliferative activity in non-
immune tumor cells to result in a spurious association be-
tween T cell mitosis and worse prognosis. To assess and
correct for these confounding effects, multivariate survival
models were run without and with the inclusion of inflam-
mation and proliferation scores as individual covariates.
These patient-level scores were estimated by projecting pub-
lished signatures of ‘bad’ inflammation (49) and prolifera-
tion (50), each of which had been previously reported to be
associated with poor prognosis in breast cancer.

The results of each of these analyses are summarized in
Figure 5A. The full set of survival results for unadjusted and
adjusted models, including the genes belonging to each sub-
group signature are reported in Supplementary Table S12.
Controlling for inflammation and proliferation scores in-
creased the overall significance of the association between
subgroup-driven signatures of TILs and improved survival
(hazard ratio < 1, FDR < 0.05). Furthermore, signatures
of two cell subgroups, ‘CD8+ mit. Trm’ and ‘Treg mit.’,
characterized by increased cell cycle activity (Figure 5B),
were associated with worse patient survival in models ignor-
ing inflammation and proliferation scores, but were subse-
quently statistically insignificant in models including these
covariates, likely reflecting the effect of confounding by pro-
liferation activity (Figure 5A). This is further illustrated
in Figure 5E, which shows the 95% confidence intervals
of hazard ratios of ‘marginal’ inflammation and prolifera-
tion models (left-most), as well as the confidence intervals
of hazard ratios of select subgroups of cell subtypes, un-
adjusted and adjusted for inflammation and proliferation.
Controlling for inflammation and proliferation allowed us
to disentangle the contribution to survival of different com-
ponents. For example, in the ‘CD8+ mit. Trm’ subgroup,
we observed that the ‘CD8+ mit. Trm’ signature score was
highly associated with worse patient survival in the unad-
justed model, but the association became insignificant in the
full model adjusted for proliferation and inflammation. On
the other hand, there were instances where the hazard ratio
achieved or improved significance (i.e., patient survival was
significantly better) only after controlling for inflammation
and proliferation in the full adjusted model, as observed in
the ‘Trm All’ subgroup and, to a lesser extent, in the ‘Trans-
lation+’ subgroup (Figure 5E).

High expression of TNFRSF4, a marker for Treg cell activity
is associated with worse survival when adjusting for CCL5
expression

TNFRSF4 and CCL5 were found to be the top two markers
constitutively up- and down-regulated, respectively, within
Treg subgroups, with TNFRSF4 the top marker further dis-

https://montilab.bu.edu/k2BRCAtcell
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Figure 5. K2Taxonomer annotation of scRNA-seq clustering of breast cancer immune cell data and in-silico validation via patient survival on METABRIC
breast cancer bulk gene expression data set. (A) K2Taxonomer annotation of 13 cell subtypes of breast cancer immune cell populations. Cell type labels are
in accordance with the original publication (29). Color and thickness of each edge indicate direction and strength, respectively, of the association between
the projected signature of up-regulated genes of each subgroup and patient survival in METABRIC breast cancer cohort via Cox proportional hazards
testing. The top and bottom dendrograms show the results without and with adjustments of covariates for inflammation and proliferation. Blue and red
are indicative of hazard ratio <1 and hazard ratio >1, respectively. All models included age and PAM50 subtype as covariates. (B) Boxplots of gene set
projection scores of selected REACTOME pathways, enriched in subgroups of immune cells. These pathways include: PD-1 Signaling, enriched in the Trm
All subgroup, Translation, enriched in the Translation+ subgroup, TNF Signaling, enriched in the CD4+ CCL5- and Treg TNFRSF4+ subgroups, and Cell
Cycle, enriched in the CD8+ mit. Trm and Treg mit. Subgroups. The center line, hinges, and whiskers indicate the median, interquartile range, and extreme
values truncated at 1.5 * the interquartile range, respectively. (C) Boxplots of markers constitutively regulated in selected K2Taxonomer subgroups. GZMB
is upregulated in the Trm All subgroup. CCL5 and TNFRSF4 are up- and down-regulated, respectively, in the CD4+ CCL5− subgroup. TNFRSF4 is
further up-regulated in the Treg TNFRSF4+ subgroup, while RGS1+ is up-regulated in the Treg RGS1+ subgroup. Finally, RPS27 is up-regulated in the
Translation+ subgroup. The center line, hinges and whiskers indicate the median, interquartile range and extreme values truncated at 1.5 * the interquartile
range, respectively. (D) tSNE dimensionality reduction of the single-cell breast cancer immune cell data, indicating the cell subtype label assignment of
every cell, as well as Z-scored expression of selected genes from C. (E) 95% confidence intervals of hazard ratios from Cox proportional hazards testing of
gene set projections of cellular subgroups on the METABRIC data set. Covariates shows the results of the survival model of sample-level inflammation and
proliferation scores without a K2Taxonomer derived signature. Every other model shows the confidence interval of the subgroup-specific model without and
with adjusting for inflammation and proliferation score, as well as the confidence intervals of inflammation and proliferation in the full model. All models
included age and Pam50 breast cancer subtype as covariates. (F) Comparison of the expression of CCL5 and TNFRSF4 expression in the METABRIC
dataset. (G) 95% confidence intervals of hazard ratios from Cox proportional hazards testing of gene-level expression of CCL5 and TNFRSF4, modelled
separately, Sep., and combined in a single model, Comb. These models also included age, Pam50 breast cancer subtype, as well as sample-level inflammation
and proliferation score as covariates. (H) Volcano plot of differential expression analysis of the Translation+ subgroup in scRNAseq data of individual
genes in the REACTOME eukaryotic translation initiation gene set. An alternative coding of the y-axis indicating the absolute value of the test statistic
is shown on the right side of the plot. The colors indicates the association of each gene with survival in the METABRIC data set. Genes significantly
associated with better survival (hazard ratios < 1, FDR < 0.1) are labelled. (I) Comparison of the association between survival and expression of the
REACTOME eukaryotic translation initiation gene set (y-axis) and the test statistics indicating up-regulation in the Translation+ subgroup (x-axis) in the
METABRIC data set. Genes that were included as top markers of the Translation+ subgroup are highlighted. Genes significantly associated with better
survival (hazard ratios < 1, FDR < 0.1) are labelled. The blue line indicates the linear fit of these two variables.
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criminating between the two non-mitotic Treg subgroups,
Treg TNFRSF4+ and Treg RGS1+ (Figure 5A, C, D).
Furthermore, their expression was highly correlated in the
METABRIC data set (rho = 0.66, P-value = 3.2e−245)
(Figure 5F), supporting a pattern of co-expression within
TIL microenvironments. To assess whether TNFRSF4 and
CCL5 expression levels could serve as markers for immuno-
suppressive activity of Treg cells, we performed survival
analysis of each gene modeled separately and in a combined
model (Figure 5G). When modeled separately, the expres-
sion of TNFRSF4 is not associated with patient survival (P-
value = 0.32), while CCL5 is associated with better patient
prognosis (P-value = 1.94E−4). However, in the combined
model both genes are associated with patient survival, with
TNFRSF4 associated with worse patient survival (P-value
= 0.015).

Taken together these results indicate that, in bulk gene
expression data, markers of Treg cell activity are highly
correlated with markers of overall tumor immune infiltra-
tion, confounding associations between expression of these
markers and patient survival.

Up-regulation of specific translation genes characterizes a
subgroup of TILs and is associated with better survival prog-
nosis, independent of inflammation activity

The ‘Translation+’ subgroup was a notable instance where
the subgroup-specific signature projection was associated
with better patient survival, regardless of adjustment for in-
flammation and proliferation (Figure 5A, E). To assess the
extent to which up-regulation of translation-specific genes
in this subgroup associated with better patient prognosis,
we ran separate survival analysis for each of the 112 genes
from the Reactome Eukaryotic Translation Initiation gene
set, which were shared between the single-cell BRCA gene
set and METABRIC data set. Of the 112 genes, 61 were up-
regulated in the ‘Translation+’ subgroup (FDR < 1E−5),
including 26 genes within the top 50 marker ‘Translation+’
subgroup signatures (Figure 5H, I). The full set of sur-
vival results for these 112 genes are shown in Supplemen-
tary Table S13. The test statistics derived from single gene
Cox proportional hazards models were negatively corre-
lated with the corresponding genes’ test statistics of their
up-regulation in the ‘Translation+’ subgroup (rho = −0.23,
P-value = 0.014) (Figure 5I). Furthermore, seven of the 112
genes were associated with better patient survival (FDR <
0.1). All of these genes were significantly up-regulated in
the ‘Translation+’ subgroup. Of these seven genes, RPL36A
had the minimum ‘Translation+’ subgroup-associated test
statistic (FDR = 1.34e−25) and two (RPS28 and RPS27)
were members of the top 50 markers, comprising the ‘Trans-
lation+’ subgroup signature. RPS27 was the top translation
gene associated with the ‘Translation+’ subgroup (FDR =
9.6e−246).

In summary, we employed K2Taxonomer to characterize
the up-regulation of translational machinery as the domi-
nant transcriptional program shared by a diverse subgroup
of TILs. These findings informed additional analyses, which
demonstrated that association between expression of trans-
lational machinery genes and better patient survival tracked
with their over-expression in a subgroup of TILs. Taken

together these findings suggest that the up-regulation of
specific translational machinery genes is widespread across
TILs, serving as a predictor of the level of immune infiltra-
tion in breast cancer tissue from bulk gene expression data.

DISCUSSION

In this manuscript, we presented extensive assessment and
practical applications of K2Taxonomer, a novel unsuper-
vised recursive partitioning algorithm for taxonomy discov-
ery in both bulk and single-cell high-throughput transcrip-
tomic profiles. An important distinctive feature of the al-
gorithm is that each partition is estimated based on a fea-
ture set selected to be most discriminatory within that par-
tition, thus permitting the use of large sets of features to
be used as input, without pre-filtering or dimensionality
reduction approaches. Additionally, to minimize general-
ization error, each partition is based on an ensemble (61)
of partition estimates from repeated perturbations of the
data. The adoption of an ensemble approach also makes it
possible to compute a stability measure for each partition,
which can be used to assess the robustness of each parti-
tion, as well as a stopping criterion for limiting the num-
ber of subgroup estimates. Finally, to facilitate comprehen-
sive exploration of the results, as well as to share results
for independent interrogation, the K2Taxonomer R pack-
age includes functionalities to automatically generate in-
teractive web-portals. One of these portals was utilized ex-
tensively to annotate subgroups as part of our analysis of
breast cancer TILs in scRNAseq data and is publicly avail-
able (https://montilab.bu.edu/k2BRCAtcell/).

Our extensive evaluation and benchmarking of the meth-
ods on simulated data showed K2Taxonomer’s high accu-
racy, its superior performance when compared to repre-
sentative other methods, and its capability to (re)discover
known nested taxonomies. As we have shown in its multiple
applications, K2Taxonomer may be applied in a fully unsu-
pervised mode to partition individual-level data, or it can
take group-level labels as input to estimate inter-group rela-
tionships among the known groups. In the group-level set-
tings, K2Taxonomer is not directly comparable to fully un-
supervised ‘flat’ or hierarchical clustering methods. In our
simulations, the comparison to Ward agglomerative cluster-
ing was attained by averaging the profiles within each simu-
lated ‘group’ and by then clustering these ‘average profiles.’
Side-by-side comparison with any of the single cell algo-
rithms (23–25) on simulated data was thus deemed not nec-
essary, since their main difference from standard agglom-
erative clustering is in their handling of the highly sparse
single cell profiles, a need that is eliminated when dealing
with the afore mentioned ‘average profiles.’

In the group-level analysis, partition estimates are based
on the constrained K-means algorithm (26), which estimates
clusters at the level of known group labels. This approach is
perfectly suited to the downstream analysis of scRNAseq
data, following the estimation of mutually exclusive cell
types using scRNAseq clustering methods such as Seurat
(14) or Scran (15). It thus provides a unique tool for the
analysis of ever-growing single cell data repositories such
as the Human Cell Atlas (62), the Human Tumor Atlas
Network (HTAN) (62) and the Human BioMolecular Atlas

https://montilab.bu.edu/k2BRCAtcell/
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Program (HuBMAP) (63) among others. By preserving the
single observation information within each group, and by
thus being able to tailor the feature set to each of the groups,
we expect our approach to outperform methods in which
group-level information is summarized into single statistical
measures. This conclusion is supported by our simulation
analysis, where K2Taxonomer was shown to significantly
outperform Ward’s agglomerative method based on group-
level test statistics. Even when adopted for observation-level
analysis, where inference was performed on the full set of in-
dividual observations, K2Taxonomer was still shown to sig-
nificantly outperform standard agglomerative methods, on
both simulated and real data, although not to as large an
extent.

In our analysis of healthy airway cell types’ annotation
(28), we employed K2Taxonomer to (re)discover subgroups
of cell types characterized by shared lineage. Remarkably,
our analysis accurately recapitulated the known taxonomic
structure relating the different cell types to an extent not
matched by the other methods evaluated. This example il-
lustrates a prototypical use of the tool: in those cases where
a data set and its associated cell type estimations are pub-
licly available, K2Taxonomer facilitates their immediate re-
purposing for additional insight and discovery. This is a
defining advantage over fully unsupervised scRNAseq hi-
erarchical clustering methods, such as ascend (24), which
cannot make use of prior labeling of the cell profiles for sub-
group discovery. Subgroup annotation from ascend analy-
sis of these data was complicated by the fact that cell pro-
files belonging to the same cell type label were split across
multiple partitions, and often to an extent that it made it
challenging to assign a representative cell type label to indi-
vidual subgroups. Moreover, even for annotated subgroups,
none of the ascend models were able to recapitulate taxo-
nomic relationships between cell types to the same level as
the K2Taxonomer model. This was also true when compar-
ing the K2Taxonomer and ascend models generated from the
breast cancer TILs scRNAseq data set.

It is important to emphasize that in many data sets con-
tinuous lineage trajectories are non-existent or obscured
by phenotype-driven inter-group transcriptional relation-
ships. While K2Taxonomer cannot identify precursor rela-
tionships between cell types, the strategy of pairing recur-
sive partitioning with local feature selection allows the dis-
cernment of relative relationships between groups rather
than ‘all-or-nothing’ connections as in graph-based tra-
jectory models. The advantages of this strategy are ex-
emplified by the analysis of the healthy airway, in which
the data included samples of multiple individuals and
airway locations. PAGA analysis of these data produced
highly-connected graphs with no decipherable trajectories
or subgroups beyond that of disconnected subgraphs. On
the other hand, K2Taxonomer recapitulated clear lineage-
driven hierarchies of airway cell subgroups. While the sub-
grouping of endothelial cells as a subset of immune cells
does not reflect the expected hierarchy, K2Taxonomer gen-
erated this model without parameterization. The ‘best’
PAGA model had the unfair advantage of having been cho-
sen from a set of distinct models generated from combina-
tions of feature selection and dimensionality reduction pa-

rameters. In practice, the a priori choice of the optimal val-
ues of these parameters is challenging.

Our extensive analysis of single-cell data from breast can-
cer TILs showcased the incorporation of K2Taxonomer in
an advanced in-silico study that yielded significant novel
insights. In contrast to bulk gene expression, which cap-
tures average expression across all cells, identifying domi-
nant transcriptional programs driving phenotypic similari-
ties between subgroups of cell populations offers additional
insights to deconvolute the cellular microenvironment of
these samples beyond their individual transcriptional signa-
tures. Molecular convergence of cells of disparate lineages
is exemplified by subpopulations of CD8+ and CD4+ T
cells, each of which exists in various functional states as
naı̈ve, effector, and memory subpopulations (64). Impor-
tantly, our K2Taxonomer-based analysis showed that con-
cordant subpopulations of CD8+ and CD4+ T cells share
transcriptional signatures that may outweigh those arising
from their shared lineage. For example, both CD8+ Trm
and CD4+ Trm cells have been reported to express surface
molecules, CD69 and CD11a (65). Concordantly, CD8+
Trm and CD4+ Trm cells were segregated into a common
subgroup by K2T, demonstrating the relative dominance of
their shared transcriptional activity. Projection of the ex-
pression signature of Trm cell subgroups was associated
with better survival in the METABRIC data set. Past stud-
ies focusing on CD8+ Trm cell markers have reported sim-
ilar findings (29,66).

Unlike Trm cells, the presence of immune-suppressing
Treg cells in the microenvironment has been associated with
poor prognosis in breast cancer (67–69). After identifying
TNFRSF4 as heterogeneously expressed across the Treg cell
subgroup, we showed that TNFRSF4 expression was asso-
ciated with worse patient survival in the METABRIC data
set when adjusted for CCL5 expression, which was down-
regulated among all Treg cells. This supports previous find-
ings that TNFRSF4, also known as OX40, is a marker
of high Treg cell immunosuppressive activity (70,71). The
high level of co-expression of TNFRSF4 and CCL5 in the
METABRIC data set suggests that either gene is associated
with immune infiltration in breast cancer tumors. Addition-
ally, this provides a resolution as to why projections of the
signature of the Treg cell subgroup were associated with bet-
ter patient survival, while the signature of the Treg cell sub-
set characterized by high TNFRSF4 expression, was not.
These results are consistent with previous studies establish-
ing the ratio between Treg and CD8+ T cell abundance as a
prognostic marker of breast cancer that reflects immune in-
hibitory function of Treg cells (72). Moreover, these results
strongly suggest a prognostic value for markers that capture
the degree of immune inhibitory activity of Treg cell popu-
lations.

Finally, K2Taxonomer identified a diverse subgroup
of breast cancer TILs characterized by consistent up-
regulation of translational genes. Increased ribosomal bio-
genesis has been previously implicated in increased tumori-
genesis (73–76), but has only recently been implicated in T
cell activation (30) and expansion (31). Unlike the major-
ity of other subgroups, the signature of the T cell subgroup
overexpressing translational machinery genes was associ-
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ated with better patient survival in METABRIC patients
regardless of adjustments for inflammation (49) and prolif-
eration (50) signatures. Furthermore, the association of the
expression of specific translational genes with better patient
survival was significantly correlated to their overexpression
in this T cell subgroup. These results suggest that overex-
pression of these T cell-specific translational genes is not
masked by tumor-specific gene expression and is therefore
indicative of CD4+ and CD8+ T cell tumor infiltration.

In summary, K2Taxonomer demonstrated a remarkable
ability to discover biologically relevant taxonomies when
applied to the analysis of both bulk gene expression and
scRNAseq data and to outperform standard agglomerative
methods. In multiple practical applications, we showcased
the versatility of K2Taxonomer to analyze scRNAseq data
toward the characterization of genes and pathways distin-
guishing specific subgroups, thereby generating hypotheses
that were then in-silico validated in independent bulk gene
expression data. As noted, while we here focused on the
analysis of transcriptomics data, the proposed approach is
equally applicable to other bulk and single-cell ‘omics’ data,
such as those generated by high-throughput proteomics and
metabolomics assays.
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