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An association between a rare, coding, non-synonymous SNP variant in the gene DZIP1 and Parkinson’s
disease was found, based on an analysis of the existing NGRC genome-wide association study dataset. The
statistical analysis utilized the hypothesis-rich, targeted search unbiased assessment approach, rather than
the hypothesis-free, genome-wide agnostic search paradigm. The association of DZIP1 with Parkinson’s
disease is discussed in the context of a Parkinson’s disease stem-cell ageing theory.

F
amilial genetic linkage studies have associated six genes with Mendelian inheritable forms of Parkinson’s
disease (PD)1. However, these monogenic forms account for fewer than 10% of PD cases. Further, they lead
mostly to juvenile or early onset forms of PD (before age 50). Given that no decisive environmental causative

factors have been found either, the etiology of late-onset PD (comprising over 90% of all PD cases) remains
essentially undetermined. A range of hypotheses are being explored2–6. We have proposed the theory that
i) sporadic PD is best defined as a characteristic deviation from normality in the expression program of a cell
(the PD-state) and ii) this PD-state can originate as a case of hematopoietic stem-cell program defect7.

At present, considerable efforts are focused on finding differential genetic susceptibility to late-onset PD via the
genome-wide association study (GWAS)8. In a GWAS, a set of patients and controls is genotyped at known SNP
sites in the human genome. Mathematically, this assigns individuals to locations within a high-dimensional SNP
space (Figure 1). Genetic susceptibilities are inferred from statistically significant differences in the placement of
patients and controls in this SNP space. Large enough differential disease risks constitute practical predictive
genetic markers. So far though, susceptibilities found have been typically weak (some 85% of trait associated SNPs
reported have an odds ratio in the 0.5–2 range)9. Nonetheless, such findings can still be invaluable as indicators of
the involvement of particular genes or biological processes in the disease mechanics. As of today, GWASs have
reported about a dozen, modest effect (odds ratio in the 0.5–2 range), susceptibility loci for PD10–17.

The hypothesis-free paradigm currently dominates GWAS statistical data analysis8. It has been previously
described why this is a poor choice18–21. Biological knowledge and insightful hypotheses are as crucial in the
analysis of a GWAS as they are in the analysis of any classical biological experiment22–25. The alternative
hypothesis-rich mathematical theory recognizes this fact and allows biological thought to maximize statistical
power21,26. Key in the approach is the concept of Rational Class (RC), a set of candidate laws (markers in the
GWAS context) that share an underlying common rationale.

In this article, we analyze the late-onset sporadic PD GWAS NGRC dataset of Hamza et al.10, under the
hypothesis-rich framework (the late-onset, sporadic qualifier will be henceforth subsumed)26,27. In the
Methods section, the focus is on describing the RCs constructed specifically for this PD GWAS analysis.
Findings are summarized in the Results section. Finally, in the Discussion section, we review relevant biological
information to contextualize our findings.

Results
The significant findings from the hypothesis-rich analysis of the Hamza et al. dataset are presented in Table 1. For
these SNPs, the null hypothesis was that the two regions defined by the split mode (see Figure 3: 1-dimensional
split modes) present no differential susceptibility to PD. Now, pure chance in the finite sampling of individuals

SUBJECT AREAS:
NEUROGENETICS

GENETIC ASSOCIATION STUDY

SYSTEMS BIOLOGY

NEURODEGENERATION

Received
13 September 2011

Accepted
18 January 2012

Published
10 February 2012

Correspondence and
requests for materials

should be addressed to
A.V. (andre.valente@

biocant.pt) or Y.G.
(garygao@gmail.com)

SCIENTIFIC REPORTS | 2 : 256 | DOI: 10.1038/srep00256 1



from the population could create the false impression of differential
susceptibility. Assuming the null hypothesis, the reference probability
indicates the ease of such stochasticity producing an unwarranted
call (as per the hypothesis-rich framework) of differential suscept-
ibility27. We emphasize that the quoted reference probabilities
already take into consideration the presence of multiple-hypotheses
testing. For easiness of comparison, the arbitrariness in defining odds
ratio (given the validity of the inverse of any choice) was settled by
making every odds ratio larger than unity. The minor allele effect
entry then indicates which region carries the greater risk of PD.

The reported SNPs in the SNCA region and in the HLA-DRA
region had all been noted as significant in previous GWASs10,28,29.
The SNPs reported in the chromosome 17 q21.31 region (usually
categorized as the MAPT region) validate the previous GWAS based
association of this region with PD (most of these MAPT region SNPs
have been specifically previously reported, though we could not con-
firm all)10–17. The novel finding is the increased susceptibility to PD

conferred by a rare, coding, non-synonymous SNP variant in the
DZIP1 gene (Figure 4).

Discussion
The PD working theory we put forward in previous work7 provides a
possible context for the connection of DZIP1 with PD found in this
analysis. Therefore, we start by reviewing it. Firstly, PD would be
defined in terms of the PD-state, a characteristic deviation from the
normal expression program of a healthy cell. Singular cellular man-
ifestations of PD would therefore be de-emphasized in favor of this
systems-level definition. Crucially, the PD-state would be a generic
cell state, not restricted to neurons. Secondly, the PD-state would

Figure 1 | In a genome-wide association study (GWAS), subjects are

vectors in SNP space. Depicted is one sensible coordinate system for SNP

space. Capital letters represent the major allele, lower case letters the minor

allele. To each SNP therefore corresponds an axis with 3 admissible values

(0, 1 and 2). At present, typical cohort sizes are in the range of 103 to 104

subjects, while the number of SNPs genotyped is on the order of 106.

Table 1 | Summary of the findings from hypothesis-rich analysis of the Hamza et al. GWAS PD dataset. See the Results main text section for
meaning of the entries

Rational Class
RC #2 coding region minor
allele freq: 10%–30%

RC #7 hematopoietic coding
region minor allele freq., 10%

RC #15 generic (non-coding/non-UTR)
30% , minor allele freq.

Gene IMP5, MAPT, CRHR1,
KIAA1267, C17orf69, NSF

DZIP1 HLA-DRA SNCA-GPRIN3, SNCA

SNP rs12373123, rs12185235,
17651549, rs16940665,
12185268, kgp6408681,
rs1052551, rs16940674,
rs36076725, rs17652121,
kgp3974170, rs17574604,
kgp3365508, rs10445337,
rs1881193, rs3583914,
rs1052553, kgp4886152,
rs199533

kgp1112497 rs3129822 rs356220, rs2736990,
rs356168

Location chr. 17, q21.31 in coding
regions synonymous &
non-synonymous substitutions

chr. 13, q32.1 coding region
non-synonymous substitution

chr. 6, p21.3
intronic

chr. 4, q22.1 intergenic
(SNCA-GPRIN3) intronic
(SNCA)

Minor allele
frequency 19% thru 21% 0.7% 44% 40% thru 49%

Minor allele effect protective harmful harmful harmful
Split mode minor allele dominant minor allele dominant extreme minor allele dominant
Odds ratio 1.2 thru 1.3 4.4 1.5 1.3 thru 1.4
Reference

probability 0.06 thru 0.09 0.03 0.04 0.04 thru 0.07

Figure 2 | The Hamza et al.10 cohort data in SNP space, after a change

from the Figure 1 coordinate system to principal component coordinates

(first two principal components shown). Color indicates the country of

parental origin for subjects that reported such information and for whom

both parents had a common origin. The plot replicates a similar figure in

Hamza et al.. Smaller circles denote individuals with a lower statistical

weight, due to the process of population homogenization across SNP space

regarding the PD to control subject ratio56.
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originate in a stem-cell program defect, associated with the ageing of
stem-cells. We proposed the hematopoietic stem-cell niche as a place
of origin for the PD-state, although other stem cell niches should not
be ruled out from playing a part. Thirdly, the subsequent PD-state
propagation to other cells would not occur evenly. Propagation
would be faster to cells more amenable to reprogramming (such as
other stem cells or their not yet fully differentiated progeny). Thus
tissues under active regeneration would be the first to be affected.
Beyond PD biology, note the validity of this theory would signal
an effective degree of communication between different stem-cell
niches greater then what is currently accepted.

We now describe what is known at present about the biological
role of DZIP1. The gene DZIP1 encodes a C2H2-type zinc finger
protein30. Its acronym stands for DAZ-interacting protein 1, as
DZIP1 was originally identified in a screen for protein interaction
partners of the DAZ (deleted in azoospermia) protein 30. Its express-
ion in human embryonic, stem, fetal and adult germ cells was thus
well noted30. Zebrafish mutants in iguana (the DZIP1 ortholog in
Zebrafish) have been invaluable in characterizing the gene. A iguana
mutant (fo10a) displayed ultrastructural defects in perivascular
mural cell recruitment and subsequent hemorrage, thus linking vas-
cular stability and DZIP131. Work with Zebrafish iguana mutants
also revealed DZIP1 to be a component of the Hedgehog (Hh) sig-
naling pathway32,33. Within the Hh pathway, DZIP1 acts downstream
of Smoothened, modulating the activity of the Gli family of tran-
scription factors32,33. DZIP1 has further been implicated in primary
ciliogenesis and its role in Hh signaling may occur in this context34–36.
Hh plays a vital part in directing embryonic pattern formation37.
However, it continues regulating adult stem cells beyond embryo-
genesis38,39. Studies have specifically implicated Hh in the adult main-
tenance of hematopoietic stem cells40, epithelial stem cells in the
gastrointestinal tract41, neuronal stem cells in the subventricular zone
(SVZ) and the hippocampal dentate gyrus42,43, hair follicle stem
cells44, mammary stem cells45 and mesenchymal stem cells46. Be-
sides its role in neurogenesis, Hh has also shown neurotrophic pro-
perties, in particular regarding dopaminergic neuron survival47–49.
Administration of Sonic Hedgehog reduced behavioral deficits in
animal models of PD50,51. Nonetheless, an earlier targeted genetic
analysis of Sonic Hedgehog in Parkinson’s patients, did not find
any significant mutations in this gene52.

Genetic mutations affecting the Hh pathway have been associated
with an increased incidence of a diversity of cancers (see Merchant
et al.53 or Beachy et al.39 for comprehensive listings). Under a cancer
stem-cell hypothesis54 interpretation, this is consistent with the role
of Hh in adult stem cell homeostasis. The aberrant Hh signaling
would contribute the conversion of adult stem cells (or perhaps their
early progeny) into cancer stem cells, cells endowed with stem-cell
properties and trapped in a pathological state of constant renewal39,54.
Now, under our PD hypothesis, PD also originates in a stem-cell
program defect. However, while in the cancer stem cell hypothesis
the pathology progresses via physical replication of the cancer stem
cells themselves, in PD we are proposing propagation solely of the PD
characteristic expression state (the PD-state)7. The PD-state of a cell
could possibly be physically locked in by epigenetic DNA modifica-
tions7.

We have reported a non-synonymous SNP in the DZIP1 gene that
confers increased susceptibility to PD. We emphasize that this result
is based on a single population cohort of mixed European ancestry,
the Hamza et al. dataset10. Importantly, confirmation by future
cohort analyses remains to be determined. The result raises the pos-
sibility of a connection between adult stem-cell regulation and
Parkinson’s disease, which we explored. Again, it remains to be seen
whether this PD stem-cell biology association idea will be supported
or infirmed by PD research work in the next few years.

Methods
We analyzed the NGRC GWAS dataset of Hamza et al.10, consisting of 1986 control
subjects and 2000 sporadic late-onset PD patients. All individuals were Americans of
self-reported European ancestry. As in any GWAS, a concern is the presence of
population structure in the cohort data55. Likely the European population, due to
historical and geographical factors, does not constitute, mating-wise, a single uni-
formly mixed population. Now, suppose the existing subpopulations have distinct
susceptibilities to PD. This could be due to differences in genetic background, culture
(e.g., diet), or physical environment. Regardless, a genetic marker of a subpopulation
(e.g., a SNP variant typical of a subpopulation) would then effectively mark a distinct
susceptibility to PD. This poses a problem, in that we would like to interpret markers
as having a causative effect on PD susceptibility, which clearly would not be the case
here. The issue may also arise merely by study recruitment centers in areas with
distinct subpopulations not enrolling identical ratios of PD to control subjects. Note

Figure 3 | Each graph shows a manner of splitting SNP space into two

shaded regions. Differential risk of PD between the shaded regions is then

ascertained (non-shaded regions are ignored). 1-dimensional split modes:
Utilized in RCs containing single SNPs (RCs 1 thru 15 and RC 23).

2-dimensional split modes: Utilized in RCs containing pairs of SNPs (RCs

16 thru 19).

Figure 4 | Individuals in the Hamza et al. cohort carrying a copy of the

rare DZIP1 allele are highlighted in SNP space, under principal component

coordinates (first two principal components shown). No homozygous rare

allele individuals were present in the dataset.
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that although for simplicity we allude above to discrete subpopulations, generically
the mixing makeup will have a continuous character.

To analyze the dataset of Hamza et al., we used the SNP space coordinate system
shown in Figure 1. The relative overall location of individuals in SNP space (Euclidean
distance wise) reflects the cohort population structure. Namely, relative locations are
consistent with parental country of origin for those subjects that reported such
information and for whom both parents had a common origin. This is visually clear
upon a change of coordinates to principal component coordinates (Figure 2).

A variety of methods exist for mitigating the population structure problem55. We
chose to homogenize the population regarding the PD to control subject ratio, via
individual weight knock-down. Briefly, this involves reducing the statistical weight of
selected individuals to locally level the ratio of PD to control subjects throughout SNP
space. A separate article describes in detail both the method and its application to this
particular dataset56. The homogenization procedure reduced the dataset to a net
weight of 1904 PD patients and 1802 controls (a 7% size reduction). This will be the
reference dataset henceforth.

We utilized the hypothesis-rich framework to investigate the dataset26,27. The
hypothesis-rich framework provides a targeted search, unbiased assessment approach
to the analysis of GWAS data. The targeted search assertion follows from biological
considerations guiding the statistical search for genetic susceptibility factors.
Specifically, biological information enters the mathematical analysis via the concept
of Rational Class (RC), a set of candidate genetic markers that share a common
rationale. Yet, in spite of the biased search, an unbiased assessment is obtained from a
proper mathematical treatment of multiple hypotheses testing26,27.

We now describe the RCs constructed for the PD GWAS problem. Throughout,
recall that separating markers into distinct RCs can be statistically advantageous if the
resulting RCs have different True Quality Distribution and Correlation Structures
(shorthand, TQDs)26. This can be the case whenever a biological rationale underlies
the marker separation. On the other hand, RCs must be rank ordered and
statistical resolution decreases with increasing rank, thus overly liberal RC creation is
pointless26,27.

A total of 23 RCs were constructed (Table 2). The first 15 RCs, containing indi-
vidual SNPs, were based on the following factors:

Genomic region. we grouped SNPs by whether they fell in a coding region, in the
UTR or in the remainder of the genome. Confirming the distinct biological roles of
these regions, past GWASs show the incidence of trait associated SNPs in them is not
uniform8.

SNP allele frequencies. These frequencies are affected by the degree of selective
pressure on the associated haplotypes. Thus, on average, the character of SNPs with
different allele frequency ratios may be distinct. We divided SNPs into three broad
groups, based on their minor variant frequency: ,10%, 10–30% and .30%. Also,
note that we are comparatively more interested in larger odds ratio markers. Given
two SNP markers showing the same statistical significance (ordinarily, same p-value),
the one with the lower minor variant frequency necessarily shows a larger differential
trait susceptibility (larger odds ratio). Thus, as an additional benefit, the above
frequency breakdown effectively protects the search for rare variant, high odds ratio
markers.

Hematopoietic fingerprints. Given our PD working theory, the set of SNPs occur-
ring in genes with a function in the hematopoietic system acquires particular rel-
evance. We recorded 2253 SNPs spread across 662 so called hematopoietic fingerprint
genes57. The genes were identified by Chambers et al. via global gene expression
profiling of murine hematopoietic stem cells and their major differentiated lineages
(NK-cells, T-cells, B-cells, monocytes, neutrophils and nucleated erythrocytes)57.

Combination of the above factors yielded RCs 1 thru 15 (Table 2). In these RCs,
SNPs were tested for association with differential PD risk three separate times, each
time based on a different mode of splitting the SNP space (Figure 3, 1-dimensional
split modes). The dominant and recessive modes were motivated by their well known
biological counterparts. However, a situation where phenotype is significantly more
assured only under homogeneous alleles is also biologically plausible. The extreme
mode accommodates these cases by excluding individuals with heterogeneous alleles
from the statistical comparison. In every case, the null hypothesis was that the two
regions defined by the split mode present no different susceptibility to PD. Statistical
comparison between the two chosen regions was done via the Fisher exact test.

RCs 16 thru 19 were based on SNP pairs. Given there are on the order of 106 SNPs,
potential SNP pairs are on the order of 1012. A RC containing such a large number of
entries is unlikely to have a favorable TQD26. It is therefore fundamental to prioritize
SNP pairs. We generated one list of SNP pairs based on protein-protein physical
interactions. For every two interacting proteins on different chromosomes, all SNP
pairs with one SNP in each of the interacting proteins respective coding gene region
were added to the list. The exclusion of protein pairs on the same chromosome
excludes pairs of SNPs potentially in linkage disequilibrium. Protein-protein inter-
actions were obtained from HPRD (,39000 interactions)58. The SNP pairs were
tested for association with differential PD risk five times, each time based on a
different mode of splitting the SNP space (Figure 3, 2-dimensional split modes). In
every case, the null hypothesis was that the two regions defined by the split mode
present no different susceptibility to PD. Statistical comparison between the two
chosen regions was done via the Fisher exact test. The results of the tests were assigned
to RC 16 or to RC 17 depending on whether the associated odds ratio was smaller or
larger than 3. Once more, this has the benefit of safeguarding the search for high odds
ratio markers.

A second list of SNP pairs was constructed based on the hematopoietic fingerprint
genes. Based on the expression profiling, Chambers et al. had further divided the
hematopoietic fingerprint genes into the following subclasses: hematopoietic stem
cells, B-cells, naive T-cells, NK-cells, monocytes, granulocytes, nucleated erythro-
cytes, differentiated shared fingerprint, lymphoid shared fingerprint and myeloid
shared fingerprint 57. We generated hematopoietic gene pairs by considering every
possible pairing of genes within the same hematopoietic subclass, exclusive of gene
pairs in the same chromosome. The procedure described above for protein pairs was
then applied to the hematopoietic gene pairs, thus generating RCs 18 and 19.

RCs 20 thru 22 contained SNP tuplets generated from protein complexes. Human
protein complexes were obtained from the CORUM database (,1300 complexes)59.
Consider first RC 20, containing 2-tuplets generated from complexes of up to 4
proteins. The 2-tuplets for RC 20 were generated as follows:

Table 2 | The Rational Classes (RCs) constructed to analyze the PD GWAS data

Rational Class Rank Rational Class Description

1 coding | allele freq.: , 10% | dominant, recessive and extreme
2 coding | allele freq.: 10% to 20% | dom., rec. extr.
3 coding | allele freq.: . 30% | dom., rec. extr.
4 UTR | allele freq.: , 10% | dom., rec. extr.
5 UTR | allele freq.: 10% to 20% | dom., rec. extr.
6 UTR | allele freq.: . 30% | dom., rec. extr.
7 hematopoietic | coding | allele freq.: , 10% | dom., rec. extr.
8 hematopoietic | coding | allele freq.: 10% to 20% | dom., rec. extr.
9 hematopoietic | coding | allele freq.: . 30% | dom., rec. extr.
10 hematopoietic | UTR | allele freq.: , 10% | dom., rec. extr.
11 hematopoietic | UTR | allele freq.: 10% to 20% | dom., rec. extr.
12 hematopoietic | UTR | allele freq.: . 30% | dom., rec. extr.
13 non-coding/non-UTR | allele freq.: . 30% | dom., rec. extr.
14 non-coding/non-UTR | allele freq.: , 10% | dom., rec. extr.
15 non-coding/non-UTR | allele freq.: 10% to 20% | dom., rec. extr.
16 protein pairwise interactions | coding | OR . 3 | 5 split modes
17 protein pairwise interactions | coding | OR , 3 | 5 split modes
18 hematopoietic pairwise interactions | coding | OR . 3 | 5 split modes
19 hematopoietic pairwise interactions | coding | OR , 3 | 5 split modes
20 protein complexes | sizes 2 thru 4 | top 2 proteins
21 protein complexes | sizes 3 thru 9 | top 3 proteins
22 protein complexes | sizes 4 thru 16 | top 4 proteins
23 gene expression sig. | coding and UTR | all freqs. | dom., rec., extr.

www.nature.com/scientificreports
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1. Given a complex, consider the SNPs that fall in the coding region of the protein
members of the complex. Denote them as CSNPs. Add every possible (CSNP A,
CSNP B) 2-tuplet to RC 20, provided CSNP A and CSNP B are located in
different chromosomes.

2. Repeat for every complex of up to 4 proteins.

Each 2-tuplet was tested for association with differential PD risk 3 separate times,
as follows:

1. Under the dominant 1-dimensional split mode, assign a Fisher exact test based
p-value to each CSNP in the tuplet in the standard fashion (i.e., considering the
CSNP as an individual SNP, as in the RCs 1 thru 15). We formalize it by writing
p-value 5 p(CSNP; dominant mode).

2. The p-value associated with the 2-tuplet is (max(p(CSNP A; dominant mode),
p(SNP B; dominant mode)))2 (i.e., squared).

3. Assign two more p-values to the tuplet, as above, but now utilizing the recessive
and extreme 1-dimensional split modes.

RC 21 was similar to RC 20, except that:

1. It was based on complexes of sizes 3 thru 9.
2. It contained 3-tuplets (CSNP A, CSNP B, CSNP C).
3. The p-value associated with a 3-tuplet is (max(p(CSNP A; split mode), p(SNP B;

split mode), p(SNP C; split mode)))3 (i.e., cubed).

RC 22 was similar to RC 20, except that:

1. It was based on complexes of sizes 4 thru 16.
2. It contained 4-tuplets (CSNP A, CSNP B, CSNP C, CSNP D).
3. The p-value associated with a 4-tuplet is (max(p(CSNP A; split mode), p(SNP B;

split mode), p(SNP C; split mode), p(SNP D; split mode)))4 (i.e., to the fourth
power).

In these complex based RCs, in every case the null hypothesis is that none of the
SNPs in the tuplet shows differential susceptibility to PD between the two regions
defined by the split mode. The anticipation is that a complex mechanistically involved
in PD may produce a tuplet (or tuplets) of particular low p-value under the above
tuplet p-value definition. RCs 20, 21 and 22 are kept separate to preserve potentially
distinct TQDs.

Finally, RC 23 was based on genes in the blood gene expression signature for PD
(involving 18 genes) we developed in earlier work 26. RC 23 contained:

1. All SNPs in the coding or UTR regions of the genes present in the expression
signature.

2. All SNP pairs, exclusive of pairs in the same chromosome, with one SNP in the
coding or UTR regions of one expression signature gene and the other SNP in
the coding or UTR region of a second expression signature gene.

The individual SNPs were tested for association with differential risk of PD under
the three 1-dimensional split modes via the Fisher exact test, as in RCs 1 thru 15. The
SNP pairs were tested for association with differential risk of PD under the five
2-dimensional split modes via the Fisher exact test, as in RCs 16 thru 19. All tests
were placed in a single RC, given their low number.

Quality control. At the outset, a quality control procedure was applied to the Hamza
et al. dataset that excluded the following SNPs from the entire analysis:

- SNPs with a p-value less than 1025 under the Hardy-Weinberg test.
- SNPs with less than a 99.9% call rate.

The quality control was implemented using the program Plink60. A total of 748807
SNPs passed the quality control.
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