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Background. Multivoxel pattern analysis has provided new evidence on somatotopic representation in the human brain. However,
the effects of stimulus modality (e.g., penetrating needle versus non-penetrating touch) and level of classification (e.g., multiclass
versus binary classification) on patterns of brain activity encoding spatial information of body parts have not yet been studied.
We hypothesized that performance of brain-based prediction models may vary across the types of stimuli, and neural patterns
of voxels in the SI and parietal cortex would significantly contribute to the prediction of stimulated locations. Objective. We
aimed to (1) test whether brain responses to tactile stimuli could distinguish among stimulated locations on the body surface,
(2) investigate whether the stimulus modality and number of classes affect classification performance, and (3) localize brain
regions encoding the spatial information of somatosensory stimuli. Methods. Fifteen healthy participants completed two
functional magnetic resonance imaging (MRI) scans and were stimulated via the insertion of acupuncture needles or by non-
invasive touch stimuli (5.46-sized von Frey filament). Participants received the stimuli at four different locations on the upper
and lower limbs (two sites each) for 5min while blood-oxygen-level-dependent activity (BOLD) was measured using 3-Tesla
MRI. We performed multivariate pattern analysis (MVPA) using parameter estimate images of each trial for each participant
and the support vector classifier (SVC) function, and the prediction accuracy and other MVPA outcomes were evaluated using
stratified five-fold cross validation. We estimated the significance of the classification accuracy using a permutation test with
randomly labeled training data (n = 10,000). Searchlight analysis was conducted to identify brain regions associated with
significantly higher accuracy compared to predictions based on chance as obtained from a random classifier. Results. For the
four-class classification (classifying four stimulated points on the body), SVC analysis of whole-brain beta values in response to
acupuncture stimulation was able to discriminate among stimulated locations (mean accuracy, 0.31; q < 0:01). The searchlight
analysis found that values related to the right primary somatosensory cortex (SI) and intraparietal sulcus were significantly more
accurate than those due to chance (p < 0:01). On the other hand, the same classifier did not predict stimulated locations
accurately for touch stimulation (mean accuracy, 0.25; q = 0:66). For binary classification (discriminating between two
stimulated body parts, i.e., the arm or leg), the SVC algorithm successfully predicted the stimulated body parts for both
acupuncture (mean accuracy, 0.63; q < 0:001) and touch stimulation (mean accuracy, 0.60; q < 0:01). Searchlight analysis
revealed that predictions based on the right SI, primary motor cortex (MI), paracentral gyrus, and superior frontal gyrus were
significantly more accurate compared to predictions based on chance (p < 0:05). Conclusion. Our findings suggest that the
SI, as well as the MI, intraparietal sulcus, paracentral gyrus, and superior frontal gyrus, is responsible for the somatotopic
representation of body parts stimulated by tactile stimuli. The MVPA approach for identifying neural patterns encoding spatial
information of somatosensory stimuli may be affected by the stimulus type (penetrating needle versus non-invasive touch) and
the number of classes (classification of four small points on the body versus two large body parts). Future studies with larger
samples will identify stimulus-specific neural patterns representing stimulated locations, independent of subjective tactile
perception and emotional responses. Identification of distinct neural patterns of body surfaces will help in improving neural
biomarkers for pain and other sensory percepts in the future.
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1. Introduction

The somatosensory system is distributed throughout the
human body and responds to noxious and innocuous sensa-
tions, whereas the brain processes multiple sensory factors
influencing the perception of somatosensory stimuli such as
intensity [1–3], modality [4, 5], and location [6–8]. Extensive
research has identified brain regions involved in the
processing of stimulus intensity, subjective intensity, emo-
tional responses, and the cognitive evaluation of pain and
non-painful somatosensory stimuli, namely, the primary and
secondary somatosensory cortexes (SI and SII, respectively),
anterior cingulate cortex, thalamus, and insula [9–11].

Studies on the neural processing of spatial information of
somatosensory stimuli have mainly focused on the somatoto-
pic representation of body surfaces [6, 12–15] since Penfield
and Boldray reported their landmark study of a motor and
sensory homunculus in the human brain [16]. In addition,
effects of the location or posture of the stimulated body part
on the perception of stimulus location (spatial remapping
from skin into external space [17, 18]) and brain activations
related to the spatial discrimination task [7, 19, 20] have
been studied. The major candidates subserving perception
and discrimination of spatial information of somatosen-
sory stimuli in the brain are the SI [6, 12, 21] and poste-
rior parietal cortex [18, 22, 23]. The SI reflects a distinct
somatotopic representation of body parts; for example,
the lower limb is represented in the medial-superior part
of the SI, whereas the upper limb is represented in the lateral
part. The posterior parietal cortex updates the representa-
tion of the body in external space by integrating proprio-
ceptive information and sensory inputs and is thus critical
in spatial remapping.

Recently, machine learning and multivariate pattern
analysis (MVPA) have been extensively used in functional
magnetic resonance imaging (fMRI) data analysis as an
alternative to conventional univariate analyses. In a previous
study, MVPA was able to distinguish among the locations of
vibrotactile stimulation delivered to widely separated parts of
the body (e.g., bilateral hands and feet; predicted correctly for
85% of trials) or to closely located parts of the body (e.g.,
three digits of the same hand) [8]. Moreover, the SI and SII
exhibited better decoding performance than other regions
of interest (ROIs), with an average accuracy of 60% for widely
separated body parts (chance accuracy, 25%). Mean classifi-
cation accuracies for three-way decoding of three digits of
the same hand by the SI and SII were 61% and 50% (chance
accuracy, 33%), respectively, which were better than those
exhibited by other ROIs. For vibrotactile stimuli delivered
to a single digit, high-resolution 7-Tesla fMRI revealed
location-specific activations in the SI, and using neural
signals of the index finger-associated region in the SI, MVPA
successfully differentiated the location of four stimulated
sites within a single digit (mean accuracy, 65%) [24]. In our
previous study, we tested the ability of MVPA to discriminate
two adjacent sites on the arm receiving pricking pain sensa-
tions induced by an acupuncture needle and found that the
SI, primary motor cortex (MI), insula, and inferior parietal
cortex participated in predicting the location of the pain [20].

The results of previous studies suggest that the SI and SII,
as well as other somatosensory processing regions, contain
informative multivariate patterns predicting the location of
exteroceptive stimuli applied to the human body. However,
it remains unclear whether the distinguishable patterns
encoding spatial information in the brain vary depending
on the stimulus modality (i.e., penetrating needle versus
nonpenetrating touch) and number of classification classes
(e.g., multiclass versus binary classification). Based on the
previous findings, we hypothesized that (1) the accuracies
of brain-based prediction models may vary across the types
of stimuli (however, we had no prior hypothesis about which
model would predict stimulated locations better than the
other one due to insufficient evidence) and (2) clusters of
significant voxels identified by searchlight analysis are scat-
tered predominantly in the SI and parietal cortex.

To test our hypotheses, we (1) investigated whether
whole-brain responses to two tactile stimuli, one painful
and one non-painful, could predict stimulated locations on
the body, (2) investigated whether the stimulus modality
and number of classes affect classification performance, and
(3) identified brain regions encoding the somatotopic infor-
mation of somatosensory stimuli.

2. Methods

2.1. Participants. Fifteen healthy participants (mean age, 22.8
years; six females) underwent two fMRI scans. All partici-
pants were not naïve to acupuncture, and they were refrained
from alcohol or caffeine for 12 h before the experiments.
Participants were not enrolled if they had any skin problems
on the stimulated site or if they were not eligible for MRI
(e.g., suffer from claustrophobia). After the experimental
procedure was explained, all participants provided written
consent. This study was carried out in accordance with the
guidelines for clinical research established by the Kyung
Hee University Ethics Committee (Seoul, Republic of Korea),
and it was also approved by the Kyung Hee University Ethics
Committee (KHSIRB-15-056).

2.2. Study Design and Experimental Procedures. All partici-
pants completed two event-related fMRI sessions on two
separate days, and the order of sessions was counterbalanced
across participants. Each session was separated by at least 5
days and conducted at a similar time of day. Each session
included a 4min baseline resting state scan (not analyzed in
this study) followed by a 5min stimulation scan. During
the stimulation scan, participants experienced 20 trials of
an acupuncture or tactile stimulus at four locations, and the
order of stimulated locations was randomized in each partic-
ipant (5 s for each stimulus with jittered intervals of 14:92
± 1:66 s between trials). After the stimulus scan, another
fMRI scan using the histamine-induced itch paradigm was
acquired, and the results were reported elsewhere (see Min
et al. [25]). Anatomical images were acquired at the end of
the session (Figure 1).

2.3. Somatosensory Stimulation. In each session, participants
received acupuncture or were stimulated using a von Frey
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filament at four sites on their body. The acupuncture needle
and von Frey filament were used to evoke pain and touch
sensations, respectively. All stimulations were performed by
a licensed Korean medicine doctor. For the acupuncture
session, two sites each on the left arm (Arms A and B: acu-
points PC6 and HT7) and leg (Legs A and B: acupoints
SP10 and ST36) were stimulated. Non-magnetic titanium
acupuncture needles (0.20mm in diameter and 40mm in
length; DongBang Acupuncture Inc., Boryeong, Republic of
Korea) were inserted into the four acupoints at a safe depth
for each acupoint (6mm for HT7, 15mm for SP10 and
PC6, and 20mm for ST36) before beginning the stimulation
scan. During the scan, one of the inserted needles was rotated
bidirectionally at a rate of 1Hz guided by a metronome
sound transmitted via headphones according to the random-
ized order.

Tactile stimulation was delivered by gentle tapping of an
MRI-compatible von Frey filament (size 5.46, target force
26 g; Touch Test Sensory Evaluator Instructions, North Coast
Medical, Inc., Morgan Hill, CA, USA) at a rate of 1Hz guided
by the metronome sound. The locations were labeled as same
as the acupuncture session (Arm A, Arm B, Leg A, and Leg
B), although they were different from the acupoints used
for acupuncture stimulation. Tactile stimulation sites were
located on the same meridian system but are not acknowl-
edged as acupoints. Detailed information was described in
our previous study [25].

2.4. fMRI Data Acquisition and Analysis. Data were
acquired on a 3-Tesla MRI scanner (Siemens, Erlangen,
Germany) with a three-axis gradient head coil. Functional
images were acquired with a T2∗-weighted gradient echo-
planar imaging sequence (37 slices; TR = 2,000ms; TE =

30ms; flip angle, 90°; field of view, 240 × 240mm2; slice
thickness, 4.0mm; voxel size = 3mm × 3mm× 3mm3).
Anatomical images were acquired using a T1-weighted rapid
gradient echo sequence with TR = 2,000ms, TE = 2:37ms, a
flip angle of 9°, a field of view of 240 × 240mm2, and a slice
thickness of 1.0mm.

Preprocessing of the fMRI data was performed using
Analysis of Functional NeuroImages (AFNI version 19.2.24,
https://afni.nimh.nih.gov) [26]. The echo-planar imaging
data were despiked, corrected for slice time differences,
realigned for motion correction, coregistered to the individ-
ual anatomical image, and scaled voxel-wise using the mean
value of each voxel. Trial-specific estimates were obtained
using a beta-series regression, least squares model, modelling
each trial as a separate regressor constructed by convolving a
gamma function with a box-car function at the onset of each
trial [27]. We made a beta image for each scan separately
(acupuncture and tactile) and used two different sets of
labels for the stimulated locations. One trial-specific beta
image was computed using the trial labels of all stimulated
locations (four-class; Arm A, Arm B, Leg A, and Leg B),
and another beta image was made using labels of two body
parts (two-class; Arm A and Arm B were labeled as “upper
limb,” and Leg A and Leg B were labeled as “lower limb”).
The resulting parameter estimates were used as input
features for MVPA.

2.5. MVPA and Statistical Analysis. The multivariate anal-
ysis was performed using the Python package scikit-learn
(Figure 2) [28]. We applied the support vector classifier
(SVC) function with a linear kernel to predict the stimulated
locations, and the one-vs.-one scheme was employed for the
four-class classification. F score-based feature selection was
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Figure 1: Illustration of experimental procedure. Two fMRI sessions were performed on separate days, with at least 5 days off in between,
while participants received either (a) acupuncture or (b) von Frey touch stimulation inside of the scanner. Two sites each on the arm
(Arm A and Arm B) and the leg (Leg A and Leg B) were stimulated in a random order while the blood-oxygen-level-dependent signal was
measured. In the acupuncture session, acupuncture needles were inserted into the four acupoints each after a 4-minute resting scan, and
one of the needles was rotated at a rate of 1Hz according to the randomized order. In the touch session, a 5.46-sized von Frey filament
was applied to one of the stimulation sites at a rate of 1Hz according to the randomized order. Each stimulation was delivered for
5 seconds with jittered intervals (range 13-17 seconds) between trials. The structure image was obtained on day 2 at the end of the
second session.

3Neural Plasticity

https://afni.nimh.nih.gov


performed on the training data, and 10 percentile of the vox-
els with the highest F scores were included as input features.
The classification accuracy for each voxel in the brain
(whole-brain classification accuracy) was estimated as its
generalization ability with a stratified five-fold cross valida-
tion procedure. In addition, we estimated the performances
of the classifiers as the area under the receiver operating
characteristic curve (ROC-AUC), precision, recall, and F1
score, and summarized the correct and incorrect classifica-
tions of the target locations using the confusion matrix.

The significance of the classification accuracies of all
voxels was tested using a non-parametric random permu-
tation test (n = 10,000) and paired t-tests, and results were
corrected for multiple comparisons using the false discov-
ery rate (FDR) approach (the significance threshold was
set at q < 0:05). Neural patterns encoding stimulated loca-
tions were localized using spherical multivariate search-
light analysis (radius = 5mm) [29]. Searchlight results
were identified using an uncorrected voxel-wise threshold
of p < 0:001 and corrected for multiple comparisons using

the Monte Carlo simulation at the corrected significance
threshold of p < 0:05 [30].

3. Results

3.1. Whole-Brain SVC Classification Performance. Classifica-
tion accuracies of all voxels were compared to the distribu-
tion of accuracies from the permutation test to assess the
classifier’s performance in discriminating locations of the
two types of somatosensory stimuli—acupuncture and touch
stimuli. For the four-class classification (predicting one of
four stimulated locations at a chance level of 0.25), classifica-
tion with the MVPA analysis using whole-brain beta images
and SVC was significantly more accurate in terms of predict-
ing acupuncture-stimulated locations than the permuted
accuracies obtained using randomized labels (mean accuracy,
0.31, FDR adjusted q < 0:01, Figure 3(a)). On the other hand,
the same classifier was not significantly more accurate in
terms of predicting tactile-stimulation locations compared
to permuted accuracies (mean accuracy, 0.25, FDR adjusted

SVC
training

Feature
selection

(Voxels with the
highest F scores)

Training
data

Test
data

Stratified
5-foldBeta

images
(Input features)

Cross validation

Preprocessing fMRI data for MVPA

fMRI BOLD
signal

Preprocessed
BOLD
signal

Trial-by-
trial bata
estimates

(Input features)

Parameter
estimates

Despiking
Slice time
correction
Realignment
Coregistration
Scaling

Preprocessing

Significance test

Classification of
stimulated locations

Classification 
accuracy

Distribution of
accuracies obtained
from permutation

testing

t-test, FDR
corrected (p < 0.05)

(a)

(b)

(c)

Figure 2: Flowchart of the MVPAmethod. (a) Raw fMRI data were preprocessed with AFNI (version 19.2.24) including despiking, slice time
correction, realignment for motion correction, coregistration to the individual anatomical image, and scaling voxel-wise signal using the mean
value of each voxel. Trial-specific estimates (beta images) were obtained using the least squares regression, which estimates each trial
separately by convolving a gamma function with a box-car function. The outputs (parameter estimates) were used as input features for the
MVPA. (b) Training and test data sets were generated, and a stratified 5-fold cross validation was performed. The SVC was trained with
the top 10 percentile of features with the highest F scores. (c) We tested the SVC’s prediction performance using the prediction accuracy,
the area under the receiver operating characteristic curve, recall, precision, and F1 score, and the accuracy was compared to a permutation
test with randomly labeled training data (n = 10,000). AFNI: Analysis of Functional NeuroImages; BOLD: blood-oxygen-level-dependent;
FDR: false discovery rate; fMRI: functional magnetic resonance imaging; MVPA: multivariate pattern analysis; SVC: support vector classifier.
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q = 0:66, Figure 3(b)). The confusion matrix presents the
frequencies of all classifications (Figure 4).

The same procedure was conducted to predict one of two
stimulated body parts, the upper or lower limb (chance level,
0.5). The classifiers’ prediction performance was significantly
better than that of the permutation tests for both the
acupuncture trials (mean accuracy, 0.63, FDR adjusted q <
0:001, Figure 3(c); ROC-AUC 0.63; precision estimate 0.63;
recall estimate 0.63; mean F1 score 0.63) and the tactile
stimulation trials (mean accuracy, 0.60, FDR adjusted q <
0:01, Figure 3(d); ROC-AUC 0.59; precision estimate 0.61;
recall estimate 0.61; mean F1 score 0.60).

3.2. Decoding the Spatial Information of Somatosensory Stimuli
on the Body. To define brain regions including informative
voxels of somatotopic representations of body surfaces stimu-

lated by a penetrating needle or a non-penetrating touch
stimulus, a 5mm spherical searchlight analysis was conducted.
The searchlight analysis showed that SVC performed better
than a random classifier in the right SI when it is used to
discriminate four locations stimulated via acupuncture
(corrected family-wise error [FWE], p < 0:01; Figure 5(a)).
No voxels were associated with significantly higher accuracy
when the SVC was used compared to a random classifier for
predicting the four locations of tactile stimulation. For binary
classification (distinguishing between the stimulated locations
on the upper and lower limbs), using SVC to analyze images
of the right SI, paracentral gyrus, and superior frontal gyrus
for both acupuncture (Figure 5(b)) and tactile stimulation
(Figure 5(c)) was more accurate than using a random
classifier (corrected FWE, p < 0:05). Details are given in
Supplementary Table 1.
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Figure 3: Classification performance using the support vector classifier (SVC) tool to discriminate among stimulated locations on the body
surface. The mean accuracy of the SVC (red vertical lines) on whole-brain multivariate activity patterns and distribution of accuracies from
permutation tests (orange histogram bars) for acupuncture (a, c) and tactile stimulation trials (b, d). Classification accuracy was estimated
using a stratified five-fold cross validation procedure. In the permutation test for the four-class classification, labels of four stimulation
locations (Arm A, Arm B, Leg A, and Leg B) were randomized, and stratified five-fold cross validation was applied 10,000 times for each
participant (left box (a, b)). For binary classification, the two acupoints on the upper limb (Arm A and Arm B) and those on the lower
limb (Leg A and Leg B) were collectively labeled as “upper limb” and “lower limb,” respectively, and the cross validation and permutation
test were performed in the same way as for the two-class classification (right box (c, d)). SVC classification accuracy was significantly
higher than the null distribution of the permutation test results for predicting the four stimulated locations in the acupuncture stimulation
trials (a), the two large body parts stimulated by acupuncture (c), and the two large body parts stimulated by a von Frey filament (d).
However, using the same approach, significantly better classification performance compared to the null distribution was not observed in
terms of predicting the four stimulated locations in the von Frey filament-stimulation trials (b).
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4. Discussion

4.1. Decoding the Spatial Location of Two Tactile
Stimulations. The first aim of this study was to determine
whether MVPA based on neural patterns for tactile stimuli
could distinguish among stimulated locations on the body
surface. We found that the MVPA was able to decode the
body sites stimulated by two types of somatosensory stimu-
li—acupuncture and a von Frey filament—during the binary
classification of two large body parts (leg and arm). However,
during the four-way classification, in which one location was
predicted out of four much smaller stimulated sites (two
points each on the left leg and arm), MVPA successfully
predicted the acupuncture-stimulated sites only, whereas
the tactile-stimulation locations were not predicted more
accurately than by chance. In addition, the confusion matri-
ces for the four-way classification showed that the classifica-
tion performance was found to be poor for touch stimulus,
and also, there were discrepancies between prediction
tendencies of each location. For example, the locations on
the leg were more likely to be predicted accurately than those
on the arm. The results suggest that the MVPA approach for
neural patterns encoding somatotopic representation of
somatosensations may be affected by the stimulus type (i.e.,
penetrating needle versus non-penetrating touch) and the
number of classification tasks (i.e., four relatively small
points on the body versus two relatively large body parts).

For the second aim of this study, we trained and tested
classifiers on the data from two stimulation sessions, for both
the binary and four-way classification tasks. In this study, the
inputs to the classifiers were multivariate beta values across
voxels from each participant. Thus, the performance of the
classifier was determined by the neural responses to extero-
ceptive somatosensory stimuli. The locations of small body
surfaces stimulated by the non-puncturing tactile stimulus
were not predicted using neural patterns (i.e., classification
predictions were not more accurate than predictions based

on chance), whereas stimulated locations were successfully
predicted using neural patterns responding to penetrating
pain stimuli (i.e., more accurate than predictions based on
chance). Although we could not compare the accuracies
between the four-way classification (classifying four small
points on the body) and the binary classification (classifying
two large body parts), we found that both penetrating pain
and non-penetrating touch stimuli produced distinguishable
neural patterns that allow the determination of where the
stimuli were delivered, either on the leg or the arm. This find-
ing implies that MVPA classification performance in terms
of locating somatosensation on the body surface might be
altered by the stimulus modality and number of classes (the
degree of classification difficulties).

4.2. Neural Representations of the Stimulated Body Parts. In
agreement with previous studies of spatial information
processing [8, 20, 24], MVPA provided detailed information
of how stimulus locations are represented in the brain. Our
searchlight results showed that neural activities in the SI,
MI, posterior parietal cortex (superior parietal gyrus and
intraparietal sulcus), paracentral gyrus, and superior frontal
gyrus encode where they were stimulated. Interestingly, the
clusters of informative voxels revealed by three successful
classification tasks (four-way classification task for acupunc-
ture stimulation and binary classification for acupuncture
and von Frey filament stimulation) were overlapping but also
divergent. The clusters carrying discriminative information
for somatotopic representation of four different locations
were relatively small (Figure 5(a)) and restricted to the SI
and parietal area, whereas the clusters for distinguishing
between two large body parts were largely distributed in the
brain across the frontal and parietal cortices (Figure 5(b)
and 5(c)). Binary classifiers for acupuncture (Figure 5(b))
and tactile stimulation (Figure 5(c)) were also represented
by both overlapping and non-overlapping clusters in the
brain, suggesting that different types of somatosensory

Searchlight clusters for
4-class classification (acupuncture)

Searchlight clusters for
binary classification (acupuncture)

Searchlight clusters for
binary classification (tactile)

(a) (b) (c)

Accuracy
0.5

Figure 5: Searchlight analysis results. (a) Whole-brain searchlight analysis showed that the right SI and intraparietal sulcus allowed for
statistically significant discrimination among four stimulated sites (Arm A, Arm B, Leg A, and Leg B) in the acupuncture trials. (b)
Analyses of neural patterns of the right SI, MI, paracentral cortex, and superior frontal gyrus resulted in significantly accurate predictions
of which of two body parts (leg or arm) was stimulated by acupuncture. (c) Analysis of neural patterns of the right SI, MI, superior
parietal gyrus, paracentral cortex, and superior frontal gyrus resulted in significantly accurate predictions of which of two body parts was
stimulated by the von Frey filament. All clusters were identified using an uncorrected voxel-wise threshold of p < 0:001 and corrected for
FWE at a significance threshold of alpha < 0:05. The cluster extent threshold was determined with 10,000 iterations of a Monte Carlo
simulation. FWE: family-wise error; MI: primary motor cortex; SI: primary somatosensory cortex.
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stimuli may be processed in different local regions in terms of
their somatotopic organization.

Previous studies found that stimulated fingers by vibro-
tactile stimulation and near-threshold painful stimuli can
be decodable from brain patterns [31, 32]. Ritter et al.
demonstrated that the MVPA approach can decode spatial
information of pain on the arm or leg [33], and Beauchamp
et al. found that MVPA was able to distinguish among the
locations of vibrotactile stimulation delivered to widely
separated parts of the body or to closely located parts of
the body [8]. However, these studies mainly focused on
single tactile modality, either painful or touch stimulus.
To our best knowledge, this is the first study that tested
and reported MVPA classifiers’ performance for discrimi-
nating stimulated locations, both small areas and large
regions of the body, when they were stimulated by two
different tactile modalities.

4.3. Caveats, Limitations, and Implications. Our approach is
the first attempt to reveal the modality-specific neural
patterns of needle-induced pain different from non-invasive
tactile stimulation, and the findings suggest a possible effect
of stimulus modality on neural patterns encoding spatial
information of the body. However, we need further studies
in order to answer our questions about the effects of modality
and level of classification, as we tested only two tactile modal-
ities (penetrating needle versus non-penetrating touch) and
two numbers of classes (2 versus 4) in this study.

The rationale for the options chosen for the MVPA
should be described. We implemented SVC, which uses a
linear kernel and one-vs.-one approach for multiclass classi-
fication. k-Nearest neighbor (KNN) and support vector
machine (SVM) functions have been used for multiclass
classifications, and we selected linear SVC, as previous stud-
ies have reported that SVM outperformed KNN [34]. We
also used F score-based feature selection to reduce the num-
ber of input features, based on analysis of variance
(ANOVA). A recent study by Xu et al. demonstrated that
neural features selected based on their discrimination charac-
teristic (e.g., ANOVA) exhibited better classification perfor-
mance with higher prediction accuracy for distinguishing
tasks or conditions than did features selected based on their
reliability [35]. However, it should be noted that MVPA
results are sensitive to combinations of parameters, and
various combinations should be tested in the future.

The limitations of this study should be addressed. The
sample size is not large enough to represent the population,
and the small number of trials limits the generalizability of
our results. In addition, due to the lack of subjective intensity
ratings for the stimuli, we cannot conclude whether the
regions represented the location of sensation (“where it
hurts/feels touch”) or the location of stimulus (“where it is
being stimulated”). An acupuncture needle stimulates the
body in an invasive manner and evokes pricking pain.
Conversely, the von Frey filament is non-invasive, but can
produce painful or non-painful tactile sensations according
to the target force and individual differences. In our previous
study, acupuncture was associated with greater subjective
intensity ratings compared with tactile stimulation when

delivered to the same loci [36]. Thus, we assumed that an
acupuncture needle would generate a painful sensation
and a von Frey filament would provide a non-painful touch
sensation to participants in this study. As subjective experi-
ence and emotional factors influence cortical responses to
somatosensory stimulation, a function of the subjective
experience of the stimulus should be investigated in future
studies. In addition to the intensity, the distance between
stimulated locations and cutaneous innervation might influ-
ence the prediction of stimulated locations. Lastly, under-
standing the cross-modal prediction of the classifier by
testing the classifier, which was trained on the neural patterns
evoked by one stimulus, on the neural patterns evoked by the
other stimuli will be an important direction for future work.
To achieve this goal, a large number of trials with random
order of stimuli are necessary.

This work reveals the neural mechanisms underpinning
the spatial tactile discrimination and demonstrates that
neural patterns differently encode locations of different
tactile stimuli. The central processing of spatial information
of somatosensations (i.e., location of sensations on the body)
has been less studied using the MVPA technique compared
to other somatosensory factors such as functions of stimulus
intensity or subjective intensity. However, identifying neural
representations of the locations of stimulations or sensations
is crucial for developing brain-based biomarkers for somato-
sensations such as pain. We are still relying on subjective
reporting by patients to describe pain, although research on
the biomarkers of pain has advanced greatly in past years.
A few studies have demonstrated that neuroimaging-based
patterns can be used to predict subjective pain experiences
[37]. The patterns of somatotopic representation for extero-
ceptive touch stimulation (i.e., where the body is being
touched) and subjective pain experience (i.e., where it hurts)
will improve the current approach in the search for neural
biomarkers of somatosensory percepts. For example, brain
patterns encoding spatial information of somatosensations
will allow us to locate where patients feel pain or other
somatosensory percepts (e.g., itchiness, touch, and tempera-
ture). It will contribute to more precise and reliable clinical
application of neuroimaging-based biomarkers. In addition,
we could test hypotheses of whether neural patterns respon-
sible for the spatial representation of somatic and visceral
sensations are overlapping and whether chronic and acute
pain experienced at the same location are distinguishable in
future studies. Taken together, distinct neural representations
of body sites will expand our understanding of somatotopic
maps of our body in the brain, which will lead us to develop
neuroimaging-based biomarkers for clinical improvements
of pain in chronic pain patients.

5. Conclusions

The results from MVPA indicate that the SI, as well as the
MI, intraparietal sulcus, paracentral gyrus, and superior
frontal gyrus, encodes the spatial location of somatosensory
stimuli. Moreover, the prediction performance of the MVPA
classifier using neural patterns in response to somatosensory
stimuli may be affected by the stimulus type (penetrating
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needle versus non-invasive touch) and the number of classi-
fication classes (classification of four small points on the
body versus two large body parts). Future studies with
larger samples are required to identify spatial patterns of
brain activity reflecting stimulated locations independent
of subjective intensity ratings, emotional states (e.g., anxi-
ety and fear), and cognitive factors (e.g., attention, expecta-
tion, and appraisal). This approach will lead to the
identification of brain multivariate patterns representing
“where it hurts” and “where stimulation is felt” for various
types of somatosensory stimuli and other somatic sensations,
which will help in the development of neural biomarkers for
pain and other sensory percepts.
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