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With the advances in genotyping technologies and electronic health records (EHRs),
large biobanks have been great resources to identify novel genetic associations and
gene-environment interactions on a genome-wide and even a phenome-wide scale.
To date, several phenome-wide association studies (PheWAS) have been performed
on biobank data, which provides comprehensive insights into many aspects of
human genetics and biology. Although inspiring, PheWAS on large-scale biobank data
encounters new challenges including computational burden, unbalanced phenotypic
distribution, and genetic relationship. In this paper, we first discuss these new challenges
and their potential impact on data analysis. Then, we summarize approaches that
are scalable and robust in GWAS and PheWAS. This review can serve as a practical
guide for geneticists, epidemiologists, and other medical researchers to identify
genetic variations associated with health-related phenotypes in large-scale biobank
data analysis. Meanwhile, it can also help statisticians to gain a comprehensive and
up-to-date understanding of the current technical tool development.

Keywords: phenome-wide association studies, electronic health records-EHR, saddlepoint approximation,
biobank data analysis, unbalanced phenotypic distribution, genetic relatedness, mixed model approaches

INTRODUCTION

With the advances in genotyping technologies and electronic health records (EHRs), large biobanks
genotype and extensively phenotype hundreds of thousands of individuals (Greely, 2007; Häyrinen
et al., 2008; De Souza and Greenspan, 2013; Nielsen et al., 2018; Wolford et al., 2018; Beesley et al.,
2019). For example, UK Biobank is a national and international health resource that collected
whole-genome scale genetic data, thousands of complex traits and exposures from ICD billing
codes, web surveys, and lab measurements on ∼500,000 individuals (Fry et al., 2017; Bycroft et al.,
2018; Canela-Xandri et al., 2018). Other population-based biobanks include All of Us (All of Us
Research Program Investigators., 2019), Biobank Japan (BBJ; Nagai et al., 2017), China Kadoorie
Biobank (Chen et al., 2011), Nord-Trøndelag Health Study (HUNT) (Krokstad et al., 2013) et al.
These datasets can be great resources to identify and validate genetic associations on a genome-wide
and even a phenome-wide scale.
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Phenome-wide association studies (PheWAS) utilize
large numbers of measured phenotypes and can explore the
associations between one genetic variant and the entire phenome
(Denny et al., 2010). Benefit from the large sample size and
extensive traits in analysis, PheWAS in biobanks have the
potential to discover novel associations for translational and
clinical research, including to construct risk prediction models
for complex diseases and phenotypes (Fritsche et al., 2018;
Torkamani et al., 2018), to identify the causal effect of exposures
and drugs (Verbanck et al., 2018), and to identify drug targets
and repurposing (Lam et al., 2017; Pushpakom et al., 2019).

To date, several PheWAS have been performed on biobank
data (Roden et al., 2010; Bush et al., 2016). More than thousands
of phenotypes have been analyzed at the variant level (Elliott
et al., 2018; Zhou et al., 2018; Jiang et al., 2019), gene level (Zhao
et al., 2020; Zhou et al., 2020), and pathway level (Dutta et al.,
2021). Recently, web-based tools, such as PheWeb (Gagliano
Taliun et al., 2020), were developed for visualizing, navigating
and sharing the analysis results. All these efforts enable us to
provide important insights into many aspects of human genetics
and biology. However, due to huge computational burden,
unbalanced phenotypic distribution, and genetic relatedness
among individuals, PheWAS on large-scale biobank data urgently
require more efficient and accurate algorithms.

In this paper, we review challenges in biobank data analysis
and regression approaches to addressing these challenges with
the goal of providing a practical guidance to statisticians,
epidemiologists, and other medical researchers. In section
“Statistical and Computational Challenges in Biobank Data
Analysis and Approaches to Addressing Them,” we discuss
statistical and computational challenges of genome-wide
association studies (GWAS) and PheWAS on large-scale biobank
data. In section “Scalable and Robust Association Testing
Methods,” we summarize recently developed scalable and robust
regression approaches. In section “Phenome-Wide Biobank
Data Analysis Results and Phewebs,” we introduce existing
phenome-wide analyses results. In section “Future Challenges,”
we mention potential future challenges which require more
advanced methods and tools.

STATISTICAL AND COMPUTATIONAL
CHALLENGES IN BIOBANK DATA
ANALYSIS AND APPROACHES TO
ADDRESSING THEM

In this section, we give a brief discussion about statistical and
computational challenges in large-scale biobank data analysis and
useful strategies to address these challenges (see Table 1).

Computational Burden, Score Test, and
Matrix Projection
Increasing sample size contributes to more statistical power to
identify novel marginal genetic effects and gene-environment
interaction (G × E) effects. Meanwhile, it also results in a
larger computational burden, which should be carefully handled.

In GWAS, most regression approaches include covariates such
as age, sex, and top SNP-derived principal components (PCs)
to adjust for. Wald and likelihood ratio tests require fitting
full models and thus both genetic and covariate effects are
simultaneously estimated for all variants. If the number of
covariates is large, it will take a substantial amount of time.
For example, suppose that 20 covariates were adjusted to fit a
standard logistic model, as the sample size increases from 5,000
to 500,000, the computation time increases from 0.02 to 2.55 s.
If projected to a PheWAS with 10 million genetic variants and
100 phenotypes, the corresponding computation time increases
from 238.3 CPU days to 80.8 CPU years (see Figure 1). Hence,
in a large-scale PheWAS, it is not practical to use Wald and
likelihood ratio tests even if multiple CPU cores are used for
parallel computation.

In contrast to Wald and likelihood ratio tests, score test does
not require fitting the full model. Score test contains two steps:
(1) fitting a model under the null hypothesis; (2) calculating
score statistics and p values for each variant (see Figure 2).
When testing marginal genetic effects, the null hypotheses for
all variants are the same. Hence, across a genome-wide analysis,
score test only requires fitting one null model, which greatly
reduces the computation time. Recently, many scalable methods
based on score test have been developed to analyze quantitative
traits (Zhou and Stephens, 2012; Loh et al., 2015; Jiang et al.,
2019), binary traits (Zhou et al., 2018, 2020), time-to-event data
(Bi et al., 2020; Dey et al., 2020; He and Kulminski, 2020), and
ordinal categorical data (Bi et al., 2021).

Score test is successful in reducing computation time since
it avoids duplicated computation to adjust for covariates. This
strategy can also be applied to other cases. Recently, scalable
methods were proposed for a genome-wide G × E analysis (Bi
et al., 2019; Wang et al., 2020). When testing G × E effect,
the null model should include marginal genetic effect. Hence,
different genetic variants correspond to different null models and
the regular score test is not scalable in a large-scale biobank data
analysis. Instead of fitting a null model including both covariate
and marginal genetic effects, the new methods fit a covariates-
only model in Step 1 and then use matrix projection to adjust for
the marginal genetic effect in Step 2. Because only one covariates-
only model fitting is required for a genome-wide analysis, this
strategy can greatly reduce the computation time. However, the
matrix projection approach might be inaccurate if the marginal
genetic effect is large. To balance the computational efficiency
and accuracy, SPAGE (Bi et al., 2019) uses a hybrid strategy as
follows. If the marginal genetic effect is small or moderate (e.g.,
p value > 5e-3), the matrix projection is used. Otherwise, regular
approaches are used to test the marginal G× E effect.

Unbalanced Phenotypic Distribution,
Firth Bias Correction, and Saddlepoint
Approximation
For most of the population-based biobanks, individuals are
recruited following a cohort study design, that is, a representative
sub-population of the source population are recruited (Beesley
et al., 2019). For example, UK Biobank invited all residents aged
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TABLE 1 | Statistical and computational techniques on large-scale biobank data analysis.

Advantage Disadvantage

Large computational burden

Wald test and likelihood ratio test can provide accurate estimation of effect size, e.g.,
odds ratio

is slow to fit large numbers of full models

Score test does not require fitting full models, and thus is fast
when testing marginal genetic effects

cannot provide accurate estimation of effect size; is
slow when testing marginal G × E effects

Score test with matrix projection only requires fitting a covariates-only model, and thus is
fast when testing marginal G × E effects

is less accurate when the marginal genetic effect is
large

Unbalanced phenotypic distribution

Normal distribution approximation is fast; is accurate when the phenotypic distribution is
balanced, or test statistics are close to the mean value

is not accurate if the phenotypic distribution is
unbalanced and the test statistics are far away from the
mean value

Firth penalized likelihood-ratio test is accurate in terms of effect size estimation and testing is slow for exact Firth test; cannot be used with score
test and random effect model

Saddlepoint approximation (SPA) and
empirical SPA

uses the entire CGF, and thus is very accurate; is still
fast through a hybrid strategy; empirical SPA does not
need a closed-form expression of CGF

cannot be used to estimate the effect size

Genetic relatedness among individuals and mixed models

Preconditional conjugate gradient (PCG)
with full GRM

does not need storing full GRM, and thus can reduce
the memory usage; can easily apply parallel
computation; LOCO can avoid proximal contamination
due to LD

is slow when sample size and the number of the
variants to construct full GRM are very large; LOCO
takes more computation time and memory usage.

Sparse GRM is very fast and requires less memory usage can be less powerful than using full GRM since the
sparse GRM cannot incorporate polygenic effects

Penalized approaches (Regenie) is fast and requires less memory usage lacks statistical support to validate its accuracy

FIGURE 1 | PheWAS computation time. The computation time is evaluated at CPU core of Intel i7-7700T 2.90GHz and then projected to a phenome-wide
association studies including 100 balanced binary phenotypes and 10 million variants.

40–69 who lived within 25 miles of one of their 22 assessment
centers to participate (Bycroft et al., 2018). Due to no stratified
sampling, the proportion of rare conditions in biobanks could

be very low. For example, in the UK Biobank data, most binary
phenotypes based on PheCodes (1,431 out of 1,688; 84.8%) have
a case-control ratio lower than 1:100 (Zhou et al., 2018). The
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FIGURE 2 | Flowchart of score test association analysis.

unbalanced phenotypic distribution would cause an inflation of
type I error rates.

Based on a penalized likelihood function, the Firth’s approach
can correct the first-order asymptotic bias of parameter estimates
(Firth, 1993). Firth bias correction likelihood ratio test is well
calibrated and robust for testing low frequency and rare variants
in unbalanced studies (Ma et al., 2013). However, the exact Firth’s
method still lacks computational efficiency because it involves
fitting the full model (Dey et al., 2017). Recently, Rounak et al.
proposed a fast genotype odds ratios estimation in which Firth’s
penalty was adjusted (Dey and Lee, 2019). REGENIE also used
an approximate Firth regression in which covariate effects were
incorporated through an offset term (Mbatchou et al., 2021).

These strategies reduce the number of predictors and thus are
scalable in GWAS.

If the phenotypic distribution is unbalanced, the underlying
null distribution of score test statistics could be highly skewed.
Thus, regular normal distribution approximation often fails
since only the first two cumulants (i.e., mean and variance)
are used (Dey et al., 2017). As an alternative approach,
saddlepoint approximation (SPA) uses the entire cumulant-
generating function (CGF) to estimate the null distribution,
which considerably improve type I error rate control (Daniels,
1954; Jensen, 1995). Recently, SPA is attracting more attention in
GWAS and PheWAS (Dey et al., 2017; Zhou et al., 2018, 2020;
Bi et al., 2019; Zhao et al., 2020). Extensive simulation studies
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and real data analysis suggest that SPA greatly outperforms the
regular methods especially when testing low-frequency variants.
Although more accurate, SPA takes more time than the regular
normal distribution approximation. Using the fact that many
elements of the genotypes are zeroes (i.e., homozygous major
genotypes), the computation of SPA can be speeded up through a
partial normal approximation (Dey et al., 2017; Bi et al., 2021).
Another strategy is to use SPA only if the normalized score
statistics is far away from 0 (e.g., >2), and to use the regular
normal distribution approximation otherwise (Dey et al., 2017;
Bi et al., 2020).

For SPA, one important step is to estimate CGF of
the score test statistic, S, under the null hypothesis, i.e.,
K (t) = log(EH0(etS)). When analyzing binary or ordinal
categorical traits, the score test statistic is the sum of multiple
random variables, each of which follows a Bernoulli distribution
(Dey et al., 2017; Bi et al., 2019, 2021). Hence, the CGF can be
explicitly expressed. However, in certain cases, the CGF cannot be
expressed in a closed form, which limits the use of SPA. Recently,
an empirical SPA approach was used to estimate the CGF (Bi
et al., 2020). This approach has been successfully applied to time-
to-event data analysis. Since the empirical SPA approach does not
rely on the theoretical expression of CGF, it can be used to analyze
other complex traits.

Genetic Relatedness and Mixed Model
As sample sizes continue to increase, many biobanks contain
a large proportion of individuals with genetic relatedness. For
example, in Nord Trøndelag Health Study (HUNT) (Krokstad
et al., 2013), around 81% of the individuals have at least a third
degree relative that is also in the study. If not carefully addressed,
the genetic relatedness can inflate type I error rates. Including
SNP-derived PCs as covariates can relieve it to a certain degree
but is not accurate enough. During the past decade, efficient
mixed model approaches have emerged as promising solutions
(Kang et al., 2010; Zhou and Stephens, 2012; Loh et al., 2015;
Zhou et al., 2018; Bi et al., 2021).

Using genome-wide genetic data, the genetic relatedness
among individuals can be characterized by a genetic relationship
matrix (GRM) (Astle and Balding, 2009; Aguilar et al., 2011).
The off-diagonal elements in GRM are close to the kinship
coefficients between two individuals. In addition to the fixed
effects of covariates, a random effect is included to account for
the genetic relatedness. The random effect is assumed following
a multivariate normal distribution with a covariance matrix
of GRM. For mixed model approaches, the SNP-derived PCs
can also be included as covariates to better adjust population
stratification (Zhang and Pan, 2015). Mixed model approaches
have been proposed to analyze quantitative trait (Kang et al.,
2010; Zhou and Stephens, 2012; Loh et al., 2015), binary
trait (Zhou et al., 2018, 2020), time-to-event data (Dey et al.,
2020; He and Kulminski, 2020), and ordinal categorical data
(Bi et al., 2021).

It is technically challenging to apply mixed model approaches
in large-scale data. For example, the memory storage of the GRM
is O(n2), where n is the sample size. Suppose that sample size
n = 408, 961 (white British participants in UK Biobank), then it

takes 669 Gb of memory to store the GRM given a float-precision
format. Instead of precomputing a GRM and then storing it
into the memory, an alternative approach is to store the raw
genotype (used to construct GRM) into a bitwise binary vector
and then load it when in usage (Loh et al., 2015). Suppose that
m = 93, 511 variants are used to calculate GRM, the memory
usage can be reduced to 9.56 GB. Another computational
challenge is to fit the model under the null hypothesis which
requires either performing spectral decomposition on GRM or
calculating the inverse of the n × n matrices, both require
O(n3) calculation. Instead, a linear system solver, such as
the preconditional conjugate gradient (PCG) approach can be
used to provide scalable computation, which requires O(mn1.5)
(Kaasschieter, 1988). PCG is easily parallelizable, so parallel
computing libraries, such as OpenMP (Dagum and Menon, 1998)
and RcppParallel (Allaire et al., 2018), can be used to fully utilize
the available CPU cores as many as possible.

Although scalable to analyze hundreds of thousands of
individuals, the mixed model approaches using full (dense) GRM
are still computationally intensive. A straightforward approach is
to use a sparse GRM in which values less than a pre-given cutoff
(e.g., <0.05) were set to 0 (Jiang et al., 2019; Bi et al., 2021).
This approach can substantially reduce computation time and
memory usage. However, using sparse GRM can be less powerful
than using full GRM since the sparse GRM cannot incorporate
polygenic effects (Jiang et al., 2019).

When analyzing a candidate variant, the variants in linkage
disequilibrium with it (including the candidate variant itself)
should not be used to construct GRM to avoid modeling effects
twice (Yang et al., 2014). To avoid the proximal contamination,
leave one chromosome out (LOCO) scheme is used in linear
mixed model approaches (Lippert et al., 2011; Yang et al., 2014;
Loh et al., 2015). For binary trait, sensitivity analyses suggested
that the proximal contaminations in GWAS for diseases with low
prevalence is not as substantial as for more common diseases and
thus LOCO scheme might not be required (Zhou et al., 2018).

Instead of the mixed effect model framework, a fixed effect
model with a penalty can be used to account for genetic
relatedness. A recent developed REGENIE (Mbatchou et al.,
2021) used two-step ridge regressions to calculate predictors
from genetic data and then used linear and logistic regression
to associate quantitative and binary traits with genetic variants.
Compared to mixed effect model approaches, fixed effect model
approaches can be faster and needs a smaller amount of memory.
Although shown to perform similarly as BOLT-LMM (Loh et al.,
2015) and SAIGE (Zhou et al., 2018) when applying to UK
Biobank, it is not clear whether the genetic relatedness can be well
characterized by the fixed effect model if the participants are in a
highly related or in a multiethnic cohort study.

SCALABLE AND ROBUST ASSOCIATION
TESTING METHODS

In this section, we introduce regression methods that are scalable
and robust in large-scale biobank data analysis (see Table 2).
We let G denote the genotype of genetic variant and X denote
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TABLE 2 | Summary of analysis methods and software.

Accounts for
unbalanced
phenotypic
distribution

Accounts for sample
relatedness

Software website

Variant-level analysis

BOLT-LMM (Loh et al., 2015) Quantitative trait N/A Support full GRM https://alkesgroup.broadinstitute.org/BOLT-LMM

fastSPA (Dey et al., 2017) Binary trait Support SPA NO https://cran.r-project.org/web/packages/SPAtest

SAIGE (Zhou et al., 2018) Binary and
quantitative trait

Support SPA Support full GRM https://github.com/weizhouUMICH/SAIGE

fastGWA (Jiang et al., 2019) Quantitative trait N/A Support sparse GRM https://cnsgenomics.com/software/gcta/#fastGWA

REGENIE (Mbatchou et al., 2021) Binary and
quantitative trait

Support SPA and Firth
bias correction
methods

Use panelized
approaches

https://github.com/rgcgithub/regenie

SPAGE (Bi et al., 2019) G × E analysis for
binary trait

Support SPA NO https://github.com/WenjianBI/SPAGE

SPACox (Bi et al., 2020) Time-to-event data Support SPA NO https://github.com/WenjianBI/SPACox

COXMEG (He and Kulminski, 2020) Time-to-event data NO Support sparse GRM https://cran.r-project.org/web/packages/coxmeg/

GATE (Dey et al., 2020) Time-to-event data Support SPA Support both sparse
and full GRMs

https://github.com/weizhou0/GATE

POLMM (Bi et al., 2021) Ordinal categorical
data

Support SPA Support both sparse
and full GRMs

https://github.com/WenjianBI/POLMM

Region-level analysis

Robust SKAT (Zhao et al., 2020) Binary trait Support SPA NO https://cran.r-project.org/web/packages/SKAT

SAIGE-Gene (Zhou et al., 2020) Binary and
quantitative trait

Support SPA Support full GRM https://github.com/weizhouUMICH/SAIGE

MAGEE (Wang et al., 2020) G × E analysis NO Support full GRM* https://github.com/xwang21/magee

STAAR (Li et al., 2020) Binary and
quantitative trait

NO Support sparse GRM https://github.com/xihaoli/STAAR

*Full GRM is pre-calculated and stored, which could take large amount of memory and might be not applicable when sample size is very large.

the confounding covariates. The corresponding coefficients are
βG and βX , respectively. For mixed models, we let 8 denote
GRM, σ denote variance component, b denote the random effect
and assume that b follows a multivariate normal distribution
N(0,σ8). The trait of interest is denoted as Y .

Quantitative Traits
Linear regression is the most widely used approach when the trait
of interest is measured quantitatively. When analyzing unrelated
individuals, the regular linear model is

Y = βXX+βGG+ε

where ε is an error term that is usually assumed normally
and independently distributed. The test of null hypothesis H0:

βG = 0 is implemented in several tools including GCTA (Yang
et al., 2011), plink (Chang et al., 2015), et al. To adjust for
the genetic relatedness, additional random effect b should be
included and the LMM (Kang et al., 2010; Zhou and Stephens,
2012) is

Y = βXX+βGG+b+ε.

BOLT-LMM (Loh et al., 2015) proposed to compactly store the
genotype used to construct a full GRM 8 in memory and applied
PCG to efficiently fit the null mixed model. fastGWA (Jiang et al.,
2019) used sparse GRM to further reduce the computation time
and memory usage. If the distribution of quantitative trait is

highly skewed, inverse-normal transformation is commonly used
to convert the raw quantitative trait.

Binary Traits
For complex disease research, individuals are usually divided into
two groups: the cases (Y = 1) or the controls (Y = 0). Logistic
model and logistic mixed model can model the dependence of a
binary trait on covariates and genetic variants as below.

log
Pr(Y = 1)

1− Pr(Y = 1)
= βXX + βGG,

log
Pr(Y = 1)

1− Pr(Y = 1)
= βXX+βGG+b.

In the presence of population stratification, applying LMMs to
binary traits can lead to incorrect type I error rates, particularly
when the population groups have heterogeneous case-control
ratios (Chen et al., 2016). This is because LMM assumes that the
variance of the binary trait is constant and does not change with
the mean (Jarque and Bera, 1980). Based on the logistic mixed
model, Chen et al. (2016) developed a score test called GMMAT.
GMMAT uses penalized quasi-likelihood (Breslow and Clayton,
1993) and average information restricted maximum likelihood
algorithm (Gilmour et al., 1995) to fit the null mixed model.
However, GMMAT package requires storing a precalculated
GRM, which takes huge amount of memory when sample size

Frontiers in Genetics | www.frontiersin.org 6 June 2021 | Volume 12 | Article 682638

https://alkesgroup.broadinstitute.org/BOLT-LMM
https://cran.r-project.org/web/packages/SPAtest
https://github.com/weizhouUMICH/SAIGE
https://cnsgenomics.com/software/gcta/#fastGWA
https://github.com/rgcgithub/regenie
https://github.com/WenjianBI/SPAGE
https://github.com/WenjianBI/SPACox
https://cran.r-project.org/web/packages/coxmeg/
https://github.com/weizhou0/GATE
https://github.com/WenjianBI/POLMM
https://cran.r-project.org/web/packages/SKAT
https://github.com/weizhouUMICH/SAIGE
https://github.com/xwang21/magee
https://github.com/xihaoli/STAAR
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-682638 June 14, 2021 Time: 11:54 # 7

Bi and Lee Regression Methods for Large-Scale PheWAS

is very large (e.g., >100,000). In addition, it cannot control type
I error rates when case-control ratio is unbalanced. To address
these challenges, SAIGE method applied computational strategies
as in BOLT-LMM to avoid storing GRM and used SPA for testing
(Zhou et al., 2018). Recently, more optimized tools have been
developed to increase the computational performance of SAIGE
(Zheng and Davis, 2020).

Ordinal Categorical Traits
Ordinal categorical trait is an extension of binary trait to measure
more conditions. It is widely used in surveys, questionnaires, and
tests to measure human behaviors, satisfaction, and preferences
(Agresti, 2003). For example, hedonic scale of liking ranging from
“extremely dislike” to “extremely like” was widely used to measure
preferences (Bi et al., 2021). Although usually coded as numeric
values, the ordinal categorical data is different from quantitative
trait since the values cannot characterize the underlying scale well
(Agresti, 2003).

Suppose that Y = 1, 2, J is to denote an ordinal categorical
phenotype with J ordinal conditions. Recently, proportional odds
logistic mixed model (POLMM) (Bi et al., 2021) has been used to
model the ordinal categorical phenotype as follows

logit
(
νj

)
= εj − βXX − βGG− b, 1 ≤ j ≤ J

where νj = Pr(Y ≤ j|X,G, b) is the cumulative probability of
the phenotype Y ≤ j and ε: ε1 < ... < εJ = ∞ were used to
categorize the data. POLMM supports both full (dense) GRM
and sparse GRM when fitting the null model and is scalable to
analyze biobanks with hundreds of thousands of individuals. In
addition, POLMM uses SPA and thus is robust when testing low-
frequency and rare variance even if the phenotypic distribution is
highly unbalanced (Bi et al., 2021).

Time-to-Event Data
Time-to-event data is unique because the outcome of interest is
not only whether an event occurred, but also when the event
occurred (Altman and Bland, 1998). In medical studies, time-
to-event data were often used to characterize outcomes such as
death and cancer progression (Tolles and Lewis, 2016). Another
unique feature of the time-to-event data is censoring, that is,
not all subjects experience the event by the end of the follow-
up period. With the increasing use of EHRs and biobanks for
genetics research, time-to-event data analysis is becoming more
common in genetic studies of human diseases (Huang et al., 2009;
Kapoor et al., 2014).

Cox proportional hazard (PH) model is widely used to analyze
time-to-event data (Cox, 1972). The Cox PH model specifies the
hazard function λ (t) for the failure time associated with genotype
and covariates as below.

λ (t) = λ0 (t) exp(βXX+βGG)

where λ0 (t) is a baseline hazard function. R package gwasurvivr
(Rizvi et al., 2018) was developed to perform genome-wide
survival analysis. To increase the computational efficiency,
gwasurvivr first fits null model with βG = 0 and then uses the
parameter estimates as initial points when testing variants. Since

gwasurvivr is based on a Wald test, it is still not scalable when
the sample size is large (>100,000). Recently, a fast and accurate
method called SPACox was proposed to use an empirical SPA to
calibrate p values (Bi et al., 2020). SPACox is based on a score test
and is more robust to analyze low-frequency and rare variants,
especially when the event rate is moderate or low.

If random effect is included to adjust for genetic relatedness,
the corresponding mixed model (i.e., frailty model) is

λ (t) = λ0 (t) exp(βXX+βGG+b).

Existing methods such as COXMEG (He and Kulminski, 2020)
and GATE (Dey et al., 2020) are scalable in large-scale GWAS.
When fitting the null model, COXMEG supports sparse GRM
and GATE supports both full and sparse GRM. In addition, GATE
uses SPA to calibrate p values, which makes it more powerful and
robust to analyze low-frequency and rare variants.

Gene-Environment Interaction Analysis
Gene-environment interaction (G × E) plays an important role
in the etiology of many complex traits (Gauderman et al., 2017;
McAllister et al., 2017). For a binary trait Y , the full logistic model
for G× E is as follows.

log
Pr(Y = 1)

1− Pr(Y = 1)
= βXX+βEE+βGG+βG × E · (G × E)

where E is environmental factor and G × E is the interaction
term. One strategy to reduce computation time is to test both
marginal and interaction effects of G: βG = βG × E = 0, which
share the same null hypothesis in the entire genome and hence
can greatly reduce computation time if the score test is used.
However, since the marginal genetic effect is usually larger than
the G × E effect, the association identified by the joint test is
mostly driven by the marginal genetic effect, which is not the
major interest in a G× E study.

Software packages such as CGEN (Bhattacharjee et al., 2010)
and GxEScan (Gauderman et al., 2013) have been developed for a
genome-wide G× E analysis. Since these tools mainly implement
the Wald test, the computation burden is still very high in
a large-scale biobank data analysis. To improve the efficiency,
several two-step approaches have been proposed (Kooperberg
and LeBlanc, 2008; Murcray et al., 2008). These methods compute
screening p values to test marginal genetic associations (i.e.,
βG = 0) or the dependency between E and G. Then, the variants
with significant screening p values are selected to test G× E effect
in the next step. In addition to the single-variant tests, various
set-based methods have been proposed to test G× E effect (Chen
et al., 2014; Lin et al., 2016; He et al., 2017b; Su et al., 2017). These
methods jointly test variants in a particular gene or functional
region to increase power for low-frequency and rare variants.

Recently, more efficient approaches have been proposed for
genome-wide G × E analysis (Bi et al., 2019; Wang et al., 2020).
Instead of fitting a null model, these methods fit a covariates-only
model and then use matrix projection to calculate score statistics
and p values. SPAGE (Bi et al., 2019) uses SPA to calibrate p
values and thus is more robust even if the case-control ratio is
unbalanced. MAGEE (Wang et al., 2020) is a set-based method
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which is developed based on mixed model and can identify
associations between an aggregate variant set and environmental
exposures on quantitative and binary traits.

Region-Based Rare Variant Test
When testing for low-frequency and rare variants, the statistical
power of single-variant based association tests is usually
low. Region-based approaches can boost power by evaluating
association for multiple variants in a biologically relevant region,
such as gene (Wu et al., 2011; Lee et al., 2012a,b, 2013, 2014;
Ionita-Laza et al., 2013). Burden tests collapse rare variants into
genetic scores and are powerful when a large proportion of
variants are causal and the effects are in the same direction
(Morgenthaler and Thilly, 2007; Li and Leal, 2008). Variance-
component testing approaches, such as SKAT, test variance of
genetic effects and are more powerful in the presence of variants
with different effect directions or a small fraction of causal
variants (Pan, 2009; Neale et al., 2011; Wu et al., 2011). Combined
tests, such as SKAT-O (Lee et al., 2012a,b) and ACAT (Liu et al.,
2019) methods, can combine burden and variance-component
tests and are more robust in different scenarios.

R package SKAT is a useful generic tool for region-
based rare variant analysis. Besides the original Burden, SKAT,
and SKAT-O methods, features including efficient resampling
(ER) (Lee et al., 2016), combined test of common and rare
variants (Ionita-Laza et al., 2013), and X chromosome test (Ma
et al., 2015) are also supported. To control for unbalanced
case-control ratio, Zhao et al. proposed robust region-based
association approaches. The robust approaches use SPA and
ER to calibrate p values and can control type I error rates
when the case-control ratio is unbalanced (Zhao et al., 2020).
SMMAT is an extension of GMMAT into the region-based
association analysis (Chen et al., 2019). SMMAT can adjust
for genetic relatedness but is not applicable when the sample
size is large or the case-control ratio is unbalanced. SAIGE-
Gene (Zhou et al., 2020) can incorporate a full GRM to
account for genetic relatedness and is scalable and accurate
to analyze hundreds of thousands of individuals. Recently,
integrative region-based association approaches were proposed
to incorporate multiple functional annotations of genetic
variation (He et al., 2017a; Li et al., 2020). If the variant risk status
can be predicted by functional annotations, these approaches can
significantly improve power.

PHENOME-WIDE BIOBANK DATA
ANALYSIS RESULTS AND PHEWEBS

In this section, we highlight existing phenome-wide analyses
results. The usage of PheWeb facilitates the sharing and
organizing of genetic association results.

• Oxford Brain Imaging Genetics (BIG) Server version 2.0
can browse GWAS results for UK Biobank Brain Imaging
Phenotypes and other traits/diseases. The primary source
included results from 3,144 GWAS of Brain Imaging
Derived Phenotypes (IDPs) measured on 9,707 participants

of the UK Biobank study. Currently, the server has loaded
more GWAS results including the GWAS results of∼ 2,000
phenotypes in the UK Biobank processed by Ben Neale1.
• The Michigan Genomics Initiative (MGI) is a collaborative

research effort among physicians, researchers, and patients
at the University of Michigan (U-M). Since most of the
PheWAS are based on UK Biobank, the PheWAS data
analysis based on MGI is an important supplementary
although its sample size (∼40,000) is less than UK Biobank2.
• The BBJ project has collected around 200,000 individuals

with diseases cases consisting of 47 various diseases. These
subjects were recruited from 12 medical institutes in Japan.
The analysis results of total 244 phenotypes including both
binary and quantitative traits have been released3.
• SAIGE method can better control type I error rates when

the case-control ratio is unbalanced. Using SAIGE, GWAS
on 1403 ICD-based traits were performed based on the
White British participants of the UK Biobank4.
• POLMM is an extension of SAIGE on ordinal categorical

data analysis. PheWAS of 258 ordinal categorical
phenotypes on UK Biobank has been conducted, in
which 150 phenotypes are to describe food and other
health-related preferences5.
• Based on the fastGWA method, PheWAS was applied to

2,173 traits on 456,422 array-genotyped as well as 49,960
whole-exome-sequenced individuals of European ancestry
in the UK Biobank. Since linear mixed model approaches
were used to analyze binary traits and ordinal categorical
data, the PheWAS only analyze variants with MAF > 0.016.
• Using the robust SKAT-O approach for binary phenotypes,

a total of 18,360 genes were analyzed based on 45,596
independent European samples across 791 binary
phenotypes with at least 50 cases. The PheWAS are
based on UK Biobank 50K exome data processed by FE
pipeline7.
• PathWeb displays results for associations between over

10,000 pathways (gene-sets) and phenotypes derived from
ICD billing codes of White British participants of the UK
Biobank. GWAS summary-statistics obtained using SAIGE
for 1,403 binary phenotypes derived from ICD billing codes
have been used in the analysis8.

FUTURE CHALLENGES

The recent success in methodology development has greatly
facilitated the large-scale biobank data analysis on a genome-
wide and phenome-wide scale. In the future, it is expected that
more comprehensive information, in terms of both genome

1http://big.stats.ox.ac.uk/
2http://pheweb.sph.umich.edu/
3http://jenger.riken.jp:8080/
4http://pheweb.sph.umich.edu/SAIGE-UKB/
5https://polmm.leelabsg.org/
6http://fastgwa.info/ukbimp/phenotypes
7https://ukb-50kexome.leelabsg.org/
8https://ukb-pathway.leelabsg.org/
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and phenome, will be collected and shared through the
continuously upgrading biobanks. The rapid development of
biobanks provides a basis for precision health and medicine.
Meanwhile, it also brings new challenges, which requires
more advanced methods and tools. Here we list some of
these challenges.

Larger Sample Sizes
The current biobanks usually recruit half million participants.
In the future, we are likely to encounter biobanks with millions
of and even tens of millions of participants. For example, All of
US biobank in US aims to recruit 1 million individuals and UK
announced a plan to recruit 5 million individuals (Scott et al.,
2019). The increase of sample size asks for more computational
time and memory usage, which should be carefully addressed in
terms of methodology and software implement.

Whole Genome Sequencing
In the coming decades, whole genome sequencing (WGS)
will replace GWAS chips and become the most widely
used genotyping platform. Since WGS can accurately
identify and genotype rare variants, more scalable and
powerful strategies and methods to evaluate rare variant
associations in whole genome are increasingly needed.
The evolving availability of new technologies will provide
us with rich multi-omics data resources. Effectively
incorporating additional information, such as epigenetics,
is also important to boost powers and to increase
interpretability in WGS studies.

Multivariate and High Dimensional
Phenotypes
In the past decades, GWAS mainly focus on univariate
phenotypes, that is, the phenotype of interest has only
one variable. Recently, multivariate and high dimensional
phenotypes are increasingly available. For example, longitudinal
data track the same sample and collect repeated observations
at different time points. Image phenotypes, such as
Magnetic Resonance Imaging (MRI) of brain and other
organs, are collected to better diagnose and treat diseases.
Developing scalable and robust methods to appropriately
analyze these complex phenotypes is important to fully
utilize these data.

Effectively Use Large Numbers of
Phenotypes
The current phenome-wide analyses are mainly to test single
phenotype and then look at the association patterns across
phenome. This strategy does not utilize the correlation and
causal relationship between phenotypes. Effectively aggregating
associations in large numbers of phenotypes can boost statistical
powers and gain better phenome-wide understanding. Existing
joint tests of multiple phenotypes include MultiPhen (O’Reilly
et al., 2012), MANOVA (Stephens, 2013), USAT (Ray et al.,
2016), and Multi-SKAT (Dutta et al., 2019). Some of the
methods developed for non-human data, such as GPWAS

(Liang et al., 2020) for plant genetics, also can be used. In
addition, when analyzing multiple phenotypes, the imputation
of missing data will be important since removing individuals
with at least one missing phenotype will greatly reduce
the sample size.

Multiethnic Studies and Admixed
Population
Population structure and family relatedness are major
confounders in genetic association studies. The recently
proposed mixed effect and fixed effect models are usually
applied to individuals from the same ancestry group, as it
isn’t clear whether they can accurately analyze multiethnic
individuals. Meta-analysis is commonly applied to combine
analysis results from different ancestry groups, but it may
need more research if individuals of different ancestry
groups are related. For admixed population, specialized
approach is needed to construct GRM, such as a method
using individual specific allele frequency, but scalable mixed
model to use this type of GRM is under-developed (Thornton
et al., 2012). As biobanks recruit individuals from diverse
populations, it would be important to identify and develop
optimal methods and tools to analyze multiethnic and
admixed individuals.

CONCLUSION

The emergence of biobanks allows researchers to explore
extensive associations between genetic variants and thousands
of complex traits. In this paper, we discussed statistical and
computational challenges in large-scale biobank data analysis and
reviewed available methods and tools to address these challenges.
In addition, we also briefly introduced possible challenges in the
future. Benefit from the continuous biobanking efforts to connect
genome-wide variants and phenome-wide traits, several PheWAS
have been performed and it is expected that more PheWAS
results will be available in the coming decade. Scalable and robust
statistical approaches will certainly play an essential role in the
success. In addition, developing user-friendly software that makes
full use of the computing capacity is also important.
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