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Abstract Current pharmacogenetic studies have obtained many genetic models that can predict

the therapeutic efficacy of anticancer drugs. Although some of these models are of crucial impor-

tance and have been used in clinical practice, these very valuable models have not been well adopted

into cancer research to promote the development of cancer therapies due to the lack of integration

and standards for the existing data of the pharmacogenetic studies. For this purpose, we built a

resource investigating genetic model of drug response (iGMDR), which integrates the models from

in vitro and in vivo pharmacogenetic studies with different omics data from a variety of technical

systems. In this study, we introduced a standardized process for all integrations, and described

how users can utilize these models to gain insights into cancer. iGMDR is freely accessible at

https://igmdr.modellab.cn.
Introduction

After the completion of the Human Genome Project, pharma-
cogenetics has been presented as a promising field and has

been extensively studied [1,2]. Pharmacogenetics integrates
pharmacology and genetics as a single discipline to correlate
the genetic characteristics and drug responses of an organism.
The genetic characteristics include not only those at the gen-
ome level but also those at any level of omics related to gene
function, such as the transcriptome and proteome [3]. The goal

of pharmacogenetics research is to find more efficient strategies
for disease therapies based on personalized genetic characteris-
tics, which is one of the major bottlenecks in implementing

personalized medicine at the current stage [4]. The selection
of therapeutic strategies of a disease is almost always based
on genetic knowledge of a population and often fails for speci-

fic individual cases [5,6]. With the accumulation and develop-
ment of the sequencing technologies and pharmaceutical
nces and
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research methods, the relationship between the curative effects
of some drugs and the genetic characteristics of individuals has
become increasingly visible, thus leading to more accurate pre-

diction of the effect of therapeutic strategies based on the
genetic characteristics of patients and producing genetic mod-
els with extensive clinical application [7].

Cancer development has been considered to be closely
related to genetic dysfunction, and understanding this dysfunc-
tion is therefore the main goal of precision medicine and per-

sonalized medicine [5]. To this end, pharmacogenetic studies
in cancer have been widely implemented, producing various
genetic models that have been shown to be effective in clinical
practice [8,9]. Nevertheless, the pace of these studies has lagged

far behind what is required by precision medicine for cancer,
and a large proportion of cases received therapies from tradi-
tional ‘‘one treatment fits all” strategies. More systematic stud-

ies and more effective data analysis are critical to obtain
enhanced precision models. Currently, there are several
in vitro studies on the pharmacogenetics of cancer cell lines,

such as the Cancer Cell Line Encyclopedia (CCLE,
https://portals.broadinstitute.org/ccle) [10], Genomics of
Drug Sensitivity in Cancer (GDSC, https://www.cancerrx-

gene.org/) [11], Cancer Therapeutics Response Portal (CTRP
V2, http://portals.broadinstitute.org/ctrp/?page=#ctd2Body
Home) [12], and MD Anderson Cell Lines Project (MCLP,
http://tcpaportal.org/mclp/) [13]. Experimental design from

in vitro to in vivo is one of the main approaches for acquiring
knowledge that will be applied to clinical practice. Fortu-
nately, these studies have yielded many genetic models for both

specific anticancer drugs and specific cancers. In addition,
in vivo studies of model organisms and xenograft models have
yielded considerable preclinical genetic models for cancers.

Some of these models have been approved by the Food and
Drug Administration (FDA, https://www.fda.gov) of the Uni-
ted States as the guidelines for therapies compiled into the

National Comprehensive Cancer Network (NCCN, https://
www.nccn.org/). However, the results of these studies still exist
in isolation, without effective integration and utilization.
While there are still many trials and challenges ahead before

these studies yield genetic models for clinical use, the value
of these data should not be underestimated. The goal of build-
ing the resource investigating genetic model of drug response

(iGMDR) is to collect these models from different pharmaco-
genetic studies involving various technical approaches and
sources in order to obtain new insights into cancers.

In this work, we collected in vitro and in vivo models includ-
ing clinical practices from authoritative clinical institutions,
preclinical studies from the literature review, as well as drug
sensitivity tests from cancer cell lines, and obtained over

154,000 models (Figure 1A). The models were obtained by
using technical systems from the perspectives of the genome,
epigenome, transcriptome, and proteome. Whole genome/ex-

ome sequencing (WGS/WES) are used for genome studies, to
obtain information on copy number variation (CNV), single
nucleotide variation (SNV), and structural variation (SV).

Whole-genome bisulfite sequencing and methyl array are used
for epigenome studies, to obtain information on DNA methy-
lation (MET). RNA sequencing (RNA-seq) and microarray

are used for transcriptome studies, to obtain information on
gene expression (EXP) and splice variant (SPV). Reverse phase
protein array (RPPA) and liquid chromatography-mass spec-
trometry are used for proteome studies, to obtain information
on protein expression (EXP). We implemented some standard-
ized processes to extract data for all obtained models, includ-
ing feature types, gene symbols, drug names, tissue types,

cancer types, and model descriptions, thus producing 12 cate-
gories of models for 1040 drugs and 4420 genes for 144 cancer
types of 30 tissues. To build an efficient research resource for

pharmacogenetics, we integrated various types of information
from other public resources about drugs, including chemical
composition, structure, target, signal pathway, and classifica-

tion, as well as information about genes, including functional
description, gene expression in normal tissues, associated func-
tions, and signaling pathways.

Finally, we designed an online web service with the interac-

tivity of related public resources (Figure 1B). Furthermore, on
the basis of our data collection, we have analyzed three cases
(Figure 1C) to further illustrate the necessity of integrating

the genetic models and to demonstrate the inherent value of
these data. iGMDR is currently the largest resource of phar-
macogenetic models in cancer, and it is freely accessible at

https://igmdr.modellab.cn.

Data collection and database content

In vivomodels come from a large number of population studies
or preclinical studies of model organisms, and most of the
in vitro models come from the evaluation of the significant

relationship between the drug and the genetic characteristics
in the cancer cell line by calculation. Currently, many genetic
models, including those clinically validated and experimentally

validated for the evaluation of drug efficacy, have been created
through in vitro and in vivo cancer pharmacogenetics studies
(Figure 1A).

In vivo genetic models for pharmacogenetic studies

We collected in vivo genetic models currently used in clinical
practice from existing clinical institutes, societies, consortiums,

or associations including NCCN, FDA, AACR,
(http://cancerres.aacrjournals.org/), American Society of Clin-
ical Oncology (ASCO, (https://am.asco.org/), ClinicalTrails.-

gov (https://clinicaltrials.gov/), and European Society for
Medical Oncology (ESMO, https://www.esmo.org/). In addi-
tion, we searched the literature in PubMed for the keywords

‘‘Biomarker/cancer/tumor/drug” for nearly five years (from
August 2012 to August 2017), obtaining more than 25,000 lit-
erature abstracts, and then performed the manual screening.

We collated the results of pharmacogenetic studies from
~6000 literature publications, most of which came from
in vivo studies.
In vitro genetic models for pharmacogenetic studies

Most of our collection of in vitro genetic models came from the
analysis of the results of drug sensitivity tests using cell lines.

These are several large pharmacogenetic and pharmacopro-
teomic studies including GDSC, CTRP V2, CCLE, and
MCLP. Although model production is not determined by a

single drug concentration and cell line, note that the produc-
tion of these models is based on cell lines with different concen-
trations of drug sensitivity testing, and they refer to different
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Figure 1 Flowchart of pharmacogenetics model data integration and application

A. Processes of data collection and collation in iGMDR. B. User interface of the genetic model data and the data visualization display. C.

Case demonstration of the application of the pharmacogenetic models. Applications include designing a new panel based on the model

combination to discover the mechanism of drug action, using the model for personalized anticancer therapy, using information from

models, relevant pathways, and targets to design more effective therapeutic strategies.
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evaluation indexes, for example, the activity area (also called

the area over concentration response curve) and IC50 estima-
tion; as such, the collected models are based on their respective
criteria. Although these models arise by using different criteria,

subsequent analysis in many studies have revealed that these
models are generally used and are statistically significant [11].

Logic models and single models

The genetic models we collected were divided into simple mod-
els (characterized by a single genetic characteristic) and logical
models (characterized by logical combinations of multiple

characteristics). The logical models include the logic ‘‘and”
(denoted as &), which represents the union of two genetic char-
acteristics; logic ‘‘or” (denoted as |), which indicates that either

of the two genetic characteristics can be replaced with each
other; and logic ‘‘not” (denoted as :), which indicates that
the relevant characteristic is not detected in cancer. The logical

combination improves outcomes of the likelihood of predict-
ing drug response, which helps us to understand action mech-
anisms of drug response [14].

Feature types in the model

As mentioned above, different genetic characteristics are gen-
erated according to the technical background and the

characteristic-related recognition methods. The types of the
models are composed of 40 subclasses of 12 categories that
depend on different feature events (also called genetic charac-
teristics) (Table S1t), among which the most important 6 cate-

gories include feature events such as SNV, CNV, EXP, SV,
SPV, and cell lineage (LN).

Integration of cancer types and anticancer drugs

As the names of cancer types collected from different data
sources are not uniform, it is inconvenient for the data to be

normalized for analysis. Therefore, we adopted the OncoTree
(http://oncotree.mskcc.org) to standardize the cancer names
and related tissue types. We acquired cancer genetic models
from 144 types of cancer and 30 types of cancer tissues with

these processes. Names of anticancer drugs also vary according
to different data sources. Therefore, we manually standardized
the information on drugs and associated it to the common

databases such as DrugBank [15] and PubChem [16]. In doing
so, we not only normalize the drug information but also pro-
mote the interactive function with other databases. Conse-

quently, information on 1040 drugs or drug combinations is
standardized in iGMDR.

Annotation of drugs

The target of a drug (direct action gene) and the signal path-
way of drug action are important for the study of the therapeu-
tic mechanism of the drug. The drug target information

involved in the model was obtained from the Therapeutic Tar-
get Database (TTD) [17] and its source databases such as
GDSC and CTRP. The signal pathway information related

http://oncotree.mskcc.org
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to drug therapy was collected from GDSC, CTRP, and CCLE.
In addition, drug classification information is collected from
DrugBank, and structural information on compounds (small

molecule drugs) comes from PubChem.

Annotation of genes

All of the genetic models we collected that characterize drug
response involve related genes, including common oncogenes
and tumor suppressor genes, as well as signaling genes

involved in the pathogenesis of cancer. The basic information
on these genes was collected from the MyGene application
interface (API) [18]. In addition, we used the OMIM database

(http://www.omim.org) to correlate the disease information
with related genes, and the gene-related drug response infor-
mation was accessed using PharmGKB [19]. Gene-related
functions and gene-involved signaling pathways were also

annotated through the Gene Ontology (GO) and Pathway
databases (KEGG, Reactome, Wikipathways, etc.). We also
collected the expression values of these genes in different nor-

mal tissues from the NCBI BioProject database to help user
understand the expression backgrounds of genes in different
cancer tissues.
Comparison with existing databases

Currently, genetic models of cancer drug response are buried
in individual studies, such as CCLE and GDSC (Table 1).

The data within these resources come from their own pharma-
cogenetic studies, which are not well organized and integrated.
Thus, it is difficult to effectively use the scattered information

to promote the macroscale research on drug therapies and the
mechanistic research on individual drug responses in cancers.
The CCLE database examined the drug responses to 24 drugs

in 1000 cancer cell lines, and GDSC examined the drug
responses of 266 drugs in 1065 cancer cell lines. There are
many differences in both the cell lines and the types of drugs

tested in the various sources of the model information, as well
as in the naming of cancer types and drugs. For this reason, we
integrated their data and constructed our database, iGMDR,
with over 154,000 predictive models of over 1000 drugs.

iGMDR not only contains the model information on in vitro
cell line experiments but also collects in vivo experimental mod-
els, which greatly expands the application value of relevant

data in pharmacogenetic studies. When we developed
iGMDR, another team also developed a database of disease
related knowledge, PreMedKB [20], which included 7.94% of

cancer-related precision medicine knowledge. Although Pre-
MedKB is built with different goals from ours, some of the
Table 1 Comparison of existing databases with iGMDR

Database No. of

drugs

No. of

cancers

No. of

models

No. of feature

categories

Feature level

CCLE 15 ND 600 2 Gene/ cell lin

GDSC 217 17 1648 4 Gene

CTRP 202 8 132,027 4 Gene/ cell lin

MCLP 539 17 5735 1 Protein

iGMDR 1040 144 154,146 12 Gene/ protein

Note: ND, not defined.
data we collected were from the same sources. Based on the
cancer-related data collected for PreMedKB, we compared
several cancer types with iGMDR (the PreMedKB website

does not provide a complete list of cancers, so we cannot cap-
ture all cancer-related models at once). The results are pre-
sented in Table S2, which shows that there are far more data

at the protein and gene levels in iGMDR than in PreMedKB.
Moreover, a complete combination of cancer–gene–feature–
drug can be called a model in iGMDR. However, the concept

of the semantic network in PreMedKB can only express the
relationship between two of these (e.g., cancer–gene, feature–
cancer, or drug–gene). Therefore, it is difficult for users to
obtain the model directly, which requires manual screening

within the semantic network. As a result, it is more difficult
to use PreMedKB data for systematic analysis.

Data statistics

The iGMDR database contains 154,146 genetic models of 144
cancer types of 30 tissues that are associated with 1040 drugs

and 4420 genes. As described above, these models based on
different sources were classified into in vivo and in vitro classes,
and the related feature events were categorized into 12 main

types. For a better understanding of the data structure of
iGMDR, we conducted statistics based on the number of
genetic models. As shown in Figure 2A, a majority of the mod-
els is in vitro (94.72%), with only 5.28% from in vivo systems.

In this regard, more efforts are required to develop these
in vitro models into in vivo models. Among the 12 main types
of feature events, the top six types with the largest numbers of

models are mutation (MUT; 63.80%), copy number variation
(CNV; 24.51%), expression (EXP; 3.91%), single nucleotide
variation (SNV; 2.87%), cell lineage (LN; 2.12%), and unde-

fined gene status (UDEF; 1.86%), whereas other types
only represent a small percentage (total 0.93%) of models
(Figure 2B). This means that researchers may have overlooked

many important models from other types, more attention to
these feature events should be paid for developing additional
genetic models.

We also collated all data to produce rankings of genes, drugs,

tissues, and cancers by the number of models. The top 10 ranks
with the largest numbers of models are shown in Figure 2C–F.
Most of the drugs at the top of the list are small molecules (Fig-

ure 2C), because small-molecule drugs are still the mainstay of
cancer therapy and are often used in cancer cell line tests. As
shown in Figure 2D, the top rankings include proto-oncogenes

(EGFR, ERBB2, BRAF, ABL1, KRAS, KIT, PIK3CA, TP53,
PTEN, and CREBBP) and tumor-suppressor genes (TP53,
PTEN, andCREBBP), both ofwhich play key roles in the devel-
opment and progression of most cancers. Many of these models
Weblink Ref.

eage https://portals.broadinstitute.org/ccle [10]

https://www.cancerrxgene.org/ [11]
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Figure 2 Statistics of the models in iGMDR

A. The percentage of genetic models in vivo and in vitro. B. The percentage of mutation types that are associated with the genetic models.

C. The top ten drugs with the largest number of associations with the genetic models. D. The top ten genes with the largest number of

associations with the genetic models. E. The top ten tissues with the largest number of associations with the genetic models. F. The top ten

cancers with the largest number of associations with the genetic models. MUT, mutation; CNV, copy number variation; EXP, expression;

SNV, simple nucleotide variation; LN, cell lineage; UDEF, undefined gene status; Others (SV, structural variation; PW, pathway; SPV,

splice variant; WT, wild type; PHOS, phosphorylation; MET, methylation).
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have been used in clinical practice. For example,MUT(EGFR) is
a predictive model for the use of afatinib, erlotinib, and pem-

brolizumab in non-small cell lung cancer patients. The tissues
of lung, bowel, blood, and ovary have the most genetic models
with cancer therapies (Figure 2E). This observation is consistent

with the frequency of mutations in associated cancers based on
the statistics of the COSMIC database (https://cancer.sanger.
ac.uk/). Interestingly, of the cancers with the highest number

of genetic models, endometrial carcinoma far outweighs non-
small cell lung cancer, whereas acute myeloid leukemia repre-
sents slightly less than melanoma (Figure 2F). This observation

does notmatch the results in the tissues, and it may be due to dif-
ferences in the number of cancers present in different tissues,
thus diluting the number of models for a specific type of cancer.
Database implementation

Webserver and API construction

iGMDR was built in the Apache HTTP server, and all model

data were stored in a MySQL database. PHP was mainly used
for backstage and front-end interaction. HTML and Java-
Script were used for front-end rendering, and bootstrap and
d3.js were used to efficiently improve data presentation and
visualization. The webserver code is available on the GitHub
repository (https://github.com/ModelLAB-ZJU/iGMDR)

based on the GPLv3 license. User manuals can be queried
on webserver’s documentation page.

To facilitate data utilization, we have released the model

data not only through an online web server but also through
an API. The API defined by the swagger platform provides
simple-to-use web services to query/retrieve model data, ensur-

ing that users can interact with other tools to use the drug
response model information we collected. The API is an archi-
tecture of representational state transfer (REST), meaning that

all database resources can be located using URLs, and the
operations are described using HTTP verbs (get, post). The
iGMDR API uses PHP to perform parsing without setting
any user password and can be used publicly. ‘‘Post” and ‘‘get”

requests are used for all queries, returning information in
JSON format. In addition, we also provide a dump of the
SQL database for download (see the ‘‘iGMDR access” column

on Figure 1A).
iGMDR’s web application accepts any feedback about

database content and data presentation, and users can operate

in the GitHub platform or communicate using email directly.
In addition, we believe that with the development of pharma-
cogenetic research, the data collected by iGMDR currently are

still limited, users are welcome to recommend new data

https://cancer.sanger.ac.uk/
https://cancer.sanger.ac.uk/
https://github.com/ModelLAB-ZJU/iGMDR
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sources. The increase in the amount of data will further boost
its value.

Usage

Intuitively, pharmacogenetics researchers are often interested
in genes involved in the model and the related drugs. We thus

designed the relevant search interface. For these searches, we
offer two methods: a drop-down menu of search items or man-
ually entering keywords (Figure S1). The drop-down menu can

effectively prompt the user to enter whether the information is
present or not, which is convenient for the user to inquire
directly. Here, we used AKT1 (gene) and PK-11195 (drug),

respectively, as examples to illustrate the use of iGMDR. By
searching for drugs and genes, users will be directed to a profile
page for the gene AKT1 (Figure S1) or the drug PK-11195
(Figure S1), and the feedback data will be displayed through

different visualizations (Figure S1). The drug exhibitions
include the attribute information of PK-11195, associated
response models in PK-11195, tissue origin distribution of

these models, function and signaling pathway enrichment of
the model-related genes. Specifically, the attribute information
of PK-11195 covers chemical composition, structure, classifica-

tion, target, signaling pathways, and associated external data-
base ID. Moreover, drug–gene relationship network between
the model-related genes and the drugs related to these genes
are displayed for users, and the strength of the relationships

illustrated by the line weight in the network is calculated
according to the number of the associated models. The gene
profile describes the basic information on AKT1, including

summarized gene function, gene categories, and associated
external database ID. The AKT1-related response models,
AKT1-involved function and signaling pathways, expression

distributions of AKT1 gene in normal tissue, tissue origin dis-
tributions for AKT1-related models, AKT1-related anticancer
drugs, and enrichment of these drug-related targets and signal-

ing pathways are also available to users. The drug–gene net-
work is constructed based on the number of associated
models to find the gene-related drugs and genes related to these
drugs. Similarly, the strength of the relationships is illustrated

by the line weight. Note that these results profiled for the gene
and drug are based on the gene/drug-associated models, which
come from different types of cancer, different references, and

different sources. For convenience, we designed a smart table
that provides filtering to view related models based on these
options (Figure S1).

To unlock the value of big data, users often need to system-
atically analyze all model data. Therefore, the browse page is
essential for users to explore iGMDR, where specific informa-
tion can be viewed through a smart table (as mentioned above)

(Figure S2). In addition, we have also provided classified
browsing through various data types, including data sets, tis-
sue types, cancer types, specific drugs, and specific genes (see

the bottom navigation bar at https://igmdr.modellab.cn). For
users to implement local profiles, raw database tables can be
downloaded from zenodo.org (Figure S2). Furthermore, the

API provides object data for other tools to profile or visit
the genetic models in different channels, i.e., by gene symbol
or drug name (Figure S2).
Discussion

Design of new panels for cancer care

Clinical genome sequencing is being increasingly applied to
clinical practice, and it offers promising prospects for person-

alized cancer therapy [21]. It is known that anticancer drugs
respond differentially in different patients because of the
heterogeneity of the same tumor in different individuals
[22]. How to predict the therapeutic outcome of anticancer

drugs effectively according to the clinical sequencing analysis
of patients is an important aspect of personalized therapy
(see the ‘‘Therapeutic response models” and ‘‘Novel therapy

strategies” columns in Figure 1C). Here, we can use the pre-
dictive models we have collected to design new clinical
sequencing panels that predict the efficacy of anticancer

drugs. Conventional panels are almost always based on tar-
geting genes related to anticancer drugs or oncogenes, and
these panels cover only a small number of cancer patients.

Similar results have been obtained in some studies [23]. For
example, in the mitogen-activated protein (MAP) kinase sig-
naling pathway, proliferation and survival may be activated
via downstream gene mutations. BRAF is a central mediator

in the MAP kinase signaling cascade and exerts effects pre-
dominantly through phosphorylation and activation of
MEK, which has been implicated in the pathogenesis of sev-

eral cancers, including melanoma, non-small cell lung cancer,
colorectal cancer, papillary thyroid cancer, and ovarian can-
cer [24]. While AZD6244 (selumetinib) is a high-potency

MEK inhibitor, resistance to therapy and tumor progression
occurs in some patients with BRAF mutations [25]. Interest-
ingly, this finding is not consistent with our observations,

which further suggests that the judgment based on a single
model is biased and only covers a subset of patients. In vir-
tually every AZD6244 case we have observed through com-
paring all cell lines, we found that cell lines with BRAF

mutations [MUT(BRAF) to AZD6244 model] had higher
drug sensitivity than wild-type cell lines (HyperG test,
P < 0.01), while cell lines with NF2 mutations [MUT(NF2)

to AZD6244 model] showed significantly lower drug sensitiv-
ity (P < 0.001) (Figure 3A). When we combined the two
independent models, we found that the predicted drug sensi-

tivity of more cell lines was consistent with the actual test
results (Figure 3A–C). The predicted results of the combined
model [MUT(BRAF) & :MUT(NF2) to AZD6244 model]
increased the sensitivity of the single model by nearly 50%,

and the specificity reached 98.2% (Figure 3D).
The combination of the two features can effectively

enhance the predictive effect of drug response, and this find-

ing is confirmed in our integrated data of the logical model
in iGMDR. In addition, the model of drug response in the
genome was also demonstrated at the proteomic level (for

example, EXP(EGFR) is sensitive to AZD6244 at both pro-
tein and gene levels for breast cancer). Therefore, we can
not only use data sets to discover new and more efficient

drug response models of anticancer therapy, but also design
new panels of cancer clinical sequencing based on model
integration.

https://igmdr.modellab.cn


Figure 3 The logical combination of BRAF and NF2 improves the predictive efficiency for anticancer drug AZD6244

A. The distribution of activity area in anticancer drug response of cell lines with different model characteristics for single characteristic

MUT(BRAF/NF2) or logical combination MUT(BRAF) & :MUT(NF2). B. The pattern of combinations and the molecular composition

of AZD6244. C. Distribution of the three models with respect to the drug sensitivity of different cell lines. Activity area (the area over the

dose–response curve) are color coded from blue (resistance) to red (sensitivity). The vertical lines represent the cell lines with the model

characteristics. D. The evaluations of the prediction via different models., **, P < 0.001; *, P < 0.01 (HyperG test). See Table S3 for the

detailed data analysis.
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Linking drug targets and pathway activation to effective therapy

We have collected drug targets and targeted signaling path-
ways of model-related anticancer drugs in iGMDR, which
can extend the use of model data (see the ‘‘Mechanism of drug

action” column on Figure 1C). It is well known that the use of
combination drugs is of enormous value for cancer therapies,
and in some cases, it effectively improves the survival time of

cancer patients and controls the development of tumors. There
are many successful drug combinations that have been used in
clinical practice. Determining how to design new combination

drugs to improve the efficacy of cancer therapy and enhance
modeling to reflect the sensitivity of anticancer drugs will
broaden our design conceptualization.

Currently, many anticancer drugs are used and tested for

important cancer-related signaling genes. For example, the
phosphatidylinositol 30-kinase (PI3K)-AKT-mechanistic target
of rapamycin (MTOR) signaling pathway (PI3K-AKT-

MTOR) regulates fundamental cellular functions such as tran-
scription and translation, cell growth and proliferation, as well
as regulation of apoptosis and autophagy. The PI3K-AKT-

MTOR pathway may be activated by the binding of growth
factors to their corresponding receptor tyrosine kinases
(RTKs) or by activating mutations in PIK3CA/PIK3R1,
AKT1, TSC1, and MTOR complex, or inhibited by phos-

phatase and tensin homolog (PTEN) [26–29]. Dactolisib acting
as a dual inhibitor inhibits MTOR and PI3K and is being
investigated as a possible anticancer therapy [30,31]. Everoli-

mus, an approved inhibitor of mTOR, was used in the treat-
ment of various tumors and can lead to a hyperactivation of
AKT via inhibition of the mTOR complex 1 (mTORC1) neg-

ative feedback loop [32]. As predicted by the model, however,
the variations in these genes will affect the potency of anti-
cancer drugs and even generate resistance (Figure 4A). This

is true for many cases where a single anticancer therapy often
leads to drug resistance when a gene is mutated. Inspiringly,
based on the network of drug-related models, we find that dif-

ferent anticancer drugs act on host drug-related genes in the
network (Figure 4B). The combination of these anticancer
drugs may allow the design of new strategies to increase drug
sensitivity and therapeutic efficacy (Figure 4C). Studies have

confirmed that mTOR inhibitor (everolimus) combined with
trastuzumab reversed trastuzumab resistance via the hyperac-
tivated PI3K-AKT-MTOR pathway due to PTEN deficiency

in patients with HER2-positive advanced breast cancer [33].
Trastuzumab was approved for clinical use in HER2-positive
breast cancer and works by binding to the RTK (Erb-b2 recep-

tor) and slowing down cell replication [34]. Moreover, the
combination of everolimus and dactolisib demonstrated syn-
ergy in a clinical trial as well [35].

Nutlin-3 is a commonly used mouse doubleminute 2 homo-

log (MDM2) antagonist that can penetrate cell membranes. It
is highly selective and inhibits the interaction of MDM2-p53,
thereby activating the p53 pathway, inducing apoptosis, and

playing an anti-tumor role. More relevant anticancer regimens
were observed (Figure 4D) through its associated model net-
work. These drugs act mainly on DNA replication [36] (veli-

parib, olaparib, talazoparib, rucaparib, and sorafenib) and
apoptosis signaling [37] (obatoclax, serdemetan, NSC-
207895). Veliparib, olaparib, talazoparib, and rucaparib are

poly real (ADP-ribose) polymerase (PARP) inhibitors. Block-
ing PARP in cancer cells may help prevent cancer cells from
repairing their damaged DNA, causing them to die. Combined
treatment of Nutlin-3 with PARP inhibitors increased cell



Figure 4 Drug target and pathway information to increase therapeutic options

A. Pathway-centric overview of the collected pharmacogenetic models. Major oncogenic pathways include PI3K-AKT pathway, TOR

signaling, p53 signaling, and DNA replication. The model-related genes (rows) encoding components of the oncogenic pathways are also

shown schematically in the pathways (column). The cells are color-coded according to the corresponding �log10 P values (for the analysis

data, see Table S3). B. Dactolisib-related model genes that interact with other anticancer drugs. C. Combination strategies targeting the

carcinogenic PI3K-AKT-MTOR pathway. D. Nutlin-3-related model genes that interact with other anticancer drugs. Networks were

constructed through the ‘‘drug–gene network” in iGMDR. E. Combination strategies targeting the carcinogenic p53–DNA replication

pathway.
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cycle arrest and apoptosis, which was marked for preclinical
trials [38]. Additionally, the combination treatment of serde-
metan and obatoclax completely eliminates, or in some cases
completely prevents, the onset of cancer in vivo (Figure 4D

and E).
In conclusion, the anticancer drug models we collected

could identify different combinations of anticancer drugs asso-

ciated with the same cancer, and we used drug-related gene–
drug networks to discover the most effective pharmacological
strategies for cancer therapies.

Tissue specificity of drug sensitivity

The response to the same drug by tumors of different tissues

can be very different because of the tissue specificity of differ-
ent cancers [39,40]. The current tissue specificity of cancer
pathogenesis has been analyzed from a variety of perspectives
but has not been analyzed at the level of genetic models of anti-

cancer drugs. Here, with the help of the collected models, we
have observed enormous differences in the genetic models
and drug sensitivities from different tissue types (Figure 5).

Overall, the sensitivity of different drugs to all cancers is very
different (Figure 5A). Some of the tested drugs are very specific
and only effective against individual cancers, while some drugs

cover almost all cancer cells (Figure 5B). For example, PD-
0325901 is more effective against cancers derived from large
intestine and skin, and panobinostat is effective against almost
all cancers of tissue origin (Figure 5B). It can also be seen from
the figure that cancers from each tissue origin exhibit different

response patterns to various drugs. For example, haematopoi-
etic and lymphoid tissue had stronger drug sensitivity com-
pared with other tissues as a whole. Skin tissue was more

sensitive than cancer derived from other tissue origins with
respect to AZD6244 and PD-0325901 (Figure 5B). Interest-
ingly, we found that the genetic characteristics associated with

the model had different enrichment patterns in cell lines from
different tissue origins. For example, MUT(BRAF) occurs
mainly in skin tissue compared to the ubiquity of MUT

(TP53). More interestingly, we found a correlation between
this enrichment pattern and the drug sensitivity response.
For example, large intestine cell lines that harbored MUT
(MLH1) and MUT(FGFR1) are more sensitive to the anti-

cancer drug paclitaxel. The breast cell lines that gained
MUT(BRAF) had lower sensitivity to most drug treatments
(Figure 5C).

The model-related genes and drug rankings of different
cancers and tissues are listed in Table S5 and Table S6, respec-
tively. It can also be seen from the schedule that there are sig-

nificant differences in the priority of cancer-sensitive drugs and
indication genes from different tissue origins. This is a signifi-
cant resource for tissue-specific studies of tumorigenesis.



Figure 5 Genetic dependencies targeted by anticancer drugs in different tissues

Activity area is used for sensitivity assessment of anticancer drugs in each cell line. A. Boxplot indicating the distribution of activity area

for each drug (rows). B. Heatmap indicating the sensitivity to the anticancer drugs of different cell lines (columns), ranging from 0

(resistance) to 8 (sensitivity). The data values missing in the heatmap will be filled by the k-nearest neighbor method. C. The distribution of

activity area analyzed by integrating the characteristics of the model exclusions in different cell lines and associated tissues. The vertical

line indicates the presence of corresponding characteristic in the cell line. See also Table S4 for more details.
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Finally, with the model data, we will be able to analyze tissue-
specific treatment regimens and key genes involved in the
development of specific cancers.

Summary and future directions

Our goal is to integrate more comprehensive data to discover

new knowledge and explore promising strategies for cancer
therapies. iGMDR is the first complete data resource to pro-
vide predictive models for anticancer drugs, and it is by far

the largest resource. It provides not only a normalized exhibi-
tion of model data but also an investigation of the response
models of anticancer therapies for individual genes and indi-
vidual drugs. The interactive and visual presentation of data

directly presents the macroscale and microscale results of drug
response.

The models that we collected included both those that were

related to drug sensitivity and resistance and those that were
unresponsive because we believe that this would be valuable
information for clinical practice or research. In addition, due

to the different sources of all models, the reliability varies
greatly, and it is difficult to reflect its importance with unified
indicators. Different models of the same gene (with different
features) may have different outcomes for the same drug inter-

vention. Therefore, we use the network to analyze the relation-
ship between genes and drugs and rely on the number of
models to judge the importance of the relationship between

drugs and genes. The importance of a single model is usually
judged to be more reliable in vivo than in vitro. At the same
time, mutation-level model, such as SNV(ABL1 V299L), is

more reliable than the gene-level model, such as MUT(ABL1).
With the further development of pharmacogenetic studies

and high-throughput technologies, relevant therapeutic
response models for anticancer drugs will continue to be

updated, and we will continue to focus on data replacement
to improve data breadth, quality, and objectivity. Some of
the models consider the efficacy of the combination and con-

tinuous use of different drugs over a period of time, which
are priorities. In our previous work on model matching to
patients (unpublished data), we designed a logical strategy sim-

ilar to the aforementioned logic model to process relevant
data. In addition, we will provide a new angle to analyze data
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by associating it with new databases. For example, the Con-
nectivity Map (CMAP, https://clue.io) [41] and Library of
Integrated Network-Based Cellular Signatures (LINCS,

http://www.lincsproject.org) [42] datasets, which provide
information about drug perturbations, will allow users to com-
bine these datasets with the response models of anticancer

therapies to better understand the mechanisms of action of
drugs.

Finally, iGMDR will focus on integrating data from phar-

macogenetic studies to increase the value of the data as much
as possible, to facilitate clinical studies and practices.

Data availability

iGMDR is freely accessible at https://igmdr.modellab.cn and is
intended for academic purposes only.
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