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The dynamic-process characterization
and prediction of synthetic gene circuits
by dynamic delay model

Yanhong Sun,1,2 Fengyu Zhang,3,* Qi Ouyang,1,2 and Chunxiong Luo1,2,3,4,*
SUMMARY

Differential equation models are widely used to describe genetic regulations, predict multicomponent
regulatory circuits, and provide quantitative insights. However, it is still challenging to quantitatively
link the dynamic behaviors with measured parameters in synthetic circuits. Here, we propose a dynamic
delay model (DDM) which includes two simple parts: the dynamic determining part and the doses-
related steady-state-determining part. The dynamic determining part is usually supposed as the delay
time but without a clear formula. For the first time, we give the detail formula of the dynamic deter-
mining function and provide a method for measuring all parameters of synthetic elements (include 8
activators and 5 repressors) by microfluidic system. Three synthetic circuits were built to show that
the DDM can notably improve the prediction accuracy and can be used in various synthetic biology
applications.
INTRODUCTION

Cells control gene expression by regulating the production of specific gene products, which is vital for cells to respond to a variety

of intra- and extracellular signals.1–3 The temporal dynamics of a wide range of different circuits are important for cells to adapt to

complicated environments.1,2,4–7 Synthetic biology provides a bottom-up approach to understanding complex gene regulation in

nature8,9 and engineering cell systems for novel applications. Although synthetic biology technology has been successfully used to

achieve high-quality compound production,10 cell-based toxic biosensors11,12 and other functions,13 many problems still need to be

addressed to realize more applications.14,15 One important problem is the quantitative prediction of synthetic circuits with mathemat-

ical models.14,16

To date, some mathematical models have been applied to guide the design of complicated synthetic gene circuits,8,14,17–20 such as Hill-

type functions21–25 and other ordinary differential equation (ODE) models.26,27 To quantitatively predict the behavior of synthetic genetic cir-

cuits, most researchers use doses related Hill-type functions24 to fit experimental data to determine the parameters; however, thesemethods

consider only the protein production step and do not consider the transcription, translation, or folding/maturation of proteins.21,28,29 The lack

of details about some gene expression processesmay help to reduce the number of parameters while obtaining themain circuit properties in

some circumstances, such as dose-response prediction for synthetic circuits.21,28 However, for other circumstances, those details may have

significant influences on the prediction of the dynamic behaviors of genetic circuits.

Transcription-translation processes may be completed in different times by various species in different environments.30–33 Moreover,

protein maturation may cause a significant time delay when fluorescent proteins are used to represent the expression of the target

gene.34 In fact, the protein folding times of most proteins in prokaryotes and eukaryotes cannot be measured with existing methods.

For most of the proteins in biological systems, reasonable folding times may be about 10 min, which is comparable to the timescale of

transcription and mRNA degradation.35,36 These time delays caused by transcription-translation processes might significantly affect

the behaviors of multistep induction circuits, adaptation circuits,3,6,24 oscillators,23,25,37–39 and circadian rhythm-related regulation

processes.40–42

Thus, detailedmodels, which include inducer binding, transcription, translation and protein folding/maturation, need at least three to four

ODEs.25,43–45 In this circumstance, too many parameters need to be characterized based on the results of limited experiments, which may

result in overfitting or multiple groups of parameters meeting the requirements. Delay differential equations (DDEs) are proposed to simplify

the multistep reactions into a single time delay, which may reduce the number of parameters that are needed to predict dynamic
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Figure 1. The simplest one-step regulation circuit showed an obvious time delay when intermediate steps were added, and the time delay can be

described by a delay function f ðtÞ
(A) Illustration of the one-step regulation circuit and the protein-only model without consideration of the transcription-translation processes. When the

transcription-translation processes were not considered, the simulation increased quickly immediately after the addition of input X.

(B) Illustration of the one-step regulation circuit with the intermediate steps and the detailedmodel. The detailedmodel describes each of the intermediate steps

with an ODE. When the intermediate steps are considered, the simulation shows an obvious time shift compared with the protein-only model.

(C) Illustration of the one-step regulation circuit and theDDMwith f ðtÞdescribing the time delay caused by the transcription-translation processes. The simulation

results of the DDM are the same as those of the detailed model.

ll
OPEN ACCESS

iScience
Article
behaviors.46–52 DDEs for modeling gene expression have been proposed in many works to study the influences of delays in gene expression

networks,53–56 or predict experimental behaviors of lac operon dynamics.55 Themethods of introducing delay time in theseworks can be sum-

marized as follows: (1) Directly assume a total delay time twithout the precise formula link to the detailedmodel53,54; (2) Consider a delay time

at each step of transcription, translation and protein folding/maturation.55,56 The first method was simple and convenient for theoretical anal-

ysis of influences of delay times, but how specific parameters in detailed model affects the delay time was still not clear. The second method

showed how to calculate the delay times in each step of transcription, translation and protein folding/maturation, but with many parameters

need to be determined if it is used to predict synthetic gene expression dynamics. All methods were little used in synthetic gene units’ char-

acterization and gene circuits performance predictions.

Here, we developed a mathematical approach to link the detailed model to a new DDE model which consists the dynamic determining

part (delay function), and the doses-related steady-state-determining part. The model we developed here was called the dynamic delay

model (DDM). In themathematical derivation, we aimed to determine the actual delay function of basic synthetic elements in living cells. After

verified by experiment, our DDMcould be used to derive the delay function of regulatory proteins in experiments. After determining the delay

times and dose-determined steady-state-parameters of regulatory proteins (including activators and repressors), we used the model to pre-

dict cascaded repression circuits and incoherent feedforward loop (IFFL) networks,3,24,28 proving that our model can be used to precisely pre-

dict synthetic network dynamics.
RESULTS

DDM

We started with a transcriptional regulation model for the simplest one-step regulation processes (Figure 1A, left). The input X controls the

expression of protein Y. Here, X is supposed as a continuous inducer input. When the detailed steps are ignored and only the production of

protein is considered, the commonly used ODE model is formulated as follows28:

dY

dt
= b + a

Xn

Xn+KX
n � dY (Equation 1)

where b and a are the basal and maximum production rates of protein Y, respectively, KX is the dissociation constant, n is the Hill coefficient

reflecting the cooperativity of the activators, and d is the dilution rate due to cell division. We call the above model the protein-only model.

When the intermediate steps are not considered, protein Y starts to accumulate immediately after input X is added, and the protein con-

centration gradually increases until it plateaus over time (Figure 1A).
2 iScience 27, 109142, March 15, 2024
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When processes such as transcription, translation and protein folding/maturation are considered, the detailedODEmodel should be writ-

ten as47 (Figure 1B):

dRY

dt
= b0 + a0

Xn

Xn+KX
n � �

d+dmY

�
RY

dU

dt
= kYRY � dU � mYU

dY

dt
= mYU � dY

(Equation 2)

where RY is the mRNA concentration, b0 and a0 are the basal and maximal transcription rates, KX is the dissociation constant, n is the Hill co-

efficient, and dmY
is the mRNA decay rate. Here, U is the unfolded protein, and Y is the folded (e.g., regulatory proteins) or matured (e.g.,

fluorescent proteins) protein, kY is the translation rate, andmY is the protein folding/maturation rate. The abovemodel is termed the detailed

model.

When the transcription, translation and protein folding/maturation steps are added, the initial expression of protein Y increases more

slowly than in the previous protein-only model (Figure 1B).

Moreover, this system can be transformed into a third-order ODE as follows:

d3Y

dt3
= mYkYb

0 + mYkYa
0 Xn

Xn+KX
n � �

3d + dmY
+ mY

�d2Y

dt2
� �

3d2 + 2dmY + 2ddmY
+ mYdmY

�dY
dt

� dðd + mY Þ
�
d + dmY

�
Y

(Equation 3)

With eigenvalues as follows:

l1 = � d; l2 = � ðd + mY Þ; l3 = � �
d + dmY

�
(Equation 4)

Then, formulas for Y and dY
dt can be derived as follows:

Y ðtÞ =
X3

i = 1

Cie
li t +

ð1 � e� dtÞ
dmYdmY

�
mYkYb

0 + mYkYa
0 Xn

Xn+KX
n

�
�

�
1 � e�ðd+mY Þt

�
mY

�
dmY

� mY

�ðd+mY Þ
�
mYkYb

0 + mYkYa
0 Xn

Xn+KX
n

�

+

�
1 � e�ðd+dmY Þt

�
dmY

�
dmY

� mY

��
d+dmY

� �mYkYb
0 + mYkYa

0 Xn

Xn+KX
n

� (Equation 5)

Here, Y should have the same steady-state concentration as in Equation 1 (STAR Methods):

Ys =
mYkY

d
�
d+dmY

�ðd+mY Þ
�
b0 + a0

Xn

Xn+KX
n

	
=

b

d
+
a

d

Xn

Xn+KX
n (Equation 6)

Then the relation between a0 (b0) and a (b) can be determined as follows:

a =
mYkYa0

ðd+mY Þ
�
d+dmY

�;b =
mYkYb0

ðd+mY Þ
�
d+dmY

� (Equation 7)

Then, the three equations representing the detailed model can be transformed into one ODE with a delay function, as follows (Figure 1B):

dY

dt
= b + f ðtÞ aXn

Xn+KX
� dY (Equation 8)

where the delay function is as follows:

f ðtÞ = 1+
ðd+mY Þe�ðd+dmY Þt � �

d+dmY

�
e�ðd+mY Þt

dmY
� mY

(Equation 9)

When t = 0, which refers to the steady state before adding X, f ð0Þ = 0. And when t/N, which refers to the steady state after the onset of

gene regulationwith the effect of X, f ðNÞ/1. Here, f ðtÞ is a function that starts at zero andgradually increases to the unit one over time.When

f ðtÞ = 1, the equation is the same with the protein-only model. While other parameters are the same with the protein-only model which can

be determined by the dose-response curve.

We call the above model the DDM. This model is derived without approximations and can completely replace the detailed model pre-

sented above. The simulation of this model is the same as that of the detailed model with the same increasing behavior, which is different

from the behavior of the protein-only model (Figure 1C). But the parameters in the DDMmodel are much easier to be determined by exper-

iment data than the detailed model for the DDM model has the same doses-related steady-state-determining part with the protein-only

model.
iScience 27, 109142, March 15, 2024 3



Figure 2. Simulation of f ðtÞ and its approximations

(A) Illustration of transcription-translation processes that result in a time delay.

(B) Simulation of f ðtÞ.
(C) Comparison of the simulation results of f ðtÞ and f1ðtÞ.
(D) Comparison of the simulation results of f ðtÞ and f2ðtÞ.
(E) Simulations of the expression level of protein Y after the addition of a continuous unchangeable input X using the protein-only model andDDMswith f ðtÞ, f1ðtÞ,
and f2ðtÞ.
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Determining the delay time with the delay function

The DDM has the same steady state as the protein-only model, which means that the two models have the same doses-related steady-state-

determining parameters (Equation 1; Equation 8). The time delay caused by transcription-translation processes (Figure 2A) can be described

by the delay function f ðtÞ in the DDM, and f ðtÞ gradually increases over time until it reaches a value of 1 (Figure 2B). Therefore, one important

property of the DDM is that the dynamic determining part can be separated from the doses-related steady-state-determining part, which

means that the doses-related steady-state-determining parameters can be derived based on the dose-response data, while the dynamic

related parameters can be derived based on the dynamic response data. The dynamic determining part is related to the mRNA decay

rate dmY
, the protein folding/maturation rate mY and the cell division rate d (Equation 9).

Since the doses-related steady-state-determining parameters can be derived by fitting the dose-response data, the remaining problem is

determining the dynamic related parameters in f ðtÞ. The most common and direct method is to fit the experimental data based on f ðtÞ; with
this approach, only two parameters (mY and dmY

) need to be determined, as the cell division rate d can be derived based on time-lapsemicro-

graph data.57 The position of dm andm in the formula of f ðtÞ is symmetric, when the values of dm andm are exchanged, the value of f ðtÞ is the
same. Here, we provided ranges formY and dmY

, and then calculated the R-squared value by fitting the LacI-GFP experimental f ðtÞ data (Fig-
ure S1A). The ranges ofmY and dmY

were both 0�1 min�1, which indicated that the ranges of the half-maturation and half-decay times were

both ln 2/N min. The R-squared value showed that multiple parameter values satisfied the maximum R-squared, which meant that no

certain value could be determined with this method. This situation might be due to the parameter symmetry of f ðtÞ (Equation 9). Since

both the protein folding/maturation rate (mY ) and the mRNA decay rate (dmY
) can be different in different species,30–36 neither mY nor

dmY
can be ignored in f ðtÞ. As direct fitting was not applicable, we proposed two approximation methods: a linear approximation of f ðtÞ (Fig-

ure 2C) and a step function approximation (Figure 2D), which could be matched to a DDE. We proved that f ðtÞz1 when

t = 2

�
1

d+mY
+

1

d+dmY

	
(Equation 10)

With this approach, we could approximate f ðtÞ with a piecewise function (for more details, see STAR Methods):

f1ðtÞ =

8><
>:

t

T1
t < T1

1 tRT1

T1 = 2

�
1

d+mY
+

1

d+dmY

	
(Equation 11)

A comparison of the simulation results of f ðtÞ and f1ðtÞ is shown in Figure 2C.

When the input X is a continuous inducer without any changes, the linear approximation of f ðtÞ is useful. However, when the input changes,
such as a periodic addition function, the linear approximation may be difficult to use. Therefore, we proposed another approximation, the
4 iScience 27, 109142, March 15, 2024



Figure 3. Experimental results of the one-step regulation circuit with sfGFP and mScarlet; sfGFP and mScarlet have different maturation times

(A) Micrograph sequences of monolayer cells expressing sfGFP and mScarlet over time. The expression level of sfGFP increased faster than that of mScarlet. The

length of the scale bar is 10 mm.

(B) Mathematic model of one-step regulation.

(C) The steady-state expression levels of sfGFP and mScarlet can be fitted by the same dose-response curve.

(D) Comparison of the dynamic expression levels of sfGFP andmScarlet and the protein-only model simulation results. The data showed that the expression level

of sfGFP increased faster than that of mScarlet under the same inducer concentration.
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Figure 3. Continued

(E) The equation above the figure shows how to derive f ðtÞ from the experimental data. The experimental f ðtÞ data of sfGFP rose faster than those of mScarlet.

The inset shows the average f ðtÞ of all the different inducer concentrations with apparent sfGFP expression. The data are presented as the meanG SD (standard

deviation) from three experimental repeats. For each experiment, the results of at least 12 trap chamber repeats were averaged.
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step function approximation. Since we proved that f ðtÞz1 when t = T1, we set t = 1
2T1 as the cut-off point. The approximation function can

be written as follows:

f2ðtÞ =
(
0 t < T2

1 tRT2

T2 =

�
1

d+mY
+

1

d+dmY

	
(Equation 12)

A comparison of the simulation results of f ðtÞ and f2ðtÞ is shown in Figure 2D. When using the step function approximation of f ðtÞ to
describe the one-step regulation process, since the input X is continuous and unchangeable, the input was treated as if only takes effect after

a time of T2. The DDM can then be transformed to a DDE-like model as follows:

dY

dt
=

8>><
>>:

b � dY t < T2

b + a
Xn

Xn+KX
n � dY tRT2

T2 =

�
1

d+mY
+

1

d+dmY

	
(Equation 13)

When the input X varied over time as function XðtÞ, f2ðtÞ type approximation also can be used to simplify the formulas for dY
dt to:

dY

dt
+ dY = b + a

Xnðt � tY Þ
Xnðt � tY Þ+KX

n (Equation 14)
tYz

�
1

d+mY
+

1

d+dmY

	
(Equation 15)

The delay time tY is the same as the previously derived T2 (Equation 13) (see STAR Methods for more detail).

Therefore, using step function approximation for every step in the regulation processes, the delay resulting from the transcription-trans-

lation processes is approximately tY =
�

1
d+mY

+ 1
d+dmY

�
, where dmY

and mY are the mRNA decay rate and the protein maturation rate of the

produced protein. Though Equation 14 is similar to other DDEmodels, the formula of delay time tY from detailedmodel is solved here which

answers the puzzle of delay time used in old DDE models.

The simulations of the expression of protein Y using the protein-only model and the DDMwith f ðtÞ, f1ðtÞ, and f2ðtÞ are shown in Figure 2E.

The simulation results of the DDMwith f1ðtÞ showed very subtle differences when compared with the simulation results of the DDM using the

original f ðtÞ function. The simulation results of the DDM with f2ðtÞ showed an apparent difference only when t was small; however, for t > T2,

the simulation results were very close to the simulation results using the original f ðtÞ function. The simulation results of the protein-only model

showed an obvious earlier and faster increase than the simulation results of the DDM (Figure 2E). Both the step function approximation and

the linear approximation can be used to predict the gene expression dynamics of synthetic circuits. However, for systems in which down-

stream nodes are hypersensitive, the linear approximation may be more suitable.

In practice, only T2 (or tY ) need to be determined as the dynamic related parameter. The DDM only have one more parameter (T2 or tY )

than the protein-only model. So, the doses-related steady-state parameters can be determined through the dose-response data, while the

dynamic related parameter T2 can be determined through the dynamic response data.
One-step regulation experiments

As a proof of our theory of the time delay caused by transcription, translation and protein folding/maturation, we constructed two one-step

regulation modules in Escherichia coli (E. coli) with two different fluorescent proteins, sfGFP and mScarlet, which have different maturation

times.34 The fluorescent protein (sfGFP or mScarlet) was controlled by LacI and could be induced by isopropyl b-D-thiogalactopyranoside

(IPTG). Themicrograph data showed that the circuit withmScarlet had a considerably longer delay time than the circuit with sfGFP (Figure 3A).

In addition, these twomodules with different fluorescent proteins had the same dose-response curve, which could be described by the same

dose-related steady-state parameters (Figures 3B and 3C). The expression of sfGFP increased faster than that of mScarlet (Figure 3D). More-

over, the simulation results of the protein-only model without f ðtÞ increasedmuch faster than the experimental data of either sfGFP or mScar-

let (Figure 3D). In other words, there was an obvious time delay that could not be excluded when using the protein-only model to describe

dynamic expression levels in synthetic circuits.

After the steady-state parameters were determined, we obtained the f ðtÞ s for different concentrations of the inducer IPTG (Figure 3E). For

different IPTG concentrations of the same fluorescent protein, the f ðtÞ s showed essentially the same trend (Figure 3E). However, compared

with mScarlet, the f ðtÞ s of sfGFP increased and reached a value of 1 faster, and these results were more obvious after averaging, as shown in

the inset of Figure 3E. Based on the experimental data of f ðtÞ, we could use the linear approximation function shown in Equation 11 to fit the

data and obtain the characteristic time T1 (Figure 4A). The fitted characteristic time T1 for sfGFP was approximately 39 min. For mScarlet, the
6 iScience 27, 109142, March 15, 2024



Figure 4. Fitting results of the f ðtÞ s and comparison of the experimental data and the DDM simulation results

(A) Fitting results of the f ðtÞ s using the linear approximation model.

(B and C) Comparison of the sfGFP (B) andmScarlet (C) data and the results of DDM simulations that used the linear approximationmodel. (D) Experimental f ðtÞ s
and the step function approximation model.

(E and F) Comparison of the sfGFP (E) and mScarlet (F) f ðtÞ data and the results of DDM simulations that used the step function approximation. The data are

presented as the mean G SD (standard deviation) from three experimental repeats. For each experiment, the results of at least 12 trap chamber repeats

were averaged.
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fitted characteristic time T1 was approximately 62 min, which was longer than that for sfGFP. However, the fitted characteristic time might be

different from the T1 value calculated with Equation 11. Therefore, we considered reasonable ranges of the two parameters (m = 0 � 1min�1

and dm = 0 � 1 min�1, which indicated that the ranges of the half-maturation and half decay times were both ln 2/Nmin), simulated f ðtÞ,
and found that the difference

�
T1 �Tfit

Tfit

�
between the fitted and the calculated T1 was less than 10% (Figures S1B and S1C). Furthermore, inmost

cases, the calculated T1 was 4�10% larger. Therefore, the fitted characteristic time was comparable to the calculated T1, and the fitted char-

acteristic delay time was corrected by +7% hereafter. The maturation times of sfGFP and mScarlet in living cells have been studied previ-

ously34; the half maturation time of sfGFP was determined to be 13.6 G 0.9 min, the half maturation time of mScarlet was determined to

be 25.7G 1.5min,34 and the half-lives of mRNAs in E. coli aremostly between 3 and 8min,31 which is considerably shorter than the cell division

time. The bacterial growth rate was d = 0:0175 min�1 (Figure S6C). We calculated the correspondingm and dm for both sfGFP and mScarlet

(mGFPz0:0495 min�1,mmScarletz0:0248 min� 1, dm = 0:087 � 0:231 min�1)31,34 and then calculated T1. The calculated T1 for sfGFP should be

38–49 min, and the corrected fitted time was 42 min, which was within the range. The calculated T1 for mScarlet should be between 55 and

66 min, and the corrected fitted time was 66 min, which was also within the range. This result showed that this method can be used to char-

acterize the time delay caused by transcription-translation processes to some extent.

AfterT1 wascalculated, thedelay function f1ðtÞ (Equation11)wasdetermined.Simulationsof theDDM(Equation14) areshown inFigure4.With

f1ðtÞ added, the simulation results were more consistent with the experimental data (Figures 4B and 4C) than the previous protein-only model
iScience 27, 109142, March 15, 2024 7
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(Figure 3D). The step function approximation could also be derived, with T2 = 1
2T1 (Figure 4D), and simulations of the DDMwith f2ðtÞ (Figures 4E

and 4F) also showedmuch better consistency with the experimental data than the protein-onlymodel (Figure 3D). Although theDDM simulation

results did not perfectly match the corresponding experimental data, the model proposed here showed a great improvement over the previous

protein-onlymodel.We also built other one-step regulation circuits that can be induced by other chemicals. The outputs of all these circuits were

represented by sfGFP. The proteins replacing LacI includedNahR, CepR, and RpaR58 induced by salicylic acid, C4-HSL and pC-HSL respectively.

We also calculated f ðtÞs and fitted the characteristic delay times. The results showed that the characteristic delay timeswere similar to that of the

circuit controlled by LacI with sfGFP as the reporter (Figure S2). In other words, the regulatory protein did not affect the characteristic delay time,

regardless of the input, and the characteristic delay time was related only to the protein that was being produced.

In conclusion, for one-step regulation processes, the dose-related steady-state determining part and dynamic determining part can be

separated in the DDM. Therefore, the doses-related steady-state parameters can be derived based on the dose-response curve, while the

dynamic related parameters can be derived based on the dynamic response curves. By combining these two parts, we can obtain a more

complete and simpler model to describe the dynamic regulation of synthetic circuits.
Determining all the parameters of the intermediate regulatory protein

Sincewepreviously derived the delay timesof sfGFP andmScarlet, corresponding two-step regulation circuits canbebuilt todetermine the char-

acteristic delay times and doses-related steady-state parameters of the intermediate proteins. The proposed method is formulated as follows.

As shown in Figure 5A, in a one-step regulation circuit, we used a continuous steady input X to control an output protein Z. First, by fitting

the dose-response curve, we obtained the doses-related steady-state parameters. Then, we calculated f ðtÞ based on the experimental data.

Next, we fitted f ðtÞ to determine the characteristic delay time tZ . Finally, we obtained the dynamic equation of the one-step regulation circuit

(Figure 5A). The doses-related steady-state parameters were related to the regulatory property F1 of X, and the characteristic delay time tZ

was related to the mRNA decay rate and protein maturation rate of protein Z.

Then,wedesigneda two-step regulation circuit inwhich the inputX controlsY, andY controlsZ (Figure 5A). The regulatorypropertyF1 (steady-

stateHill-type functionwithdoses-related steady-stateparameters:bX + aX
Xn

Xn+Kn
X
) ofXand the characteristicdelay time tZ ofproteinZhavealready

been determined. Thus, we first fit the experimental dose-response curve to determine the doses-related steady-state parameters which refer to

F2 (steady-stateHill-type functionwithdoses-related steady-stateparameters:bY + aY
Yn

Yn+Kn
Y
) of proteinY. And thenfit thedynamic responsecurves

to obtain the characteristic delay time tY associated with protein Y (Figure 5A). This method can be used to obtain the regulatory properties and

characteristic delay times of various regulatory proteins, and those parameters can be used to construct DDMs topredict the dynamic properties

of synthetic circuits.

Todetermine theparametersof regulatoryproteins, includingactivators and repressors,webuilt a varietyof two-step regulationcircuits. These

two-step regulation circuits were controlled by LacI or NahR and induced by IPTG or salicylic acid. The activators included T7 RNAPs with four

different CI434 binding sites,28 RpaR, CepR, LuxR58 and sECF11. RpaR, CepR, and LuxR need specific signal molecules to be activated and

show effects, and the corresponding signal molecules were pC-HSL for RpaR and C4-HSL for both CepR and LuxR. The repressors included

CI434 with four operators with different binding site designs28 and lCI. The circuits of the T7 RNAPs andCI434with different operators were con-

structed by Zong, Y. et al.28 The parameters of these regulatory proteins are shown in Table 1. The various regulatory proteins had different char-

acteristic delay times. Theactivator RpaRhad the shortest delay timeof 7min, and the repressorlCIhad the longest delay timeof 26min (Table1).

The experimental data and DDM fitting results for the activator LuxR and repressor CI434-O3 are shown in Figures 5B and 5C, respectively. The

experimental data for the other two-step regulation circuits and the corresponding DDM fitting results are shown in Figure S3.

In conclusion, by combining the doses-related regulatory parameters and characteristic delay times obtained by the one-step regulation

circuits, two-step regulation circuits could be constructed to inversely determine the doses-related steady-state parameters and the charac-

teristic delay times of intermediate regulatory proteins. Then, the doses-related steady-state parameters and characteristic delay times of the

proteins could be used to predict the dynamic responses of synthetic circuits through the DDM. We constructed several synthetic circuits to

demonstrate the predictive ability of the DDM.
Dynamic prediction of synthetic circuits

The final goal of mathematic models in synthetic biology applications should be the quantitative prediction of gene expression levels in syn-

thetic circuits. We derived a series of regulatory parameters and characteristic delay times for different regulatory proteins; thus, the next step

is testing the reliability and predictive ability of the proposed DDM and the derived characteristic delay times. Here, we built three different

types of synthetic circuits based on the previously characterized regulatory proteins. The first type was a cascaded three-step repression cir-

cuit (Figure 6A), which was developed to test whether the characteristic delay times derived for the intermediate regulatory proteins and

sfGFP were sufficiently reliable to describe the actual time delay of the circuit. The second type was an IFFL circuit with the same node

numbers on both the activation and repression sides, which we termed the IFFL type I circuit (Figure 6B). The third type was also an IFFL circuit

but with different nodes on the activation and repression sides, which we termed the IFFL type II circuit (Figure 6C). The repression side of the

IFFL type II circuit had one more node than the activation side; thus, the repression side should have a much longer delay time than the acti-

vation side, which indicated that the dynamic expression of the IFFL type II circuit might show pulsed behavior. In contrast, the IFFL type I

circuit had the same number of nodes on both the activation and repression sides; thus, the dynamic expression might not show the obvious

pulsed form shown by the IFFL type II circuit.
8 iScience 27, 109142, March 15, 2024



Figure 5. The method to derive the steady-state parameters and the characteristic delay times of intermediate regulatory proteins

(A) By combining the steady-state parameters and the characteristic delay times derived from the one-step regulation circuit, a two-step regulation circuit could

be built to derive the parameters of the intermediate proteins.

(B and C) The two-step regulation circuit with IPTG as the input, LuxR (b) and CI434 (c) as the intermediate regulatory proteins, and sfGFP as the output reporter.

The dynamic experimental data could be fitted to obtain the characteristic delay times of the LuxR and CI434 proteins. The data are presented as themeanG SD

(standard deviation) from at least 12 trap chamber repeats.
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To prove the predictive ability of the DDM, we first constructed four simple cascaded three-step repression circuits (Figure 6A). Each of the

circuits was controlled by LacI, which could be induced by IPTG. The second node was the activator T7 RNAP, and the third node was the

repressor CI434. There were four operators with different CI434 binding site designs, as constructed by Zong, Y. et al.,28 resulting in four

different repression intensities. The output of all four circuits was sfGFP (Figure 6A). The DDMs of these circuits are shown in STAR Methods.

The protein-onlymodel simulation showed an obviously faster decline than the experimental data. However, theDDM simulation results were

more consistent with the experimental data (Figures 6A and S4).

The above experiments showed that the DDM could be used to quantitatively predict the dynamic behaviors of simple cascaded circuits.

To prove the predictive ability of the DDM for more complicated circuits, we investigated four IFFL type I circuits with different repression

operators (Figure 6B), which were constructed by Zong, Y. et al.28 Each of the four IFFL type I circuits had four nodes: the first node was

LacI, which controlled the whole circuit; the second node was T7 RNAP; the third node was CI434; and the output was sfGFP. Four different

CI434 operators leaded to four distinct repression intensities. The activator T7 RNAP and the repressor CI434 simultaneously controlled the

expression of sfGFP (Figure 6B). As the inhibition strength of the repression operators increased, the IFFL type I circuit showed different dose-

response curves28 (Figure S5A). The activation side and the repression side both had two nodes, which meant that the delay times caused by

the two sides should be very similar. Few dynamic changes were observed, and the dynamic modes under different IPTG concentrations

mainly simply increased to a plateau (Figure S5B). The DDM of the IFFL type I circuit is shown in STAR Methods. The DDM was first used

to predict the dose-response curves of the IFFL type I circuits, and the results showed great quantitative prediction results (Figure S5A).

The dose-response curves of the IFFL type I circuits showed that intermediate concentrations of the inducer led to the highest reporter in-

tensity. One dynamic curve of the experimental data of the IFFL type I circuit (O3, 1 mM IPTG) is shown in Figure 6B. The simulation results of

the DDM for different IFFL type I circuits were obviouslymore consistent with the experimental data than the results of the protein-only model

(Figures 6B and S5B).

Although the IFFL type I circuits were more complicated than the previous simple cascaded three-step repression circuits, there were still

limited dynamic changes. Most of the dynamics behaviors of these circuits were typical increases (Figure S5B). Therefore, here, we built four
iScience 27, 109142, March 15, 2024 9



Table 1. Steady state parameters and dynamic related parameters of regulatory elements

Input parameters Dose-related steady-state parameters Dynamic related parameter

aI KIPTG (mM) Klac nI bI d (min�1) t GFP (min)

LacI 360.68 0.025 1.36 4 0.93 0.0175 21

Input parameters

Dose-related Steady-state parameters Dynamic related parameter

aI KI (mM) nI bI d (min�1) t GFP (min)

Nahr 61.98 0.018 0.73 1.71 0.0175 21

CepR 66.83 0.0639 0.68 17.34 0.0175 21

RpaR 37.17 0.176 3 10�6 1.45 16.06 0.0175 21

Activators

Dose-related Steady-state parameters Dynamic related parameter

aa Ka na ba d (min�1) t a (min)

T7 RNAP-O1 91.68 8.963102 1.39 0.53 0.0175 12

T7 RNAP-O2 78.74 7.743102 1.40 0.41 0.0175 12

T7 RNAP-O3 90.56 1.113103 1.28 0.47 0.0175 12

T7 RNAP-O4 84.56 1.123103 1.20 0.47 0.0175 12

CepR 13.59 2.233102 0.99 1.76 0.0175 22

RpaR 84.64 1.403102 2.04 3.27 0.0175 7

LuxR 18.08 6.323102 1.27 0.90 0.0175 19

sECF11 136.40 8.243102 3.93 5.37 0.0175 13

Repressors

Dose-related Steady-state parameters Dynamic related parameter

ar Kr nr br d (min�1) t r (min)

CI434-O1 61.55 3.663103 1.37 0 0.0175 10

CI434-O2 55.78 7.633102 1.83 10.12 0.0175 10

CI434-O3 56.67 6.323102 1.95 6.75 0.0175 10

CI434-O4 58.40 5.043102 2.35 5.99 0.0175 10

lCI 72.27 5.543103 1.74 0 0.0175 26
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IFFL type II circuitswithdifferent repressionoperators. The repression sidesof all four IFFL type II circuits hadonemorenode than the correspond-

ingactivation sides, so the IFFL type II circuitsmight showpulseddynamicexpression levelsover time.Thefirst nodewas still LacI,whichcontrolled

the expression of T7 RNAP, and T7 RNAP controlled both CI434 and sfGFP simultaneously, while CI434 also controlled the expression of sfGFP

(Figure 6C). Theoretically, the expression of sfGFPwill first increase to a peak; then, the expression is repressedbyCI434, and the expression level

will decrease toa lower value.Theexperimental dataof the IFFL type II circuitwithO3under 1mMIPTGare shown inFigure6C,which showed that

the expression level of sfGFPfirst increased toapeak and thengradually decreased toa lower value, tending toa steady state. The corresponding

simulations of the protein-only model and the DDM are also shown in Figure 6C. The experimental data showed a clear delay compared to the

protein-onlymodel simulation, while theDDMperfectly compensated for this delay (Figures 6C andS5C), allowing theDMMtoobtainmuchbet-

ter quantitative dynamic predictions. The protein-only model simulation results had lower amplitudes than both the experimental data and the

DDM simulation results because the times of rising and decliningwere both shorter when the simulation was performedwithout the delay times.

Based on all the experiments presented here, we determine that the DDM perfectly combines the delay times caused by transcription-

translation processes and the dose-related steady-state parameters, allowing the proposedmodel to make much better quantitative predic-

tions of the dynamic behaviors in synthetic circuits than the protein-only model. Furthermore, the DDM proposed here make a parameter

reduction than the detailed model, which make it easier to determine the dose-related steady-state parameters and the dynamic related

parameter through simple experiment. Also, compare with the existing delay models,55 the DDMproposed here provide a method to derive

the parameters of hidden nodes easily from the dose-response curve and the dynamic expression curve separately which make it easier to

quantitatively characterize synthetic gene elements with existing data.
DISCUSSION

Researchers in synthetic biology have used bottom-up methods to engineer new regulatory circuits based on simpler components adapted

from nature. As the complexity of the circuits increases, it becomes more important to make accurate quantitative predictions based on their

constituent parts.15,59 Hill-type functions have been widely used to quantitatively predict the performance of synthetic circuits.21,28,29,48 In

most cases, the model is simplified without considering the detailed steps in transcription-translation processes because the inclusion of
10 iScience 27, 109142, March 15, 2024



Figure 6. Comparison of the dynamic prediction results between the protein-only model and the DDM

The construction of the cascaded three-step repression circuits (A), IFFL type I circuits (B) and IFFL type II circuits (C) with different operators28 and the

experimental data with the protein-only model and DDM predictions of these circuits (O3, 1 mM IPTG) are presented. The results show that the DDM

obtained much better prediction results than the protein-only model that did not consider delays. The data are presented as the mean G SD (standard

deviation) from at least 12 trap chamber repeats.
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more details means that more parameters need to be determined.47 However, transcription-translation processes may take nonnegligible

amounts of time to complete, which may affect the dynamic properties of synthetic circuits.30,34

In this work, we startedwith a one-step regulation circuit based on a detailed ODEmodel, which used threeODEs to separately describe the

transcription, translation to unfoldedprotein, andprotein folding/maturation processes.39,47Wefirst proved that thedetailedODEmodel can be

transformed into a DDM, which can be separated into two parts based on a theoretical formulation. One part is related to the dose-related

steady state of the circuit, while the other part is related to the dynamic delay caused by the transcription-translation processes. Through simple

one-step regulation experiments with different fluorescent proteins, namely, sfGFP and mScarlet, which have different maturation times,34 we

proved that different maturation times led to clear dynamic differences, although the dose-response curves were the same (Figure 3).

After proving theexistenceof thedelay time,whichwas ignored in the simplifiedprotein-onlymodel,weproposedamethod todetermine the

characteristic delay times of regulatory proteins. We used the DDM to determine the characteristic delay times and dose-related steady-state

parameters of intermediate proteins based on a two-step regulation circuit (Figure 5). Then, we used those parameters to predict the dynamic

expression levels inmore complex synthetic circuits with theDDM. The results suggested that theDDMcould perfectly compensate for the delay

times causedby transcription-translationprocesses andobtainmuchbetter quantitative predictions of the dynamic expression levels in synthetic

circuits than previous protein-only model. The synthetic gene circuits studied here were relatively simple, however, themethod of using DDM to

quantitatively characterize synthetic gene units was proved useful. The effects of the delay errormay bemore significant for larger cascading net-

works. And theoretical studies of delays showed that increasing delay could dramatically increase themean residence times near stable states of

bistablecircuits.48The synthetic circuits constructedherewereall relatively simple feedforward circuits, but themethodproposedherewere theo-

retically universal, which can easily be applied to character synthetic gene units andpredict dynamic expression levels in various complex circuits.

Circuits with feedback regulations can also be built in the future for further study of the effects of delays on complicated gene circuits.
Limitations of the study

The synthetic gene circuits studied herewere relatively simple, and all feedforward circuits, though themethodof usingDDM to quantitatively

characterize synthetic gene units were proved useful. The effects of the delay error may be more significant for larger cascading networks.

More complicated circuits with feedback regulationsmay need to be built in the future for further study of the effects of delays on complicated

gene expression dynamics.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

E. coli Top10 yuanye S32803-100ul

E. coli DHL807 Potvin’s work37 N/A

Chemicals, peptides, and recombinant proteins

Yeast extract Oxoid lp0021

Tryptone Oxoid LP0042B

Sodium chloride tgchem 112008

Agar Sigma-Aldrich A1296-500G

IPTG GPC AC367-5G

Salicylic acid Anneji W610518

N-butyryl-L-Homoserine lactone (C4-HSL) APExBIO C5727-10

N-(p-Coumaroyl)-L-homoserine lactone (pC-HSL) Santa cruz sc-301256

Chloramphenicol abcom C8050-10

Ampicillin sodium GPC AK052-25g

Software and algorithms

MATLAB 2021 N/A https://www.mathworks.com/

ImageJ N/A https://imagej.nih.gov/ij/

NIS-Elements AR NIKON https://www.microscope.healthcare.nikon.com/

Simulation Codes MATLAB2021 https://github.com/YanhonSun/Code-SI
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Chunxiong Luo

(pkuluocx@pku.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� Data reported in this paper will be shared by the lead contact upon request.
� All the simulation codes are provided at https://github.com/YanhonSun/Code-SI and publicly available as of the date of publication.

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Strains
Plasmid1 (Cmr-pSC101*) Plasmid2 (Ampr-P15A*) Source

One-step

regulation

– LacI-GFP This work. See supplemental information for more detail

– LacI-mScarlet This work. See supplemental information for more detail

– RpaR-GFP This work. See supplemental information for more detail

– CepR-GFP This work. See supplemental information for more detail

– NahR-GFP This work. See supplemental information for more detail

(Continued on next page)

14 iScience 27, 109142, March 15, 2024

mailto:pkuluocx@pku.edu.cn
https://github.com/YanhonSun/Code-SI
https://www.mathworks.com/
https://imagej.nih.gov/ij/
https://www.microscope.healthcare.nikon.com/
https://github.com/YanhonSun/Code-SI


Continued

Plasmid1 (Cmr-pSC101*) Plasmid2 (Ampr-P15A*) Source

Two-step

regulation

PRpa-GFP LacI-RpaR This work. See supplemental information for more detail

PCep-GFP LacI-CepR This work. See supplemental information for more detail

PLux-GFP LacI-LuxR This work. See supplemental information for more detail

PlCI -GFP LacI-lCI This work. See supplemental information for more detail

PsECF11-GFP NahR-sECF11 This work. See supplemental information for more detail

PT7 RNAP (Oi)-GFP LacI (PTAC-T7 RNAP in Chromosome) Yeqing Zong’s work: https://doi.org/10.1038/s41467-

017-00063-z

PCI434 (Oi)-GFP LacI-CI434 Yeqing Zong’s work

Three-step

repression

PCI434 (Oi)-GFP LacI (PTAC-T7 RNAP in Chromosome)

PT7 RNAP-CI434

Yeqing Zong’s work

IFFL-Type I PT7 RNAP+CI434 (Oi)-GFP LacI (PTAC-T7 RNAP in Chromosome)

PTAC-CI434

This work. See supplemental information for more detail

IFFL-Type II P T7 RNAP+CI434 (Oi)-GFP LacI (PTAC-T7 RNAP in Chromosome)

PT7 RNAP-CI434

This work. See supplemental information for more detail

E. coli Top10 was used for plasmid construction, and E. coli DHL807 from Potvin’s work37 was used for circuit measuring throughout this study.

*Plasmids without functional elements were obtained from Yeqing Zong’s work.28
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METHOD DETAILS

Strains and plasmids

The plasmids used for the IFFL type I circuits and two-step regulation circuits for T7 RNAP and CI434 were obtained from Zong, Y. et al.28 The

activators CepR, RpaR and LuxR were obtained fromDu, P. et al.58 The sequences of the gene elements and plasmids are shown in Tables S1,

S2, and S3. The bacteria were cultured in LB medium, which consisted of 10 g/L tryptone, 5 g/L yeast extract, and 10 g/L NaCl. To make the

agar plates, 15 g/L agar was added. The bacteria were cultured at a temperature of 37�C. The antibiotics used here were ampicillin at a final

concentration of 100 mg/L derived from a 100 mg/mL aqueous stock and chloramphenicol at a final concentration of 34 mg/mL derived from a

34 mg/mL stock dissolved in ethanol. The inducer isopropyl-b-D-1-thiogalactopyranoside (IPTG) was prepared at different concentrations for

various experiments from a 1 M aqueous stock. The autoinducer N-butyryl-homoserine lactone (C4-HSL) was stocked in ethanol at a concen-

tration of 10 mM. The autoinducer p-coumaroyl-HSL (pC) was stocked in DMSO at a concentration of 10 mM. For the one-step regulation

circuits (RpaR-GFP andCepR-GFP), the signal molecules were added at eight different concentrations (Figure S2). For the two-step regulation

circuits (LacI-RpaR-GFP, LacI-CepR-GFP and LacI-LuxR-GFP), the signal molecule concentrations were set to saturation conditions: 100 nM

pC-HSL for RpaR and 10 mM C4-HSL for both CepR and LuxR.
Live-cell imaging and data acquisition

We used a high-throughput two-layer PDMS microfluidic chip57 for live-cell imaging to determine the dynamic gene expression level in syn-

thetic gene circuits under eight inducer concentrations. The detailed design of the microfluidic chip is shown in Figure S6A. A vacuum treat-

ment (15–20min) was applied to evacuate the air in the PDMS chip to successfully load the bacteria into the chambers without generating any

bubbles in the trap area. A microvalve was used to prevent cross contamination in the chip. Before loading the bacteria, the microvalve was

closed using a general mechanical pump to push a 1-mL syringe full of water connected by a flexible tube at a speed of 50 mL/min for�25 s57

(Figure S6B). A 5-mL syringe containing normal medium without any inducers was connected to another one-pass-eight chip, which was con-

nected to the two-layer chip for 2 h of normal cell culture before the induction of the synthetic circuits, and eight 1-mL syringes containing

media with different concentrations of inducers were connected to the corresponding chip inlets (Figure S6B). The microvalve was opened

when injecting the normal culture medium and the medium with the inducer added. The chip was placed on a Nikon Ti-E inverted fluores-

cence microscope for time-lapse imaging with a plan Apo 603 oil immersion objective. The temperature of the incubator system was set to

37�C. The images were captured with an EMCCD camera (Andor DU897). The flow rate of the medium was 40 mL/h, and the images were

captured every 5 min for 8 h or longer.

ImageJ software was used to derive data from the experimental microscopic images. An irregular circle was delineated to track an area full

of cells, with abnormal cells excluded.57 The mean fluorescence intensity of the circled area was derived. We used the batch measurement

function to derive the time series of the fluorescence intensity. The background was removed by subtracting the mean fluorescence intensity

of the area containing no cells. The data from every experiment with different synthetic circuits were derived by averaging the mean fluores-

cence intensity for at least 12 trap chambers. The growth rate was determined by exponential fitting of the change in the bacterial growth area

under conditions with and without the inducer. The growth rate with the inducer was similar to the growth rate without the inducer.57 We

derived the growth rates under different conditions and averaged the values to determine a growth rate of 0.0175 min�1 (Figure S6C).
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Data analysis and modeling

The steady-state parameters were obtained by fitting the dose-response curve using the ‘‘lsqcurvefit’’ function in MATLAB (version R2021b).

Numerical simulations were performed inMATLAB using the ‘‘ode45’’ function for the protein-only model and the ‘‘ddesd’’ function for all the

DDMs, including the DDMs for the two-step regulation circuits, three-step regulation circuits, IFFL type I circuits and IFFL type II circuits. The

characteristic delay times of the intermediate regulatory proteins were obtained by considering a range of possible values, performing the

corresponding simulations for all inducer concentrations, and then selecting the value with the greatest R2. All the simulation codes are pro-

vided at https://github.com/YanhonSun/Code-SI.
Model

One-step regulation model

Here, we present a detailed derivation for the DDM of the one-step regulation circuit. We start with the detailed ODEmodel, which includes

transcription, translation and protein folding/maturation:

dRY

dt
= b0 + a0

Xn

Xn+KX
n � ðd+dmÞRY

dU

dt
= kRY � dU � mU

dY

dt
= mU � dY

(Equation 16)

where RY is the mRNA concentration, b0 and a0 are the basal and maximal transcription rates, KX is the dissociation constant, n is the Hill co-

efficient, and dm is the mRNA decay rate. Here, U is the unfolded protein, and Y is the folded (e.g., regulatory) or matured (e.g., fluorescent)

protein, k is the translation rate, and m is the protein folding/maturation rate, and d is the dilution rate due to cell division.

When t = 0, which refers to the steady state before adding X,

Y =
mkb0

dðd+dmÞðd+mÞ (Equation 17)

When t/N, which refers to the steady state after the onset of gene regulation with the effect of X,

Y =
mk

dðd+dmÞðd+mÞ
�
b0 + a0

Xn

Xn+KX
n

	
(Equation 18)

This detailed ODE model could be transformed into a third-order ODE as follows:

d3Y

dt3
= mkb0 + mka0

Xn

Xn+KX
n � ð3d + dm + mÞd

2Y

dt2
� �

3d2 + 2dm + 2ddm + mdm

�dY
dt

� dðd + mÞðd + dmÞY (Equation 19)

The eigenvalues are as follows:

l1 = � d; l2 = � ðd + mÞ; l3 = � ðd + dmÞ (Equation 20)

Then, we can derive the function of Y(t) as follows:

Y ðtÞ =
X3

i = 1

Cie
li t +

1

dmdm
ð1 � e� dtÞ

�
mkb0 + mka0

Xn

Xn+KX
n

�
� 1

mðdm � mÞ
1

d+m

�
1 � e�ðd+mÞt��mkb0 + mka0

Xn

Xn+KX
n

�

+
1

dmðdm � mÞ
1

d+dm

�
1 � e�ðd+dmÞt��mkb0 + mka0

Xn

Xn+KX
n

�
(Equation 21)

The detailed ODE model should have the same steady state as the protein-only model:

dY

dt
= b + a

Xn

Xn+KX
n � dY

t = 0;Y =
b

d
;

t/N; Y =
b

d
+
a

d

Xn

Xn+KX
n

(Equation 22)
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Therefore, we obtain:

a =
mka0

ðd+mÞðd+dmÞ;b =
mkb0

ðd+mÞðd+dmÞ (Equation 23)

Then, we can derive the following equation:

dY

dt
+ dY = � �

mC2e
�ðd+mÞt + dmC3e

�ðd+dmÞt�
+

�
1 +

ðd+mÞe�ðd+dmÞt � ðd+dmÞe�ðd+mÞt

dm � m

��
b + a

Xn

Xn+KX
n

� (Equation 24)

The unknown parameters can be derived through the boundary conditions as follows:

t = 0;

8>>>>>>>><
>>>>>>>>:

Y = C1 +C2 +C3 =
b

d

dY

dt
+ dY = � ðmC2 +dmC3Þ = b

d2Y

dt2
= C1d

2 +C2ðd+mÞ2 +C3ðd+dmÞ2 = 0

(Equation 25)
C1 =
b

d
� ðC2 +C3Þ; C2 =

�ðd+dmÞb
mðdm � mÞ ; C3 =

ðd+mÞb
dmðdm � mÞ (Equation 26)

Finally, we can obtain the DDM as follows:

dY

dt
+ dY = b +

�
1 +

ðd+mÞe�ðd+dmÞt � ðd+dmÞe�ðd+mÞt

dm � m

��
a

Xn

Xn+KX
n

�
(Equation 27)

Approximation of f ðtÞ
The delay function is formulated as follows:

f ðtÞ = 1+
ðd+mÞe�ðd+dmÞt � ðd+dmÞe�ðd+mÞt

dm � m
(Equation 28)

where dm is the mRNA decay rate, m is the protein folding/maturation rate, and d is the growth rate.

Generally, protein maturation may require more time than mRNA decay. Furthermore, bacterial division may require more time than pro-

tein maturation. Therefore, we assumed that dm>m>d. When t = 2
�

1
d+m + 1

d+dm

�
, x = d+dm

d+m > 1, and we have

f ðtÞ = 1+
e� 2

dm � m

h
ðd+mÞe

� 2ðd+dmÞ
d+m � ðd+dmÞe

� 2ðd+mÞ
d+dm

i

= 1+
e� 2ðd+dmÞ
dm � m

�
1

x
e� 2x � e

�
2

x
	

= 1 � e
� 2

�
1+
1

x

	
ðd+dmÞ

dm � m
+
e� 2ð1+xÞðd+dmÞ
xðdm � mÞ

= 1 � x

x � 1
e
� 2

�
1+
1

x

	
+
e� 2ð1+xÞ

x � 1
R1 � e� 2

(Equation 29)

This result indicates that when t = 2
�

1
d+m + 1

d+dm

�
, the f ðtÞ value is very close to 1. Therefore, we proposed the following linear

approximation:

f1ðtÞ =

8><
>:

t

T1
t < T1

1 tRT1

T1 = 2

�
1

d+m
+

1

d+dm

	
(Equation 30)
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To perform convenient simulations in cases with changeable inputs, we proposed another approximation, the step function approxima-

tion, and set t = 1
2T1 as the cut-off point:

f2ðtÞ =
(
0 t < T2

1 tRT2

T2 =

�
1

d+m
+

1

d+dm

	
(Equation 31)

Multistep regulation model

The input of the one-step regulation model was continuous and stable and did not change over time. However, in multistep regulation cir-

cuits, the expression levels of the intermediate regulatory proteins change over time. Therefore, the detailed model should be written as

follows:

dRY

dt
= b0 + a0

XnðtÞ
XnðtÞ+KX

n � ðd+dmÞRY

dU

dt
= kRY � dU � mU

dY

dt
= mU � dY

(Equation 32)

where RY is the mRNA concentration, b0 and a0 are the basal and maximal transcription rates, KX is the dissociation constant, n is the Hill co-

efficient, and dm is the mRNA decay rate. Here, U is the unfolded protein, and Y is the folded (e.g., regulatory) or matured (e.g., fluorescent)

protein, k is the translation rate, andm is the protein folding/maturation rate, and d is the dilution rate due to cell division. The input X(t) is the

protein expression level over time, which controls the expression of protein Y.

Moreover, this detailed ODE model could be transformed into a third-order ODE as follows:

d3Y

dt3
= mkb0 + mka0

XnðtÞ
XnðtÞ+KX

n � ð3d + dm + mÞd
2Y

dt2
� �

3d2 + 2dm + 2ddm + mdm

�dY
dt

� dðd + mÞðd + dmÞY (Equation 33)
l1 = � d; l2 = � ðd + mÞ; l3 = � ðd + dmÞ (Equation 34)

Then, the equation of Y(t) can be derived as follows:

Y ðtÞ =
�
C1e

� dt + C2e
�ðd+mÞt + C3e

�ðd+dmÞ�
+

1

mdm
e� dt

Z t

0

�
mkb0 + mka0

Xnðt0Þ
Xnðt 0Þ+KX

n

�
edt0dt0 � 1

mðdm � mÞe
�ðd+mÞt

Z t

0

�
mkb0 + mka0

Xnðt0Þ
Xnðt 0Þ+KX

n

�
eðd+mÞt0dt 0

+
1

dmðdm � mÞe
�ðd+dmÞt

Z t

0

�
mkb0 + mka0

Xnðt0Þ
Xnðt0Þ+KX

n

�
eðd+dmÞt0dt 0

(Equation 35)

We can then obtain the following equation:

dY

dt
+ dY = � C2me�ðd+mÞt � C3dme

�ðd+dmÞt � mkb0e�ðd+mÞt

ðd+mÞðdm � mÞ +
mkb0e�ðd+dmÞt

ðd+dmÞðdm � mÞ +
mkb0

ðd+mÞðd+dmÞ
+

mka0

dm � m



e�ðd+mÞt

Z t

0

Xnðt0Þ
Xnðt0Þ+KX

ne
ðd+mÞt0dt 0 � e�ðd+dmÞt

Z t

0

Xnðt 0Þ
Xnðt0Þ+KX

ne
ðd+dmÞt0dt 0

� (Equation 36)

The parameters can be derived according to the boundary conditions as follows:

C1 =
b

d
� ðC2 +C3Þ; C2 =

�ðd+dmÞb
mðdm � mÞ ; C3 =

ðd+mÞb
dmðdm � mÞ (Equation 37)
a =
mka0

ðd+mÞðd+dmÞ;b =
mkb0

ðd+mÞðd+dmÞ (Equation 38)

Then, the previous equation can be written as follows:

dY

dt
+ dY = b +

aðd+mÞðd+dmÞ
dm � m


Z t

0

Xnðt 0Þ
Xnðt0Þ+KX

ne
�ðd+mÞðt� t0 Þdt 0

�
Z t

0

Xnðt0Þ
Xnðt0Þ+KX

ne
�ðd+dmÞðt� t0 Þdt0

� (Equation 39)
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By changing the variable t0/t � t0, we obtain

dY

dt
+ dY = b +

aðd+mÞðd+dmÞ
dm � m


Z t

0

Xnðt � t 0Þ
Xnðt � t0Þ+KX

ne
�ðd+mÞt0dt 0

�
Z t

0

Xnðt � t0Þ
Xnðt � t 0Þ+KX

ne
�ðd+dmÞt0dt0

� (Equation 40)

For brevity, we defined

Y1ðtÞ =
Z t

0

Xnðt � t 0Þ
Xnðt � t 0Þ+KX

ne
�ðd+mÞt0dt0

Y2ðtÞ =
Z t

0

Xnðt � t 0Þ
Xnðt � t 0Þ+KX

ne
�ðd+dmÞt0dt 0

YsðtÞ = XnðtÞ
XnðtÞ+KX

n

(Equation 41)

We can then expand Ys in a short time interval Dt:

Ysðt + DtÞzYsðXðtÞÞ +
�
Y 0
sðXðtÞÞ _XðtÞ
Dt

+
1

2

h
Y 00
s ðXðtÞÞ _X

2ðtÞ + Y 0
sðXðtÞÞ €XðtÞ

i
ðDtÞ2

(Equation 42)

Then, we write Y1 and Y2 as follows
50:

Y1ðtÞ =

Z �
YsðXðtÞÞ + Y 0

sðXðtÞÞ _XðtÞðt 0 � tÞ
e�ðd+mÞðt� t0 Þdt =
1

d+m
YsðXðtÞÞ

�
1 � e�ðd+mÞt

�

+
1

d+m
Y 0
sðXðtÞÞ _XðtÞ

�
te�ðd+mÞt � 1

d+m

�
1 � e�ðd+mÞt

�� (Equation 43)
Y2ðtÞ =
Z �

YsðXðtÞ Þ+Y
0
sðXðtÞ Þ _X

�
t
��
t
0 � t

� 

e�ðd+dmÞðt� t

0 Þdt
0
=

1

d+dm
YsðXðtÞ Þ

�
1 � e�ðd+dmÞt �

+
1

d+dm
Y

0
sðXðtÞ Þ _XðtÞ

�
te�ðd+dmÞt � 1

d+dm

�
1 � e�ðd+dmÞt � � (Equation 44)

Next, we derive the following equation50:

Y1ðtÞ�Y2ðtÞ = YsðXðtÞ Þ
�

1

d+m

�
1 � e�ðd+mÞt � � 1

d+dm

�
1 � e�ðd+dmÞt � �+Y

0
sðXðtÞ Þ _XðtÞ

�
1

d+m
te�ðd+mÞt

� 1

d+dm
te�ðd+dmÞt � 1

d+m2

�
1 � e�ðd+mÞt �+ 1

d+dm
2

�
1 � e�ðd+dmÞt � � (Equation 45)

We define50

u =
1

d+m

�
1 � e�ðd+mÞt� � 1

d+dm

�
1 � e�ðd+dmÞt� (Equation 46)

Then,

f ðt � tY Þ = YsðXðtÞ Þ+Y
0
sðXðtÞ Þ _XðtÞð� tY Þ

Y1ðtÞ � Y2ðtÞzuf ðt � tY Þ = u
�
YsðXðtÞ Þ+Y

0
sðXðtÞ Þ _XðtÞð� tY Þ



Y1ðtÞ � Y2ðtÞzuYsðXððt � tY ÞÞ Þ

(Equation 47)
tY z

�
1

d+m
+

1

d+dm

	

+
1

dm � m

�ð1 � ðd + mÞtÞe�ðd+dmÞt � ð1 � ðd + dmÞtÞe�ðd+mÞt� (Equation 48)
tYz

�
1

d+m
+

1

d+dm

	
(Equation 49)
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Then, we finally derive:

dY

dt
+ dY = b + a

�
1 +

ðd+mÞe�ðd+dmÞt � ðd+dmÞe�ðd+mÞt

dm � m

	
Xnðt � tY Þ

Xnðt � tY Þ+KX
n (Equation 50)
f ðtÞ = 1+
ðd+mÞe�ðd+dmÞt � ðd+dmÞe�ðd+mÞt

dm � m
(Equation 51)

Sincewe have proposed the step function approximation of f ðtÞbefore, the characteristic delay time is T2 =
�

1
d+mY

+ 1
d+dmY

�
, the same as tY

here, the final DDM can be written as follows:

dY

dt
+ dY = b + a

Xnðt � tY Þ
Xnðt � tY Þ+KX

n t =

�
1

d+m
+

1

d+dm

	
(Equation 52)

DDMs for different synthetic circuits

(1) The DDM of the cascaded three-step repression circuit can be formulated as follows:

dXT7

dt
= blac + alac

�
f1
Klac

	nlac

1+

�
f1
Klac

	nlac
� dXT7 f1 =

8>><
>>:

0 t < tT7

½IPTG�niptg
½IPTG�niptg+KIPTG

niptg
tR tT7

dXCI434

dt
= bT7 + aT7

�
XT7ðt � tCI434Þ

KT7

	nT7

1+

�
XT7ðt � tCI434Þ

KT7

	nT7 � dXCI434

dXgfp

dt
= bCI434 + aCI434

1

1+

�
XCI434

�
t � tgfp

�
KCI434

	nCI434 � dXgfp

(Equation 53)

where b and a are the basal and maximum production rates of the protein, respectively, K is the dissociation constant, n is the Hill coefficient

reflecting the cooperativity of the activators, d is the dilution rate due to cell division, and t is the characteristic delay time.

(2) The DDM of the IFFL type I circuit can be formulated as follows:

dXT7

dt
= blac + alac

�
f1
Klac

	nlac

1+

�
f1
Klac

	nlac � dXT7 f1 =

8>><
>>:

0 t < tT7

½IPTG�niptg
½IPTG�niptg+KIPTG

niptg
tR tT7

dXCI434

dt
= blac + alac

�
f2
Klac

	nlac

1+

�
f2
Klac

	nlac
� dXCI434 f2 =

8>><
>>:

0 t < tCI434

½IPTG�niptg
½IPTG�niptg+KIPTG

niptg
tR tCI434

dXgfp

dt
= bT7 + aT7

�
XT7

�
t � tgfp

�
KT7

	nT7

1+

�
XT7

�
t � tgfp

�
KT7

	nT7

+

�
XCI434

�
t � tgfp

�
KCI434

	nCI434 � dXgfp

(Equation 54)

where b and a are the basal and maximum production rates of the protein, respectively, K is the dissociation constant, n is the Hill coefficient

reflecting the cooperativity of the activators, d is the dilution rate due to cell division, and t is the characteristic delay time.
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(3) The DDM of the IFFL type II circuit can be formulated as follows:

dXT7

dt
= blac + alac

�
f1
Klac

	nlac

1+

�
f1
Klac

	nlac � dXT7 f1 =

8>><
>>:

0 t < tT7

½IPTG�niptg
½IPTG�niptg+KIPTG

niptg
tR tT7

dXCI434

dt
= bT7 + aT7

�
XT7ðt � tCI434Þ

KT7

	nT7

1+

�
XT7ðt � tCI434Þ

KT7

	nT7 � dXCI434

dXgfp

dt
= bT7 + aT7

�
XT7

�
t � tgfp

�
KT7

	nT7

1+

�
XT7

�
t � tgfp

�
KT7

	nT7

+

�
XCI434

�
t � tgfp

�
KCI434

	nCI434 � dXgfp

(Equation 55)

where b and a are the basal and maximum production rates of the protein, respectively, K is the dissociation constant, n is the Hill coefficient

reflecting the cooperativity of the activators, d is the dilution rate due to cell division, and t is the characteristic delay time.
QUANTIFICATION AND STATISTICAL ANALYSIS

Data are reported as mean +/� standard deviation (SD) from three experimental repeats. For each experiment, the results of at least 12 trap

chamber repeats were averaged.
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