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The dynamic-process characterization
and prediction of synthetic gene circuits
by dynamic delay model

Yanhong Sun,"? Fengyu Zhang,** Qi Ouyang,'? and Chunxiong Luo'%34*

SUMMARY

Differential equation models are widely used to describe genetic regulations, predict multicomponent
regulatory circuits, and provide quantitative insights. However, it is still challenging to quantitatively
link the dynamic behaviors with measured parameters in synthetic circuits. Here, we propose a dynamic
delay model (DDM) which includes two simple parts: the dynamic determining part and the doses-
related steady-state-determining part. The dynamic determining part is usually supposed as the delay
time but without a clear formula. For the first time, we give the detail formula of the dynamic deter-
mining function and provide a method for measuring all parameters of synthetic elements (include 8
activators and 5 repressors) by microfluidic system. Three synthetic circuits were built to show that
the DDM can notably improve the prediction accuracy and can be used in various synthetic biology
applications.

INTRODUCTION

Cells control gene expression by regulating the production of specific gene products, which is vital for cells to respond to a variety
of intra- and extracellular signals.' The temporal dynamics of a wide range of different circuits are important for cells to adapt to
complicated environments."”* Synthetic biology provides a bottom-up approach to understanding complex gene regulation in
nature®” and engineering cell systems for novel applications. Although synthetic biology technology has been successfully used to
achieve high-quality compound production,’® cell-based toxic biosensors'''? and other functions,'® many problems still need to be
addressed to realize more applications.'*'> One important problem is the quantitative prediction of synthetic circuits with mathemat-
ical models."*'

To date, some mathematical models have been applied to guide the design of complicated synthetic gene circuits,
type functions®'° and other ordinary differential equation (ODE) models.??” To quantitatively predict the behavior of synthetic genetic cir-
cuits, most researchers use doses related Hill-type functions to fit experimental data to determine the parameters; however, these methods
consider only the protein production step and do not consider the transcription, translation, or folding/maturation of proteins.”’**?” The lack
of details about some gene expression processes may help to reduce the number of parameters while obtaining the main circuit properties in
some circumstances, such as dose-response prediction for synthetic circuits.”® However, for other circumstances, those details may have
significant influences on the prediction of the dynamic behaviors of genetic circuits.

Transcription-translation processes may be completed in different times by various species in different environments.**~* Moreover,
protein maturation may cause a significant time delay when fluorescent proteins are used to represent the expression of the target
gene.* In fact, the protein folding times of most proteins in prokaryotes and eukaryotes cannot be measured with existing methods.
For most of the proteins in biological systems, reasonable folding times may be about 10 min, which is comparable to the timescale of

transcription and mRNA degradation.>>*® These time delays caused by transcription-translation processes might significantly affect
3,624 oo il ators 23:25:37-39
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the behaviors of multistep induction circuits, adaptation circuits, and circadian rhythm-related regulation

processes.‘m’42

Thus, detailed models, which include inducer binding, transcription, translation and protein folding/maturation, need at least three to four
ODEs.”>*** |n this circumstance, too many parameters need to be characterized based on the results of limited experiments, which may
result in overfitting or multiple groups of parameters meeting the requirements. Delay differential equations (DDEs) are proposed to simplify

the multistep reactions into a single time delay, which may reduce the number of parameters that are needed to predict dynamic
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Figure 1. The simplest one-step regulation circuit showed an obvious time delay when intermediate steps were added, and the time delay can be
described by a delay function f(t)

(A) lllustration of the one-step regulation circuit and the protein-only model without consideration of the transcription-translation processes. When the
transcription-translation processes were not considered, the simulation increased quickly immediately after the addition of input X.

(B) lllustration of the one-step regulation circuit with the intermediate steps and the detailed model. The detailed model describes each of the intermediate steps
with an ODE. When the intermediate steps are considered, the simulation shows an obvious time shift compared with the protein-only model.

(C) lllustration of the one-step regulation circuit and the DDM with f(t) describing the time delay caused by the transcription-translation processes. The simulation
results of the DDM are the same as those of the detailed model.

behaviors.*“>? DDEs for modeling gene expression have been proposed in many works to study the influences of delays in gene expression
networks,”* ¢ or predict experimental behaviors of lac operon dynamics.”® The methods of introducing delay time in these works can be sum-
marized as follows: (1) Directly assume a total delay time T without the precise formula link to the detailed model®***; (2) Consider a delay time
at each step of transcription, translation and protein folding/maturation.”>>° The first method was simple and convenient for theoretical anal-
ysis of influences of delay times, but how specific parameters in detailed model affects the delay time was still not clear. The second method
showed how to calculate the delay times in each step of transcription, translation and protein folding/maturation, but with many parameters
need to be determined if it is used to predict synthetic gene expression dynamics. All methods were little used in synthetic gene units’ char-
acterization and gene circuits performance predictions.

Here, we developed a mathematical approach to link the detailed model to a new DDE model which consists the dynamic determining
part (delay function), and the doses-related steady-state-determining part. The model we developed here was called the dynamic delay
model (DDM). In the mathematical derivation, we aimed to determine the actual delay function of basic synthetic elements in living cells. After
verified by experiment, our DDM could be used to derive the delay function of regulatory proteins in experiments. After determining the delay
times and dose-determined steady-state-parameters of regulatory proteins (including activators and repressors), we used the model to pre-
dict cascaded repression circuits and incoherent feedforward loop (IFFL) networks,>?4?8
dict synthetic network dynamics.

proving that our model can be used to precisely pre-

RESULTS
DDM
We started with a transcriptional regulation model for the simplest one-step regulation processes (Figure 1A, left). The input X controls the

expression of protein Y. Here, Xis supposed as a continuous inducer input. When the detailed steps are ignored and only the production of
protein is considered, the commonly used ODE model is formulated as follows?:

dYy b X"
gt - PR
where b and a are the basal and maximum production rates of protein Y, respectively, Kx is the dissociation constant, n is the Hill coefficient
reflecting the cooperativity of the activators, and 6 is the dilution rate due to cell division. We call the above model the protein-only model.
When the intermediate steps are not considered, protein Y starts to accumulate immediately after input X is added, and the protein con-
centration gradually increases until it plateaus over time (Figure 1A).

— oY (Equation 1)
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When processes such as transcription, translation and protein folding/maturation are considered, the detailed ODE model should be writ-
ten as”’/ (Figure 1B):

dRy , ., XN

W— b +aXn+KXn — (6+dmv>Ry

% = kyRy — 6U — myU (Equation 2)
dY

E = myU — oY

where Ry is the mRNA concentration, b’ and & are the basal and maximal transcription rates, K is the dissociation constant, n is the Hill co-
efficient, and dp, is the mRNA decay rate. Here, U is the unfolded protein, and Y'is the folded (e.g., regulatory proteins) or matured (e.g.,
fluorescent proteins) protein, ky is the translation rate, and my is the protein folding/maturation rate. The above model is termed the detailed
model.

When the transcription, translation and protein folding/maturation steps are added, the initial expression of protein Y increases more
slowly than in the previous protein-only model (Figure 1B).

Moreover, this system can be transformed into a third-order ODE as follows:

3 n 2
% = mykyb, + mykyal%KXn — (3(3 + de + my)%— (352 + 2(3my + 2(3de + mydmv)% — 6((5 + my)(é + dmy)Y
(Equation 3)

With eigenvalues as follows:
M= =68k =—(0+my),As = — (6+dn) (Equation 4)

Then, formulas for Y and % can be derived as follows:

3 — ot n o (6+my)t n
1—e %) X (1-e )
Y — aAhit ( kyb' kya' _ kyb' kva
(t) ;C‘e - 5"7’1}/(3{,}«,Y |:mY Yb *mykya Xn+KX”:| my(dmv — my)(6+my) my Yb *mykya Xn+KX”
~(6r (Equation 5)
+ <1 me e {m kyb" + myk a’L]
oy (Army — my) (04 ) | Y XKy
Here, Y should have the same steady-state concentration as in Equation 1 (STAR Methods):
_ myky , , X" _ 9 f X" .
Ve = 5(Evdm) () (b TEXK) T8 TS Xy (Equation &)

Then the relation between & (b') and a (b) can be determined as follows:

myl(ya/ _ mykyb/
(0+my) (6+dm,)’ "~ (6+my)(6+dm,)

(Equation 7)

Then, the three equations representing the detailed model can be transformed into one ODE with a delay function, as follows (Figure 1B):

dY axX"
i b+f(t)X”+KX

— oY (Equation 8)
where the delay function is as follows:

(6+my)e (Fremy )t _ (64, )& rmt

de — My

f(t) = 1+ (Equation 9)

Whent = 0, which refers to the steady state before adding X, 1/(0) = 0. And when t— o, which refers to the steady state after the onset of
gene regulation with the effect of X, f( ) — 1. Here, f(t) is a function that starts at zero and gradually increases to the unit one over time. When
f(t) = 1, the equation is the same with the protein-only model. While other parameters are the same with the protein-only model which can
be determined by the dose-response curve.

We call the above model the DDM. This model is derived without approximations and can completely replace the detailed model pre-
sented above. The simulation of this model is the same as that of the detailed model with the same increasing behavior, which is different
from the behavior of the protein-only model (Figure 1C). But the parameters in the DDM model are much easier to be determined by exper-
iment data than the detailed model for the DDM model has the same doses-related steady-state-determining part with the protein-only
model.
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Figure 2. Simulation of f(t) and its approximations

(A) lllustration of transcription-translation processes that result in a time delay.

(B) Simulation of f(t).

(C) Comparison of the simulation results of f(t) and f; (t).

(D) Comparison of the simulation results of f(t) and f,(t).

(E) Simulations of the expression level of protein Y after the addition of a continuous unchangeable input X using the protein-only model and DDMs with f(t), f; (t),
and f(t).

Determining the delay time with the delay function

The DDM has the same steadly state as the protein-only model, which means that the two models have the same doses-related steady-state-
determining parameters (Equation 1; Equation 8). The time delay caused by transcription-translation processes (Figure 2A) can be described
by the delay function f(t) in the DDM, and f(t) gradually increases over time until it reaches a value of 1 (Figure 2B). Therefore, one important
property of the DDM is that the dynamic determining part can be separated from the doses-related steady-state-determining part, which
means that the doses-related steady-state-determining parameters can be derived based on the dose-response data, while the dynamic
related parameters can be derived based on the dynamic response data. The dynamic determining part is related to the mRNA decay
rate dp,, the protein folding/maturation rate my and the cell division rate ¢ (Equation 9).

Since the doses-related steady-state-determining parameters can be derived by fitting the dose-response data, the remaining problem is
determining the dynamic related parameters in f(t). The most common and direct method is to fit the experimental data based on f(t); with
this approach, only two parameters (my and dn,,) need to be determined, as the cell division rate  can be derived based on time-lapse micro-
graph data.” The position of d, and m in the formula of f(t) is symmetric, when the values of d,,, and m are exchanged, the value of f(t) is the
same. Here, we provided ranges for my and dp,,, and then calculated the R-squared value by fitting the Lacl-GFP experimental f(t) data (Fig-
ure S1A). The ranges of my and dp,, were both 0~1 min~", which indicated that the ranges of the half-maturation and half-decay times were
both In 2 — « min. The R-squared value showed that multiple parameter values satisfied the maximum R-squared, which meant that no
certain value could be determined with this method. This situation might be due to the parameter symmetry of f(t) (Equation 9). Since
both the protein folding/maturation rate (my) and the mRNA decay rate (dmn,) can be different in different species,”* % neither my nor
dm, canbeignoredin f(t). As direct fitting was not applicable, we proposed two approximation methods: a linear approximation of f(t) (Fig-
ure 2C) and a step function approximation (Figure 2D), which could be matched to a DDE. We proved that f(t)=1 when

1 1 .
t = z(m + m) (Equation 10)

With this approach, we could approximate f(t) with a piecewise function (for more details, see STAR Methods):

fi)=4 T < T 2( ! ! ) (Equation 11)
1(t) = 1 ) = + uation
] t> T1 0+my 5+dmy 4

A comparison of the simulation results of f(t) and f;(t) is shown in Figure 2C.
When the input Xis a continuous inducer without any changes, the linear approximation of f(t) is useful. However, when the input changes,
such as a periodic addition function, the linear approximation may be difficult to use. Therefore, we proposed another approximation, the

4 iScience 27, 109142, March 15, 2024
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Figure 3. Experimental results of the one-step regulation circuit with sfGFP and mScarlet; sfGFP and mScarlet have different maturation times

(A) Micrograph sequences of monolayer cells expressing sfGFP and mScarlet over time. The expression level of sSfGFP increased faster than that of mScarlet. The
length of the scale bar is 10 um.

(B) Mathematic model of one-step regulation.

(C) The steady-state expression levels of sfGFP and mScarlet can be fitted by the same dose-response curve.

(D) Comparison of the dynamic expression levels of stGFP and mScarlet and the protein-only model simulation results. The data showed that the expression level
of sfGFP increased faster than that of mScarlet under the same inducer concentration.
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Figure 3. Continued

(E) The equation above the figure shows how to derive f(t) from the experimental data. The experimental f(t) data of sfGFP rose faster than those of mScarlet.
The inset shows the average f(t) of all the different inducer concentrations with apparent sfGFP expression. The data are presented as the mean + SD (standard
deviation) from three experimental repeats. For each experiment, the results of at least 12 trap chamber repeats were averaged.

step function approximation. Since we proved that f(t)=1whent = Ty, we sett = 1 T; as the cut-off point. The approximation function can
be written as follows:

0 t< T2 1 1
f(t) = (T - -
o0 { 1 t>2T, z <6+my +5+dmy) (Equation 12)

A comparison of the simulation results of f(t) and f,(t) is shown in Figure 2D. When using the step function approximation of f(t) to
describe the one-step regulation process, since the input Xis continuous and unchangeable, the input was treated as if only takes effect after
a time of T,. The DDM can then be transformed to a DDE-like model as follows:

b — oY t<T,

Xn T, = ( ! ! ) (Equation 13)

dy X
+am —0Y t=>T, o+my  0+dm,

dt )b

When the input X varied over time as function X(t), £(t) type approximation also can be used to simplify the formulas for & to:

dy X0(t — y) .
E +0Y = b+am (Equatlon 14)
(1 + 1 (Equation 15)
™= 0+my  0+dn, 4

The delay time 7y is the same as the previously derived T, (Equation 13) (see STAR Methods for more detail).

Therefore, using step function approximation for every step in the regulation processes, the delay resulting from the transcription-trans-
lation processes is approximately 7y = ﬁ +ﬁ , where dn, and my are the mRNA decay rate and the protein maturation rate of the
produced protein. Though Equation 14 is similar to other DDE models, the formula of delay time 7y from detailed model is solved here which
answers the puzzle of delay time used in old DDE models.

The simulations of the expression of protein Y using the protein-only model and the DDM with f(t), fi(t), and f,(t) are shown in Figure 2E.
The simulation results of the DDM with f; (t) showed very subtle differences when compared with the simulation results of the DDM using the
original f(t) function. The simulation results of the DDM with f,(t) showed an apparent difference only when t was small; however, for t > T,
the simulation results were very close to the simulation results using the original f(t) function. The simulation results of the protein-only model
showed an obvious earlier and faster increase than the simulation results of the DDM (Figure 2E). Both the step function approximation and
the linear approximation can be used to predict the gene expression dynamics of synthetic circuits. However, for systems in which down-
stream nodes are hypersensitive, the linear approximation may be more suitable.

In practice, only T (or 7y) need to be determined as the dynamic related parameter. The DDM only have one more parameter (T, or 1y)
than the protein-only model. So, the doses-related steady-state parameters can be determined through the dose-response data, while the
dynamic related parameter T, can be determined through the dynamic response data.

One-step regulation experiments

As a proof of our theory of the time delay caused by transcription, translation and protein folding/maturation, we constructed two one-step
regulation modules in Escherichia coli (E. coli) with two different fluorescent proteins, sfGFP and mScarlet, which have different maturation
times.>* The fluorescent protein (sfGFP or mScarlet) was controlled by Lacl and could be induced by isopropyl B-D-thiogalactopyranoside
(IPTG). The micrograph data showed that the circuit with mScarlet had a considerably longer delay time than the circuit with stGFP (Figure 3A).
In addition, these two modules with different fluorescent proteins had the same dose-response curve, which could be described by the same
dose-related steady-state parameters (Figures 3B and 3C). The expression of sfGFP increased faster than that of mScarlet (Figure 3D). More-
over, the simulation results of the protein-only model without f(t) increased much faster than the experimental data of either sftGFP or mScar-
let (Figure 3D). In other words, there was an obvious time delay that could not be excluded when using the protein-only model to describe
dynamic expression levels in synthetic circuits.

After the steady-state parameters were determined, we obtained the f(t) s for different concentrations of the inducer IPTG (Figure 3E). For
different IPTG concentrations of the same fluorescent protein, the f(t) s showed essentially the same trend (Figure 3E). However, compared
with mScarlet, the f(t) s of sfGFP increased and reached a value of 1 faster, and these results were more obvious after averaging, as shown in
the inset of Figure 3E. Based on the experimental data of 1(t), we could use the linear approximation function shown in Equation 11 to fit the
data and obtain the characteristic time Ty (Figure 4A). The fitted characteristic time Ty for sStGFP was approximately 39 min. For mScarlet, the

6 iScience 27, 109142, March 15, 2024
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Figure 4. Fitting results of the f(t) s and comparison of the experimental data and the DDM simulation results

(A) Fitting results of the f(t) s using the linear approximation model.

(B and C) Comparison of the sfGFP (B) and mScarlet (C) data and the results of DDM simulations that used the linear approximation model. (D) Experimental f(t) s
and the step function approximation model.

(E and F) Comparison of the sfGFP (E) and mScarlet (F) f(t) data and the results of DDM simulations that used the step function approximation. The data are
presented as the mean + SD (standard deviation) from three experimental repeats. For each experiment, the results of at least 12 trap chamber repeats
were averaged.

fitted characteristic time Ty was approximately 62 min, which was longer than that for sStGFP. However, the fitted characteristic time might be
different from the Ty value calculated with Equation 11. Therefore, we considered reasonable ranges of the two parameters (m = 0 ~ 1 min~"
and d., = 0 ~ 1 min~", which indicated that the ranges of the half-maturation and half decay times were both In 2 — o« min), simulated f(t),

and found that the difference (T*%“T“> between the fitted and the calculated Ty was less than 10% (Figures S1B and S1C). Furthermore, in most

cases, the calculated Ty was 4~10% larger. Therefore, the fitted characteristic time was comparable to the calculated Ty, and the fitted char-
acteristic delay time was corrected by +7% hereafter. The maturation times of stGFP and mScarlet in living cells have been studied previ-
ous|y34; the half maturation time of sfGFP was determined to be 13.6 + 0.9 min, the half maturation time of mScarlet was determined to
be 25.7 + 1.5min,** and the half-lives of mMRNAs in E. coli are mostly between 3and 8 min,>" which is considerably shorter than the cell division
time. The bacterial growth rate was 6 = 0.0175 min~" (Figure S6C). We calculated the corresponding m and dj,, for both sfGFP and mScarlet
(mgep =0.0495 min™", Mmscariet =0.0248 min~ ", dp, = 0.087 ~ 0.231 min~")*"** and then calculated T;. The calculated T for sfGFP should be
38-49 min, and the corrected fitted time was 42 min, which was within the range. The calculated Ty for mScarlet should be between 55 and
66 min, and the corrected fitted time was 66 min, which was also within the range. This result showed that this method can be used to char-
acterize the time delay caused by transcription-translation processes to some extent.

After Ty was calculated, the delay function f; (t) (Equation 11) was determined. Simulations of the DDM (Equation 14) are shown in Figure 4. With
f1(t) added, the simulation results were more consistent with the experimental data (Figures 4B and 4C) than the previous protein-only model
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(Figure 3D). The step function approximation could also be derived, with T, = %T1 (Figure 4D), and simulations of the DDM with f,(t) (Figures 4E
and 4F) also showed much better consistency with the experimental data than the protein-only model (Figure 3D). Although the DDM simulation
results did not perfectly match the corresponding experimental data, the model proposed here showed a great improvement over the previous
protein-only model. We also built other one-step regulation circuits that can be induced by other chemicals. The outputs of all these circuits were
represented by sfGFP. The proteins replacing Lacl included NahR, CepR, and RpaR>® induced by salicylic acid, C4-HSL and pC-HSL respectively.
We also calculated f(t)s and fitted the characteristic delay times. The results showed that the characteristic delay times were similar to that of the
circuit controlled by Lacl with sfGFP as the reporter (Figure S2). In other words, the regulatory protein did not affect the characteristic delay time,
regardless of the input, and the characteristic delay time was related only to the protein that was being produced.

In conclusion, for one-step regulation processes, the dose-related steady-state determining part and dynamic determining part can be
separated in the DDM. Therefore, the doses-related steady-state parameters can be derived based on the dose-response curve, while the
dynamic related parameters can be derived based on the dynamic response curves. By combining these two parts, we can obtain a more
complete and simpler model to describe the dynamic regulation of synthetic circuits.

Determining all the parameters of the intermediate regulatory protein

Since we previously derived the delay times of sStGFP and mScarlet, corresponding two-step regulation circuits can be built to determine the char-
acteristic delay times and doses-related steady-state parameters of the intermediate proteins. The proposed method is formulated as follows.

As shown in Figure 5A, in a one-step regulation circuit, we used a continuous steady input X to control an output protein Z. First, by fitting
the dose-response curve, we obtained the doses-related steady-state parameters. Then, we calculated f(t) based on the experimental data.
Next, we fitted f(t) to determine the characteristic delay time 7z. Finally, we obtained the dynamic equation of the one-step regulation circuit
(Figure 5A). The doses-related steady-state parameters were related to the regulatory property F; of X, and the characteristic delay time 72
was related to the mRNA decay rate and protein maturation rate of protein Z.

Then, we designed a two-step regulation circuitin which the input X controls Y, and Y controls Z (Figure 5A). The regulatory property F; (steady-
state Hill-type function with doses-related steady-state parameters: bx + aXxn)inK;) of Xand the characteristic delay time 77 of protein Zhave already
been determined. Thus, we first fit the experimental dose-response curve to determine the doses-related steady-state parameters which refer to

F, (steady-state Hill-type function with doses-related steady-state parameters: by + ayy-irs) of protein Y. And then fit the dynamicresponse curves
Y

to obtain the characteristic delay time 7y associated with protein Y (Figure 5A). This method can be used to obtain the regulatory properties and
characteristic delay times of various regulatory proteins, and those parameters can be used to construct DDMs to predict the dynamic properties
of synthetic circuits.

To determine the parameters of regulatory proteins, including activators and repressors, we built a variety of two-step regulation circuits. These
two-step regulation circuits were controlled by Lacl or NahR and induced by IPTG or salicylic acid. The activators included T7 RNAPs with four
different Cl434 binding sites,”® RpaR, CepR, LuxR>® and oECF11. RpaR, CepR, and LuxR need specific signal molecules to be activated and
show effects, and the corresponding signal molecules were pC-HSL for RpaR and C4-HSL for both CepR and LuxR. The repressors included
Cl434 with four operators with different binding site designs®® and ACI. The circuits of the T7 RNAPs and CI434 with different operators were con-
structed by Zong, Y. et al.”® The parameters of these regulatory proteins are shown in Table 1. The various regulatory proteins had different char-
acteristic delay times. The activator RpaR had the shortest delay time of 7 min, and the repressor ACI had the longest delay time of 26 min (Table 1).
The experimental data and DDM fitting results for the activator LuxR and repressor Cl434-O3 are shown in Figures 5B and 5C, respectively. The
experimental data for the other two-step regulation circuits and the corresponding DDM fitting results are shown in Figure S3.

In conclusion, by combining the doses-related regulatory parameters and characteristic delay times obtained by the one-step regulation
circuits, two-step regulation circuits could be constructed to inversely determine the doses-related steady-state parameters and the charac-
teristic delay times of intermediate regulatory proteins. Then, the doses-related steady-state parameters and characteristic delay times of the
proteins could be used to predict the dynamic responses of synthetic circuits through the DDM. We constructed several synthetic circuits to
demonstrate the predictive ability of the DDM.

Dynamic prediction of synthetic circuits

The final goal of mathematic models in synthetic biology applications should be the quantitative prediction of gene expression levels in syn-
thetic circuits. We derived a series of regulatory parameters and characteristic delay times for different regulatory proteins; thus, the next step
is testing the reliability and predictive ability of the proposed DDM and the derived characteristic delay times. Here, we built three different
types of synthetic circuits based on the previously characterized regulatory proteins. The first type was a cascaded three-step repression cir-
cuit (Figure 6A), which was developed to test whether the characteristic delay times derived for the intermediate regulatory proteins and
sfGFP were sufficiently reliable to describe the actual time delay of the circuit. The second type was an IFFL circuit with the same node
numbers on both the activation and repression sides, which we termed the IFFL type | circuit (Figure 6B). The third type was also an IFFL circuit
but with different nodes on the activation and repression sides, which we termed the IFFL type Il circuit (Figure 6C). The repression side of the
IFFL type Il circuit had one more node than the activation side; thus, the repression side should have a much longer delay time than the acti-
vation side, which indicated that the dynamic expression of the IFFL type Il circuit might show pulsed behavior. In contrast, the IFFL type |
circuit had the same number of nodes on both the activation and repression sides; thus, the dynamic expression might not show the obvious
pulsed form shown by the IFFL type Il circuit.
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Figure 5. The method to derive the steady-state parameters and the characteristic delay times of intermediate regulatory proteins

(A) By combining the steady-state parameters and the characteristic delay times derived from the one-step regulation circuit, a two-step regulation circuit could
be built to derive the parameters of the intermediate proteins.

(B and C) The two-step regulation circuit with IPTG as the input, LuxR (b) and Cl434 (c) as the intermediate regulatory proteins, and sfGFP as the output reporter.
The dynamic experimental data could be fitted to obtain the characteristic delay times of the LuxR and Cl434 proteins. The data are presented as the mean + SD
(standard deviation) from at least 12 trap chamber repeats.

To prove the predictive ability of the DDM, we first constructed four simple cascaded three-step repression circuits (Figure 6A). Each of the
circuits was controlled by Lacl, which could be induced by IPTG. The second node was the activator T7 RNAP, and the third node was the
repressor Cl434. There were four operators with different Cl434 binding site designs, as constructed by Zong, Y. et al.,”® resulting in four
different repression intensities. The output of all four circuits was sfGFP (Figure 6A). The DDMs of these circuits are shown in STAR Methods.
The protein-only model simulation showed an obviously faster decline than the experimental data. However, the DDM simulation results were
more consistent with the experimental data (Figures 6A and S4).

The above experiments showed that the DDM could be used to quantitatively predict the dynamic behaviors of simple cascaded circuits.
To prove the predictive ability of the DDM for more complicated circuits, we investigated four IFFL type | circuits with different repression
operators (Figure 4B), which were constructed by Zong, Y. et al.”® Each of the four IFFL type | circuits had four nodes: the first node was
Lacl, which controlled the whole circuit; the second node was T7 RNAP; the third node was Cl434; and the output was sfGFP. Four different
Cl434 operators leaded to four distinct repression intensities. The activator T7 RNAP and the repressor Cl434 simultaneously controlled the
expression of sfGFP (Figure 6B). As the inhibition strength of the repression operators increased, the IFFL type | circuit showed different dose-
response curves”® (Figure S5A). The activation side and the repression side both had two nodes, which meant that the delay times caused by
the two sides should be very similar. Few dynamic changes were observed, and the dynamic modes under different IPTG concentrations
mainly simply increased to a plateau (Figure S5B). The DDM of the IFFL type | circuit is shown in STAR Methods. The DDM was first used
to predict the dose-response curves of the IFFL type | circuits, and the results showed great quantitative prediction results (Figure S5A).
The dose-response curves of the IFFL type | circuits showed that intermediate concentrations of the inducer led to the highest reporter in-
tensity. One dynamic curve of the experimental data of the IFFL type | circuit (O3, 1 mM IPTG) is shown in Figure 6B. The simulation results of
the DDM for different IFFL type | circuits were obviously more consistent with the experimental data than the results of the protein-only model
(Figures 6B and S5B).

Although the IFFL type | circuits were more complicated than the previous simple cascaded three-step repression circuits, there were still
limited dynamic changes. Most of the dynamics behaviors of these circuits were typical increases (Figure S5B). Therefore, here, we built four
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Table 1. Steady state parameters and dynamic related parameters of regulatory elements

Input parameters Dose-related steady-state parameters Dynamic related parameter
aj Kiprg (mM) Kiac n by 6 (min") 7 grp (Min)
Lacl 360.68 0.025 1.36 4 0.93 0.0175 21
Dose-related Steady-state parameters Dynamic related parameter

Input parameters a K; (mM) n; b, 6 (min~" 7 grp (Min)
Nahr 61.98 0.018 0.73 1.71 0.0175 21
CepR 66.83 0.0639 0.68 17.34 0.0175 21
RpaR 37.17 0.176 x 107¢ 1.45 16.06 0.0175 21

Dose-related Steady-state parameters Dynamic related parameter
Activators a, K, Na b, 6 (min~") 7 5 (min)
T7 RNAP-O, 91.68 8.96x10? 1.39 0.53 0.0175 12
T7 RNAP-O, 78.74 7.74%10? 1.40 0.41 0.0175 12
T7 RNAP-O3 90.56 1.11x10° 1.28 0.47 0.0175 12
T7 RNAP-O4 84.56 1.12x10° 1.20 0.47 0.0175 12
CepR 13.59 2.23%10? 0.99 1.76 0.0175 22
RpaR 84.64 1.40%x10? 2.04 3.27 0.0175 7
LuxR 18.08 6.32x10? 1.27 0.90 0.0175 19
oECF11 136.40 8.24x10? 3.93 5.37 0.0175 13

Dose-related Steady-state parameters Dynamic related parameter
Repressors ar K. n b, 6 (min~") 7, (min)
Cl434-0; 61.55 3.66%x10° 1.37 0 0.0175 10
Cl434-0, 55.78 7.63%10? 1.83 10.12 0.0175 10
Cl434-O4 56.67 6.32x10? 1.95 6.75 0.0175 10
Cl434-O4 58.40 5.04x10? 2.35 5.99 0.0175 10
ACl 72.27 5.54x10° 1.74 0 0.0175 26

IFFL type Il circuits with different repression operators. The repression sides of all four IFFL type Il circuits had one more node than the correspond-
ing activation sides, so the IFFL type I circuits might show pulsed dynamic expression levels over time. The first node was still Lacl, which controlled
the expression of T7 RNAP, and T7 RNAP controlled both Cl434 and sfGFP simultaneously, while Cl434 also controlled the expression of sftGFP
(Figure 6C). Theoretically, the expression of sStGFP will first increase to a peak; then, the expression is repressed by Cl434, and the expression level
will decrease to a lower value. The experimental data of the IFFL type ll circuit with Oz under 1 mM IPTG are shown in Figure 6C, which showed that
the expression level of sSfGFP firstincreased to a peak and then gradually decreased to a lower value, tending to a steady state. The corresponding
simulations of the protein-only model and the DDM are also shown in Figure 6C. The experimental data showed a clear delay compared to the
protein-only model simulation, while the DDM perfectly compensated for this delay (Figures 6C and S5C), allowing the DMM to obtain much bet-
ter quantitative dynamic predictions. The protein-only model simulation results had lower amplitudes than both the experimental data and the
DDM simulation results because the times of rising and declining were both shorter when the simulation was performed without the delay times.

Based on all the experiments presented here, we determine that the DDM perfectly combines the delay times caused by transcription-
translation processes and the dose-related steady-state parameters, allowing the proposed model to make much better quantitative predic-
tions of the dynamic behaviors in synthetic circuits than the protein-only model. Furthermore, the DDM proposed here make a parameter
reduction than the detailed model, which make it easier to determine the dose-related steady-state parameters and the dynamic related
parameter through simple experiment. Also, compare with the existing delay models,”” the DDM proposed here provide a method to derive
the parameters of hidden nodes easily from the dose-response curve and the dynamic expression curve separately which make it easier to
quantitatively characterize synthetic gene elements with existing data.

DISCUSSION

Researchers in synthetic biology have used bottom-up methods to engineer new regulatory circuits based on simpler components adapted
from nature. As the complexity of the circuits increases, it becomes more important to make accurate quantitative predictions based on their
constituent parts.'>*” Hill-type functions have been widely used to quantitatively predict the performance of synthetic circuits.”'*%?7“% |n
most cases, the model is simplified without considering the detailed steps in transcription-translation processes because the inclusion of
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Figure 6. Comparison of the dynamic prediction results between the protein-only model and the DDM

The construction of the cascaded three-step repression circuits (A), IFFL type | circuits (B) and IFFL type Il circuits (C) with different operators28 and the
experimental data with the protein-only model and DDM predictions of these circuits (O3, T mM IPTG) are presented. The results show that the DDM
obtained much better prediction results than the protein-only model that did not consider delays. The data are presented as the mean + SD (standard
deviation) from at least 12 trap chamber repeats.

more details means that more parameters need to be determined.”” However, transcription-translation processes may take nonnegligible
amounts of time to complete, which may affect the dynamic properties of synthetic circuits.**>*

In this work, we started with a one-step regulation circuit based on a detailed ODE model, which used three ODEs to separately describe the
transcription, translation to unfolded protein, and protein folding/maturation processes.*”*’ We first proved that the detailed ODE model can be
transformed into a DDM, which can be separated into two parts based on a theoretical formulation. One part is related to the dose-related
steady state of the circuit, while the other part is related to the dynamic delay caused by the transcription-translation processes. Through simple
one-step regulation experiments with different fluorescent proteins, namely, stGFP and mScarlet, which have different maturation times,>* we
proved that different maturation times led to clear dynamic differences, although the dose-response curves were the same (Figure 3).

After proving the existence of the delay time, which was ignored in the simplified protein-only model, we proposed a method to determine the
characteristic delay times of regulatory proteins. We used the DDM to determine the characteristic delay times and dose-related steady-state
parameters of intermediate proteins based on a two-step regulation circuit (Figure 5). Then, we used those parameters to predict the dynamic
expression levels in more complex synthetic circuits with the DDM. The results suggested that the DDM could perfectly compensate for the delay
times caused by transcription-translation processes and obtain much better quantitative predictions of the dynamic expression levels in synthetic
circuits than previous protein-only model. The synthetic gene circuits studied here were relatively simple, however, the method of using DDM to
quantitatively characterize synthetic gene units was proved useful. The effects of the delay error may be more significant for larger cascading net-
works. And theoretical studies of delays showed that increasing delay could dramatically increase the mean residence times near stable states of
bistable circuits.*® The synthetic circuits constructed here were all relatively simple feedforward circuits, but the method proposed here were theo-
retically universal, which can easily be applied to character synthetic gene units and predict dynamic expression levels in various complex circuits.
Circuits with feedback regulations can also be built in the future for further study of the effects of delays on complicated gene circuits.

Limitations of the study
The synthetic gene circuits studied here were relatively simple, and all feedforward circuits, though the method of using DDM to quantitatively
characterize synthetic gene units were proved useful. The effects of the delay error may be more significant for larger cascading networks.
More complicated circuits with feedback regulations may need to be built in the future for further study of the effects of delays on complicated
gene expression dynamics.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

E. coli Top10 yuanye $32803-100ul

E. coli DHL807 Potvin’s work™’ N/A

Chemicals, peptides, and recombinant proteins

Yeast extract Oxoid 1p0021

Tryptone Oxoid LP0O042B

Sodium chloride tgchem 112008

Agar Sigma-Aldrich A1296-500G

IPTG GPC AC367-5G

Salicylic acid Anneji W610518

N-butyryl-L-Homoserine lactone (C4-HSL) APEXBIO C5727-10
N-(p-Coumaroyl)-L-homoserine lactone (pC-HSL) Santa cruz sc-301256

Chloramphenicol abcom C8050-10

Ampicillin sodium GPC AK052-25g

Software and algorithms

MATLAB 2021 N/A https://www.mathworks.com/

ImageJ N/A https://imagej.nih.gov/ij/

NIS-Elements AR NIKON https://www.microscope.healthcare.nikon.com/
Simulation Codes MATLAB2021 https://github.com/YanhonSun/Code-SI

RESOURCE AVAILABILITY
Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Chunxiong Luo

(pkuluocx@pku.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

e Data reported in this paper will be shared by the lead contact upon request.

e All the simulation codes are provided at https://github.com/YanhonSun/Code-SI and publicly available as of the date of publication.
e Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Strains
Plasmid1 (Cmr-pSC101*) Plasmid2 (Ampr-P15A*)

One-step - Lacl-GFP This work. See supplemental information for more detail

regulation - Lacl-mScarlet This work. See supplemental information for more detail
= RpaR-GFP This work. See supplemental information for more detail
= CepR-GFP This work. See supplemental information for more detail
= NahR-GFP This work. See supplemental information for more detail
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Continued
Plasmid1 (Cmr-pSC101*) Plasmid2 (Ampr-P15A*) Source

Two-step Prpa-GFP Lacl-RpaR This work. See supplemental information for more detail

regulation Pcep-GFP Lacl-CepR This work. See supplemental information for more detail
PLux-GFP Lacl-LuxR This work. See supplemental information for more detail
Psci -GFP Lacl-ACl This work. See supplemental information for more detail
Posecr11-GFP NahR-cECF11 This work. See supplemental information for more detail
P17 rnap ©0i)-GFP Lacl (Prac-T7 RNAP in Chromosome) Yeqing Zong's work: https://doi.org/10.1038/s41467-

017-00063-z

Pciaza 0)-GFP Lacl-Cl434 Yeqing Zong's work

Three-step Pciasa 0)-GFP Lacl (Ptac-T7 RNAP in Chromosome) Yeqing Zong's work

repression P17 rnap-Cl434

IFFL-Type | P17 rnaP-claza 0)-GFP Lacl (Prac-T7 RNAP in Chromosome) This work. See supplemental information for more detail

Prac-Cl434
IFFL-Type Il P 17 rnaP+claza )-GFP Lacl (Ptac-T7 RNAP in Chromosome) This work. See supplemental information for more detail

P17 rnap-Cl434

E. coli Top10 was used for plasmid construction, and E. coli DHL807 from Potvin's work® was used for circuit measuring throughout this study.
*Plasmids without functional elements were obtained from Yeqing Zong's work.?®

METHOD DETAILS
Strains and plasmids

The plasmids used for the IFFL type | circuits and two-step regulation circuits for T7 RNAP and Cl434 were obtained from Zong, Y. et al.”® The
activators CepR, RpaR and LuxR were obtained from Du, P. et al.”® The sequences of the gene elements and plasmids are shown in Tables S1,
S2, and S3. The bacteria were cultured in LB medium, which consisted of 10 g/L tryptone, 5 g/L yeast extract, and 10 g/L NaCl. To make the
agar plates, 15 g/L agar was added. The bacteria were cultured at a temperature of 37°C. The antibiotics used here were ampicillin at a final
concentration of 100 ng/L derived from a 100 mg/mL aqueous stock and chloramphenicol at a final concentration of 34 ng/mL derived from a
34 mg/mL stock dissolved in ethanol. The inducer isopropyl-p-D-1-thiogalactopyranoside (IPTG) was prepared at different concentrations for
various experiments from a 1 M aqueous stock. The autoinducer N-butyryl-homoserine lactone (C4-HSL) was stocked in ethanol at a concen-
tration of 10 mM. The autoinducer p-coumaroyl-HSL (pC) was stocked in DMSO at a concentration of 10 mM. For the one-step regulation
circuits (RpaR-GFP and CepR-GFP), the signal molecules were added at eight different concentrations (Figure S2). For the two-step regulation
circuits (Lacl-RpaR-GFP, Lacl-CepR-GFP and Lacl-LuxR-GFP), the signal molecule concentrations were set to saturation conditions: 100 nM
pC-HSL for RpaR and 10 uM C4-HSL for both CepR and LuxR.

Live-cell imaging and data acquisition

We used a high-throughput two-layer PDMS microfluidic chip®’ for live-cell imaging to determine the dynamic gene expression level in syn-
thetic gene circuits under eight inducer concentrations. The detailed design of the microfluidic chip is shown in Figure S6A. A vacuum treat-
ment (15-20 min) was applied to evacuate the air in the PDMS chip to successfully load the bacteria into the chambers without generating any
bubbles in the trap area. A microvalve was used to prevent cross contamination in the chip. Before loading the bacteria, the microvalve was
closed using a general mechanical pump to push a 1-mL syringe full of water connected by a flexible tube at a speed of 50 pL/min for ~25 s>’
(Figure S6B). A 5-mL syringe containing normal medium without any inducers was connected to another one-pass-eight chip, which was con-
nected to the two-layer chip for 2 h of normal cell culture before the induction of the synthetic circuits, and eight 1-mL syringes containing
media with different concentrations of inducers were connected to the corresponding chip inlets (Figure S6B). The microvalve was opened
when injecting the normal culture medium and the medium with the inducer added. The chip was placed on a Nikon Ti-E inverted fluores-
cence microscope for time-lapse imaging with a plan Apo 60X oil immersion objective. The temperature of the incubator system was set to
37°C. The images were captured with an EMCCD camera (Andor DU897). The flow rate of the medium was 40 pL/h, and the images were
captured every 5 min for 8 h or longer.

ImageJ software was used to derive data from the experimental microscopicimages. An irregular circle was delineated to track an area full
of cells, with abnormal cells excluded.”” The mean fluorescence intensity of the circled area was derived. We used the batch measurement
function to derive the time series of the fluorescence intensity. The background was removed by subtracting the mean fluorescence intensity
of the area containing no cells. The data from every experiment with different synthetic circuits were derived by averaging the mean fluores-
cence intensity for at least 12 trap chambers. The growth rate was determined by exponential fitting of the change in the bacterial growth area
under conditions with and without the inducer. The growth rate with the inducer was similar to the growth rate without the inducer.”’ We
derived the growth rates under different conditions and averaged the values to determine a growth rate of 0.0175 min~" (Figure S4C).
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Data analysis and modeling

The steady-state parameters were obtained by fitting the dose-response curve using the “Isgcurvefit” function in MATLAB (version R2021b).
Numerical simulations were performed in MATLAB using the “ode45" function for the protein-only model and the “ddesd"” function for all the
DDMs, including the DDMs for the two-step regulation circuits, three-step regulation circuits, IFFL type | circuits and IFFL type Il circuits. The
characteristic delay times of the intermediate regulatory proteins were obtained by considering a range of possible values, performing the

corresponding simulations for all inducer concentrations, and then selecting the value with the greatest R%. All the simulation codes are pro-
vided at https://github.com/YanhonSun/Code-Sl.

Model
One-step regulation model

Here, we present a detailed derivation for the DDM of the one-step regulation circuit. We start with the detailed ODE model, which includes
transcription, translation and protein folding/maturation:

dRy ., ., X

?— b +a W — (6+dm)Ry

% =kRy — 6U — mU (Equation 16)
dy

gt - mU — oY

where Ry is the mRNA concentration, b’ and & are the basal and maximal transcription rates, Kx is the dissociation constant, n is the Hill co-
efficient, and d,, is the mRNA decay rate. Here, U is the unfolded protein, and Y'is the folded (e.g., regulatory) or matured (e.g., fluorescent)
protein, k is the translation rate, and m is the protein folding/maturation rate, and ¢ is the dilution rate due to cell division.

When t = 0, which refers to the steady state before adding X,

mkb’

Y= 5(5+dpm) (6+m)

(Equation 17)

When t— o, which refers to the steady state after the onset of gene regulation with the effect of X,
mk X"
Y= ——— (b +d Equation 18
5(6+ ) (0+m) ( te X"+KX"> (Equation 18)

This detailed ODE model could be transformed into a third-order ODE as follows:

3 n 2
dY:mkb’+mka’ X 7(36+dm+m)%

dy .
5 yaed i 66+ m)(o+dn)Y (Equation 19)

- (362 +20m + 26dy, + md,) 3
The eigenvalues are as follows:
M= =06l =—(0+m)i3= —(6+dn) (Equation 20)

Then, we can derive the function of Y(t) as follows:

n

)(”+K)<n

3 n
Y(t) = ZQe’“ + 6m1d (1 — e )| mkb’ + mka' X

i=1

1 1
X"+KX”} B m(d, — m) 6+m

(1 — e +m) [mkb’ + mka'

1 1
dm(dm — m) 6+dy,

+ (1 — e (rdmit) [mkb’ + mka’ X" }

X"+Kxn
(Equation 21)

The detailed ODE model should have the same steady state as the protein-only model:

dYy Xn
E = b+aW — oY
b .
t=0,Y = 5; (Equation 22)
b a X"
to o, Y = 5+5X”+Kxn
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Therefore, we obtain:

_ mka’ _ mkb’
& erm)(o+dy) " T (6+m)(6+dy)

(Equation 23)

Then, we can derive the following equation:

dy

——+0Y = — (mCe ™ 4+ d,Cze rn))
dt (Equation 24)
s (6+m)e—(5+dm)t _ (6+dm)e—(é+m)t b . X" q
dy, — m aX”+KX”
The unknown parameters can be derived through the boundary conditions as follows:
b
Y = C1+C2+C3 :g
dY .
t=0, gt +6Y = — (mC+dnCs) =b (Equation 25)
2
% = C10%+ Cy(6+m)* + C3(6+dp)* = 0
b _ —(6+dn)b _ (6+m)b .
G =5~ (Co+C3), Ca= m(dn = m)’ G = dnldn = m) (Equation 26)
Finally, we can obtain the DDM as follows:
dy (6+m)e~ (rdmt — (54d,,)e~ @+mt X" .
gt +0Y = b+ |1+ = —— } {aX”+KX"} (Equation 27)

Approximation of f(t)

The delay function is formulated as follows:

(6+m)e™ @+dmlt — (5+d,,)e™ ¢+t

dn — m

f(t) = 1+

(Equation 28)

where dy, is the mRNA decay rate, m is the protein folding/maturation rate, and 3 is the growth rate.
Generally, protein maturation may require more time than mRNA decay. Furthermore, bacterial division may require more time than pro-

tein maturation. Therefore, we assumed that d,,>m>3. When t = 2<ﬁ +ﬁ), X = ‘z;‘i;" >1, and we have
; 23+l ~2(oem)
e Z2\0r9m)
=14+— K} _ o+d,
) =1eg —0 [(a+m)e +m (6+dpn)e 0+dm ]
—2(o+d, 1 z
=142 0FCm) (&+dhm) <_e*2X _ efx) (Equation 29)
dm — m \x

-2 1+—
e ( X) (6+dm)+e*2(”x)(6+dm)
dm — m x(dy — m)
1

-2\ 1+— —2(1+x)
=1- X1e (X)+e 1217e’2

=1 —

This result indicates that when t = Z(ﬁ +ﬁ), the f(t) value is very close to 1. Therefore, we proposed the following linear
approximation:

f 7ot<h DY L Equation 30
1(t) = ! e <6+m+6+dm> (Equation 30
1 t>T
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To perform convenient simulations in cases with changeable inputs, we proposed another approximation, the step function approxima-
tion, and set t = %Tq as the cut-off point:

0 t<T2 1 1 )
f(t) = {1 T, T, = ((H—_m+6+dm) (Equation 31)

Multistep regulation model

The input of the one-step regulation model was continuous and stable and did not change over time. However, in multistep regulation cir-
cuits, the expression levels of the intermediate regulatory proteins change over time. Therefore, the detailed model should be written as

follows:
drRy ., X'(t)
T =b +4 7X”(t)+KXH — (6+dm)Ry
% =kRy — 06U — mU (Equation 32)
dYy
e mU — oY

where Ry is the mRNA concentration, b’ and &' are the basal and maximal transcription rates, Kx is the dissociation constant, n is the Hill co-
efficient, and d,, is the mRNA decay rate. Here, U is the unfolded protein, and Y'is the folded (e.g., regulatory) or matured (e.g., fluorescent)
protein, kis the translation rate, and m s the protein folding/maturation rate, and ¢ is the dilution rate due to cell division. The input X(t) is the
protein expression level over time, which controls the expression of protein Y.

Moreover, this detailed ODE model could be transformed into a third-order ODE as follows:

HY LX) LY dy ,
e mkb’ + mka X0+ K" (36 + dmn + m)W— (36° + 26m + 26, + mdm)a — 6(6 + m)(6 + dw)Y  (Equation 33)
M= —06l=—(0+m),A=—(0+dn) (Equation 34)

Then, the equation of Y(t) can be derived as follows:

Y(t) = (Cre ™ + Cre Mt 4 Cye (04

a [ X" () , 1 _ t X" () , ;
ot / / ot g (5+m)t / / (S+m)t yat (Equation 35)
+mdme /o [mkb + mka 7X”(t’)+l<x"}e dt P —— m)e /o [mkb + mka X (6) K" e dt
1 eyt [ X"(t) (5+0lm)
— (6+dm)t / ’ +dm )t 4/
+dm(dm — m)e /0 mkb' + mka X”(t’)+KX”}e dt

We can then obtain the following equation:

dy mkb’ e~ (6+m)t mkb’ e~ (0+dm)t mkb’
- - _ —(6+m)t _ — (6+dm)t __
oy Came Cadne Grm)(dy —m) " (6rdn)(dm — m)  (6+m)(6+dy)

dt
mka’ toX(t) , toX(t) ,
— (6+m)t (6+m)t dt — — (6+dm)t (6+dm)t’ at

T = m{e /0 Xn(0)+Kx™® ° /0 X () +Kx™®

(Equation 36)

The parameters can be derived according to the boundary conditions as follows:

_ —(6+dn)b
" m(d, — m)’

Cy = \omb (Equation 37)

b
C =3- (C+C3), dm(dm — m)

N mka' _ mkb’
& ermordy) T (6rm)(o+dy)

(Equation 38)

Then, the previous equation can be written as follows:

dy _ a(6+m)(6+dy) toX(t) —(G+m)(t—t) 4y
dt +oY =b+ dn — m /0 Xn(t)+Kx" dt

COXNE)  Gednytt) g
_/07X”(t’)+l<x”e dt}

(Equation 39)
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By changing the variable ' =t — t', we obtain

ﬂ+5Y b+

a(6+m)(6+dm,

dt dm—m

/ Xn( t - t’)+KX

For brevity, we defined

Yi(t) = / X,,Xn_i

Ya(t) = /t#e

) ' X”(t — t) A (6+m)t
/ Xn(t — t)+Kx" ot

7 o (6+dm)t' dtl}

/
t — t) e (6+m)t’dt/
+KX

—(6+dm)t’dt/
(t — t)+Kx

X"(t)

Y0 = S

We can then expand Y; in a short time interval At:

Yi(t + At) =

Yo(X(0) + [YiX(£)X(1)] At

2 XX + vixm)Xo) @o?

Then, we write Y; and Y5 as follows™:

Yit) = / [Y(X(8)) + YIXO)X()(F

1

o+m °

Y(t) = / [Ya(X(1) + YL(X ()X (8) (¢ — 1) Jer el =

1 — (6+
2V XKD frer o

Next, we derive the following equation®:

(0= Ya(t) = VX () - (1

F——Y/(X(t)X(1) {te’ (@+m)t _

—(6+m)t) _

/ 1

_ — (+m)(t—t) _ _ o (o+m)t

t)]e dt = —5+mYS(X(t))(1 e )

1

_ a—(6+m)t
o+m <1 © >]
1 (o
g, X (1 &)

1
o+dn,

_ o (0+dm)t
(1-e )

1

(1 3 e_(;+dm)t):| +\/_;(X(t) )X(t) [Lte

o+dn o+m
arn te- (0+m)t _ (;+1m2 (1 — e Gm) +5+Lm2 (1 - e—(mdm)t)}
We define™
w = LU — e—(6+m)t) _ 1 (1 _ e—(6+dm)r)
o+m o+dn
Then,
f(t—1v) = Yo(X(£) )+ Yo(X(£) )X(t)(— 7v)

Yi(t) = Ya(t) =of(t—1v) =

7

[ Ys(X (1)) + Y, (X(£) )X () (— 7v)]

Yi(t) = Ya(t) =Y (X((t - 7v)))

dn, — m

(1 = (6 + m)t)e” (Fram)t

~ (1
= \orm " ord,

— (1 = (6 + dn)t)e ™)

1 1
™= ((S+m " 6+dm)
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(Equation 40)

(Equation 41)

(Equation 42)

(Equation 43)

(Equation 44)

(Equation 45)

(Equation 46)

(Equation 47)

(Equation 48)
(Equation 49)
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Then, we finally derive:

dy _ (6+m)e=C@rdmt — (5+d,,)e (+mt X"(t — 7v) .
T oY = b+a<1 + a —m ) Xo(t — ) +Ky" (Equation 50)
— (0+dm)t _ — (6+m)t
f(t) = 140¢me g fr‘;*dm)e (Equation 51)

Since we have proposed the step function approximation of f(t) before, the characteristic delay time is T, = (ﬁ +ﬁ), the same as 7y
my

here, the final DDM can be written as follows:

day X0(t — 7y) (1 1 .
g T =P ke T o T avd, (Equation 52)

DDMs for different synthetic circuits
(1) The DDM of the cascaded three-step repression circuit can be formulated as follows:

f1 Njac
0 t<tyy
ox ()
d;7 = blac /acﬁ - 6XT7 f1 = [IPTG}”'P‘Q >
- r
1+(K11 ) [IPTG]"™+Kpprg™ T
Xr7(t — Tcuza)\™
dXcuza K17 (Equation 53)
=b — 60X
pn 77 + ar 1 (Xn(t — Tc:434))”” cla3a
+ —_—
Ktz
dXgp 1
——— = bcuza + acuza e — OXgf
dt ,|+(XCI434 (t _ Tgfp)) Cla34 9P
Keciaza

where b and a are the basal and maximum production rates of the protein, respectively, Kis the dissociation constant, n is the Hill coefficient
reflecting the cooperativity of the activators, 6 is the dilution rate due to cell division, and 7 is the characteristic delay time.

(2) The DDM of the IFFL type | circuit can be formulated as follows:

£\ Mo
0 t<t
dXr7 (Klac) . 77
s S Rk BN (1< L
1-'—(K/1 ) [IPTG]™°+Kprg™e 7
Niac
dX (Kfz ) 0 t <Tcuzs
% = Biac + e /a; me — OXouas fo = [IPTG]""e (Equation 54)
t 2 T e = Tcusa
h K [IPTG]""*+Kipr"
dXQfP KT7
= bT7 +ar = - — 56X 5
dt : (XT7 (t _ Tgfp)) 7 (XCI434 (t — Tpr)) cu3s gfp
+ +
Krz Keiaza

where b and a are the basal and maximum production rates of the protein, respectively, Kis the dissociation constant, n is the Hill coefficient
reflecting the cooperativity of the activators, ¢ is the dilution rate due to cell division, and 7 is the characteristic delay time.

20 iScience 27, 109142, March 15, 2024



iScience ¢? CellPress
OPEN ACCESS

(3) The DDM of the IFFL type Il circuit can be formulated as follows:

Njac
— o
d;—7 = blac+a/ac% — 6XT7 7(‘I = [IPTG]”’P‘Q i>
r
1+(K/1 ) [IPTG]"s+Kpprg™
ac
Xr7(t — Tcza)\™"
dXciza Ktz
=br+a — 60X, i
ot 77+ ar 1+(XT7(t — Tc:434))"77 Cla3a (Equation 55)
Kz
Xr7(t = 7qo) "
dXgto K77
= b +ar n m — 0Xgf
dt 1+(XT7 (t— Tgfp)) T7+(XCI434(t - Tgfp)) st o
K7 Keciaza

where b and a are the basal and maximum production rates of the protein, respectively, Kis the dissociation constant, n is the Hill coefficient
reflecting the cooperativity of the activators, 6 is the dilution rate due to cell division, and 7 is the characteristic delay time.

QUANTIFICATION AND STATISTICAL ANALYSIS
Data are reported as mean +/— standard deviation (SD) from three experimental repeats. For each experiment, the results of at least 12 trap

chamber repeats were averaged.
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