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ABSTRACT
Objective Advanced hepatocellular carcinoma (HCC) is
a lethal malignancy with limited treatment options.
Palbociclib, a well-tolerated and selective CDK4/6
inhibitor, has shown promising results in the treatment
of retinoblastoma (RB1)-positive breast cancer. RB1 is
rarely mutated in HCC, suggesting that palbociclib could
potentially be used for HCC therapy. Here, we provide a
comprehensive characterisation of the efficacy of
palbociclib in multiple preclinical models of HCC.
Design The effects of palbociclib on cell proliferation,
cellular senescence and cell death were investigated in a
panel of human liver cancer cell lines, in ex vivo human
HCC samples, in a genetically engineered mouse model
of liver cancer, and in human HCC xenografts in vivo.
The mechanisms of intrinsic and acquired resistance to
palbociclib were assessed in human liver cancer cell lines
and human HCC samples by protein and gene
expression analyses.
Results Palbociclib suppressed cell proliferation in
human liver cancer cell lines by promoting a reversible
cell cycle arrest. Intrinsic and acquired resistance to
palbociclib was determined by loss of RB1. A signature
of ‘RB1 loss of function’ was found in <30% of HCC
samples. Palbociclib, alone or combined with sorafenib,
the standard of care for HCC, impaired tumour growth
in vivo and significantly increased survival.
Conclusions Palbociclib shows encouraging results in
preclinical models of HCC and represents a novel
therapeutic strategy for HCC treatment, alone or
particularly in combination with sorafenib. Palbociclib
could potentially benefit patients with RB1-proficient
tumours, which account for 70% of all patients with HCC.

INTRODUCTION
Hepatocellular carcinoma (HCC) is a very aggres-
sive disease and represents the third leading cause
of cancer-related mortality worldwide.1 2 Although
treatment of HCC has greatly improved over the
last decade, most HCC patients diagnosed at
advanced stages are ineligible for curative ablative
therapies such as liver resection, liver transplant-
ation or local ablation.3 The multikinase inhibitor
sorafenib remains the only approved systemic drug
for these patients; however, their median life
expectancy is restricted to 1 year.4 Other molecular

Significance of this study

What is already known on this subject?
▸ Hepatocellular carcinoma (HCC) is the third

leading cause of cancer-related deaths
worldwide. The only US Food and Drug
Administration-approved targeted therapy for
advanced HCC patients is the multikinase
inhibitor sorafenib, which offers limited survival
benefits.

▸ Palbociclib is a selective CDK4/6 inhibitor that
has demonstrated outstanding results in phase
II clinical trials of oestrogen receptor
(ER)-positive HER2-negative breast cancer in
combination with ER inhibitors. There is an
ongoing phase II clinical trial in HCC as
second-line therapy after sorafenib failure.

▸ A comprehensive study in preclinical models
testing the potential of palbociclib for HCC
treatment, combined or as a single agent, is
lacking.

What are the new findings?
▸ Palbociclib is effective in human liver cancer

cell lines in vitro, in ex vivo HCC samples, in a
genetically engineered mouse model of liver
cancer and in human HCC xenografts in vivo.

▸ Palbociclib induces a reversible cell cycle arrest,
which indicates that the current dosing
schedule (3 weeks of treatment, 1 week of drug
holiday) may not be optimal for HCC therapy.

▸ Intrinsic and acquired resistance to palbociclib
is marked by loss of functional retinoblastoma
(RB1), and an ‘RB1 loss of function’ signature
could potentially be used as a biomarker of
non-response.

How might it impact on clinical practice in
the foreseeable future?
▸ Our study represents the most extensive

preclinical characterisation of palbociclib for
HCC treatment to date and supports its clinical
development, alone or in combination with
sorafenib. Further studies will optimise patient
target selection as well as the best treatment
combinations.
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therapies targeting signalling cascades involved in HCC have
rendered negative results,3 emphasising the urgent need for
alternative therapeutic strategies with improved potency.

Cell cycle control is frequently disrupted in cancer,5 and as a
consequence, cell cycle inhibitors constitute an attractive thera-
peutic option.6 Several selective cyclin-dependent kinase 4/6
(CDK4/6) inhibitors have been developed in the last decade:
abemaciclib (LY2835219; Elli Lilly), ribociclib (LEE011;
Novartis) and palbociclib (PD0332991, Ibrance; Pfizer).7

Among them, palbociclib was recently approved by the US Food
and Drug Administration for breast cancer treatment, after
impressive improvement in progression-free survival in phase II
clinical trials of oestrogen receptor (ER)-positive,
HER2-negative advanced breast cancer, in combination with
letrozole or fulvestrant.8 9 Palbociclib presents tolerable toxicity
(mostly neutropenia and thrombocytopenia)10 11 and is pre-
dicted to be efficacious in those tumour types, such as HCC,
that frequently harbour an intact retinoblastoma (RB1).1 6 12

Despite promising data, the potential of palbociclib for HCC
treatment has not been extensively analysed in preclinical
models of HCC.

Here, we provide a comprehensive preclinical evaluation of
palbociclib activity in HCC. Treatment with palbociclib induced
a reversible cell cycle arrest that depended on an intact RB1. A
signature of ‘RB1 loss of function’ was found in <30% of HCC
patients, which are predicted to be non-responders. Moreover,
palbociclib behaved as efficiently as sorafenib in vivo and their
combination, which was well tolerated, offered superior results.
Taken together, our study provides preclinical evidence support-
ing clinical trials to evaluate the potential of palbociclib, alone
or in combination with sorafenib, for HCC treatment.

RESULTS
Palbociclib inhibits growth of human liver cancer cell lines
To evaluate the potential of palbociclib for HCC treatment, we
first tested the effect of palbociclib in a comprehensive panel
of human liver cancer cell lines representative of a range of
HCC patient subclasses.13 14 Palbociclib displayed potent anti-
proliferative activity in 14 of 15 liver cancer cell lines (figure
1A). Palbociclib-sensitive (HCC202) and palbociclib-resistant
(BT549) breast cancer cell lines were used as controls.8 Similar
results were obtained by performing colony formation assays
with a wide range of palbociclib concentrations (figure 1B, C;
see online supplementary figure S1A), which provided IC50

values ranging from 1 to 300 nM in the sensitive cell lines. The
IC50 value for the two resistant cell lines, BT549 and Hep3B,
was >3 μM, a 1–3 log-fold difference compared with the sensi-
tive cell lines. These results indicate that palbociclib treatment
restricts proliferation in the majority of human liver cancer cell
lines.

Palbociclib induces a reversible cell cycle arrest in human
liver cancer cell lines
Palbociclib is a potent inhibitor of cell growth and suppresses
DNA replication by preventing cells from entering S phase.15

Bromodeoxyuridine (incorporation, a measure of cell prolifer-
ation, was profoundly attenuated in most of the liver cancer cell
lines upon palbociclib treatment for 3 days at 1 μM (see online
supplementary figure S2A). Cell cycle analyses performed by
flow cytometry using DAPI staining revealed a G0/G1-phase
arrest, consistent with suppression of CDK4/6 activity (see
online supplementary figure S2B, C). However, palbociclib-
treated cells displayed minimal cell death as indicated by negli-
gible sub-G1 accumulation (see online supplementary figure
S2D). Together, these data support a proposed cytostatic mech-
anism of action of palbociclib in liver cancer cell lines.

Cell cycle arrest can be reversible (quiescence) or irreversible
(senescence).16 Cellular senescence is defined by several non-
exclusive features including flat cell morphology, positive stain-
ing for senescence-associated β-galactosidase at pH 6.0
(SAβGAL), DNA damage and a specific secretory phenotype.17

In order to distinguish between quiescent and senescent states,
we stained liver cancer cell lines for SAβGAL after long-term
exposure to palbociclib (14 days at 0.5 μM). Only two of the
cell lines, Huh7 and skHep1, were consistently positive for
staining (figure 2A, B). Furthermore, after palbociclib treatment,
these two cell lines displayed flat and enlarged morphology
(figure 2A, B), suggesting that they could have undergone
senescence.

To test for reversibility of the cell cycle arrest, which is the
key distinguishing factor between senescence and quiescence,
cells were treated with palbociclib (0.1 and 0.5 μM) for 10 days
to arrest them, and then replated in equal numbers and cultured
for 10 additional days in the absence of the inhibitor. Crystal
violet staining revealed that most of the cell lines were barely
affected by previous palbociclib treatment as cells grew similar
to vehicle-treated cells (dimethyl sulfoxide (DMSO)) (see online
supplementary figure S2E). In the case of Huh7 and skHep1

Figure 1 Palbociclib inhibits the
proliferation of human liver cancer cell
lines. (A) Number of cells, relative to
dimethyl sulfoxide (DMSO)-treated
condition, after 3 days of treatment
with 1 μM palbociclib (PD). BT549 and
HCC202 (in pink) are two breast
cancer cell lines used as
retinoblastoma (RB1)-negative and
RB1-positive controls, respectively.
Hep3B, indicated in blue, was the only
hepatocellular carcinoma
(HCC)-resistant cell line. The mean+SD
is shown. (B) Crystal violet staining of
colonies from five representative cell
lines treated during 2 weeks with the
indicated doses of PD. (C) IC50 values
calculated by quantifying the extracted
crystal violet in (B).
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cell lines, there was a drastic reduction in the number of col-
onies that emerged (figure 2C), indicating that some cells were
in fact irreversibly arrested. However, there was still some
growth, particularly at lower doses of palbociclib (figure 2C).
These results imply that while palbociclib may induce an irre-
versible cell cycle arrest in some cells, this may be dose
dependent.

To explore this hypothesis further, we treated two cell lines,
Huh7 and SNU398, either continuously or discontinuously,
with palbociclib. Huh7 cells, which showed an irreversible
arrest at 0.1 μM, were treated with a lower dose (68 nM) while
SNU398 cells, which underwent a reversible cell cycle arrest at
0.5 μM, were subjected to a higher dose (680 nM). The discon-
tinuous treatment resembled the typical regimen in the clinic,
with 3 weeks of treatment and 1 week of drug holiday.7 Huh7
cells during the drug holiday resumed proliferation while

SNU398 showed a less pronounced recovery of proliferation
(figure 2D). These results suggest that the effects of palbociclib
are cell line and dose dependent. Taken together, our results
show that palbociclib predominantly induces a reversible cell
cycle arrest in human liver cancer cell lines and that the current
treatment schedule may lead to tumour regrowth during the
drug holiday if senescence is not successfully achieved.

RB1 loss and palbociclib resistance in HCC
Palbociclib is an orally active, potent and highly selective inhibi-
tor of the CDK4 (IC50, 11 nM) and CDK6 (IC50, 16 nM)
kinases,15 which in turn block RB1 activity.18–20 Palbociclib
arrests cell cycle progression only if RB1 is functionally
intact.6 7 As expected, RB1 was absent in palbociclib-resistant
Hep3B and BT549 cells (figure 3A). The protein levels of
CDK4 and CCNA2, a well-characterised RB/E2F-target gene

Figure 2 Palbociclib (PD) induces a reversible cell cycle arrest in human liver cancer cell lines. (A) Representative pictures (×200 magnification) of
senescence-associated β-galactosidase (SAβGAL) staining in five representative cell lines treated with PD. Blue indicates positive staining. (B)
Table summarising the assays to evaluate cellular senescence. (C) Reversibility assay. Left, schematic. Right, crystal violet staining after replating cells
that were pretreated as indicated. (D) Proliferation of cells, relative to dimethyl sulfoxide (DMSO)-treated cells, treated continuously (black) or
discontinuously (blue) with PD, over time. W, week.

1288 Bollard J, et al. Gut 2017;66:1286–1296. doi:10.1136/gutjnl-2016-312268

Hepatology



and positive indicator of proliferation,21 were higher in
palbociclib-resistant cells (figure 3A). However, there was no
apparent association between resistance to the drug and a panel
of other cell cycle-related proteins, including the RB1-like pro-
teins p107 (RBL1) and p130 (RBL2) (figure 3A). Notably,
response to palbociclib was not affected by acquired resistance
to sorafenib (figure 3B and see online supplementary figure
S3A),22 the standard of care for HCC patients.4

CDK4/6 assembles with its allosteric activators, the D-type
cyclins, to phosphorylate and inactivate RB1 allowing cell cycle
progression.7 As a confirmatory measure of functional activity
of CDK4/6, the Ser780 phosphorylation state of RB1 was
assessed. Exposure of liver cancer cell lines to palbociclib
resulted in a dose-dependent inhibition of RB1 phosphorylation
in the sensitive cell lines as well as a substantial decrease in total
RB1 levels (figure 3C) that has been previously observed in
other tumour types.15 23 In all cells tested, protein levels of
CDK4 were unchanged or slightly increased by palbociclib.
Cyclin D1 (CCND1) was consistently increased in sensitive cell
lines, possibly as a result of the stabilisation of an inactive
CCND1-CDK4 complex by palbociclib,24 whereas cyclin A2
(CCNA2) was attenuated by palbociclib in sensitive cell lines.
Similarly, cyclin-dependent kinase 2 (CDK2), which facilitates S
phase entry,25 was decreased in sensitive cell lines. As described
previously,26 the levels of RB1 related protein p107 were

decreased while the levels of p130 were increased. As expected,
palbociclib effectively inhibits CDK4/6 activity to suppress
S-phase entry and proliferation of RB1-proficient liver cancer
cell lines.

Given these findings, we attempted to generate
palbociclib-resistant cell lines by continuously exposing cells to
increasing doses of the drug (see online supplementary figure
S3B). This approach led to the generation of palbociclib-
resistant PLC/PRF/5 (PLC5 hereafter) and Huh7 cells with a
20-fold increase in the IC50 for palbociclib for PLC5-resistant
(PLC5R) and 80-fold for Huh7R cells (figure 3D). The fact that
Huh7 cells can get irreversibly arrested was not impediment for
the emergence of resistant cells. Further analysis revealed that
RB1 protein was completely lost (Huh7R) or persisted at a
greatly reduced level (PLC5R) in resistant variants (figure 3E).
In both cases, there was a moderate decrease in CDK4
protein levels and a slight increase in CDK2 and CCNA2 levels
(figure 3E).

To functionally explore whether partial or complete loss of
RB1 was required to confer resistance to palbociclib, we under-
took two orthogonal approaches. First, we used Clustered
Regularly Interspaced Short Palindromic Repeats (CRISPR)
technology, which is a genome-editing tool, and transfected four
single-guide RNAs (sgRNAs) directed against human RB1 into
Huh7 and PLC5 cells, which were then treated with DMSO or

Figure 3 Retinoblastoma (RB1) loss
of function correlates with resistance
to palbociclib (PD) in human liver
cancer cell lines. (A) Immunoblotting
analysis of indicated proteins (basal
levels) in the panel of liver cancer cell
lines. BT549 and HCC202 are two
breast cancer cell lines used as
RB1-negative and RB1-positive
controls, respectively. The dashed line
separates independent gels. (B)
Number of cells, relative to dimethyl
sulfoxide (DMSO)-treated condition,
after 3 days of treatment with 1 μM
PD or 5 μM sorafenib (Sora). The mean
+SD is shown. (C) Immunoblotting of
different proteins after treatment with
the indicated doses of PD during
3 days for five representative cell lines.
(D) Dose–response curves for different
doses of PD. The corresponding IC50
value of each cell line is included. (E)
Immunoblotting of designated proteins
after treatment with 0.5 μM of PD for
3 days in the parental or resistant (R)
cell lines. (F) Heatmap showing protein
levels relative to β-actin. Red indicates
high while blue indicates low, and it is
relative in each row.
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1 μM of palbociclib, to study changes in cell proliferation over
time (see online supplementary figure S4A). As expected, palbo-
ciclib treatment affected the proliferation rate of the control-
transfected cells.27 However, cells transfected with RB1 sgRNAs
were less affected by palbociclib (figure 4A). The diminished
response was more pronounced over time, suggesting the selec-
tion of RB1-deficient cells with palbociclib. Indeed, immunoblot
analysis indicated that RB1 was lost at the end of the treatment
only in cells expressing sgRNAs for RB1 (figure 4B), demon-
strating that complete loss of RB1 can confer resistance to pal-
bociclib. Second, we infected Huh7, PLC5 and skHep1 with
two validated shRNAs (short hairpin RNAs) for RB1.28 Two
control shRNAs as well as shRNAs against RB1-related pro-
teins p107 and p130 were also included.28 Knockdown of
RB1 was enough to confer resistance to palbociclib while
knockdown of p107 or p130 did not (figure 4C, D; see
online supplementary figure S4B, C). Most importantly, after
RB1 knockdown, the levels of p107 and p130 remained were
not decreased, indicating that knockdown of RB1 alone is
enough to confer resistance to palbociclib. Taken together,
RB1 loss is a key mechanism of palbociclib resistance in
human liver cancer cell lines.

RB1 loss of function signature in human HCC patient
samples
To estimate the percentage of HCC patients that could respond
to palbociclib based on RB1 activity, we first compared the
expression profiles of RB1 wild-type (WT) and altered (muta-
tion, homozygous deletion) HCC patient samples from The
Cancer Genome Atlas (TCGA). Gene set enrichment analysis
revealed that the gene sets ‘E2F_targets’, ‘G2M_checkpoint’
and ‘mitotic_spindle’ from the Hallmarks collection29 were sig-
nificantly enriched in RB1-deficient patient samples (see online
supplementary figure S5A). Similar results were obtained by
Database for Annotation, Visualization and Integrated Discovery
(DAVID) analysis (see online supplementary figure S5B).30 We
then established a gene signature of ‘RB1 loss of function’
(‘RB1_LOF’) by comparing the same RB1 WT and altered
HCC patient samples (see online supplementary table S1).
The signature was present in 29% of the samples and included
both RB1-altered and RB1-WT samples (figure 5A). ‘RB1_LOF’
signature correlated with a previously defined signature of
RB1 loss in mice,31 with the S1 and proliferative HCC sub-
classes,13 32 and with several cell cycle-related gene sets, in-
cluding ‘E2F_targets’, ‘G2M_checkpoint’, ‘mitotic spindle’,

Figure 4 Loss of retinoblastoma
(RB1) confers resistance to palbociclib
(PD) in human liver cancer cell lines.
(A) Proliferation of cells, relative to
control cells treated with dimethyl
sulfoxide (DMSO), at different time
points. (B) Immunoblotting analysis of
indicated proteins at the end of the
experiment in (A). The dashed line
separates different portions of the
same gel. (C) Dose–response curves for
different doses of PD and cells infected
with different shRNAs. (D) Crystal
violet staining of colonies from a
representative cell line infected with
control or RB1 shRNAs and treated
during 2 weeks with the indicated
doses of PD. (E) Immunoblotting
analysis of indicated proteins (basal
levels) of cells in (C). c, control. 1–4
represent the different single-guide
RNAs for RB1.
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‘KEGG_cell_cycle’ and ‘Reactome_cell_cycle_mitotic’ (figure
5A). By applying this signature to an independent data set,33 we
found that 22% of the human HCC patient samples had enrich-
ment of ‘RB1_LOF’ (figure 5B), suggesting that overall around
70% of all HCC patients could potentially respond to
palbociclib.

Palbociclib is effective in organotypic ex vivo human HCC
samples
We next tested the effects of palbociclib in a more physiological
setting, in organotypic ex vivo culture of HCC tumour tissues
from 10 patients, where multi-cell-type tissue microenvironment
is preserved.34 This ex vivo assay allows assessment of novel
therapies in tumour tissues explanted from patients without the
difficulty and expense of implanting tumour cells into animals.
Ex vivo culture for 2 days in vehicle (DMSO) or palbociclib
(10 μM) did not overtly disrupt the morphological features, as
indicated by H&E staining (see online supplementary figure
S6A). High concentrations of the drug were used to allow for
tissue perfusion.34 After excluding those samples with low per-
centage of Ki67-positive cells in the vehicle (DMSO) condition

(Ki67+<5%; n=4), five out of six remaining samples responded
to palbociclib treatment (figure 6A, B). A significant increase in
the percentage of cleaved-caspase 3-positive cells was observed
in some samples, although overall changes were limited (see
online supplementary figure S6B). Unexpectedly, RB1 was
expressed in the non-responder ex vivo sample (see online
supplementary figure S6C), suggesting that RB1 loss of function,
rather than RB1 lack of expression, can dictate resistance to
palbociclib.

Palbociclib, alone or in combination with sorafenib, has
potent antitumour effects in vivo
Although palbociclib is effective against liver cancer cells in
vitro and ex vivo, additional analyses were performed to discern
the in vivo benefit of palbociclib treatment in HCC. We first
investigated the potential of palbociclib for liver cancer treat-
ment in a genetically engineered mosaic mouse model of liver
cancer (Myc;p53-sgRNA).35 To induce liver tumours, we per-
formed hydrodynamic tail vein injections of transposons
expressing Myc36 and luciferase,37 which are integrated into the
DNA of hepatocytes following transient expression of

Figure 5 Retinoblastoma (RB1) loss of function (RB1_LOF) signature in human hepatocellular carcinoma (HCC) patients. (A) Heatmap showing the
distribution of different gene sets in 190 human HCC patients from The Cancer Genome Atlas (TCGA). The proportions of patients for ‘RB1_LOF’
presence or absence are also included. The values for Hoshida class 2 and Chiang proliferation are included. (B) Same as in (A) but for a different
patient cohort including 278 HCC patients. HD, homozygous deletion; IFN, interferon; mut, mutation; WT, wild-type; ES, enrichment score; n.s., not
significant.
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transposase from a recombinant transposon vector (see online
supplementary figure S7A). A validated sgRNA targeting tumour
suppressor p53 was also included to accelerate tumorigenesis
(see online supplementary figure S7A).38 Three weeks after the
injections, we performed bioluminescence imaging, randomised
the mice according to their signal and started daily treatment
with either vehicle (n=4, sodium lactate buffer) or palbociclib
(n=4, 100 mg/kg). After 1 week of treatment, the luminescence
signal in vehicle-treated mice increased dramatically, whereas in
palbociclib-treated mice there was a significant decrease (figure
7A, B), indicating that palbociclib treatment can be effective in
liver tumours in vivo.

To validate this further, we also studied human HCC xeno-
grafts. Sorafenib, the standard of care for HCC treatment,3 was
also included for comparison. Mice harbouring Huh7 and
PLC5 xenografts were treated with vehicle (sodium lactate
buffer or cremophor/ethanol), sorafenib (30 mg/kg), palbociclib
(100 mg/kg) or a combination of both once the tumours
reached a volume of 100–200 mm3. The single or combined
treatments were well tolerated, with no obvious clinical signs of
distress and either minimal weight loss or some weight gain (see
online supplementary figure S7B). Tumour development was

manifested for mice harbouring Huh7 xenografts (figure 7C),
and all vehicle-treated mice (n=24) died within 16 days, with a
median survival of 9.5 days (figure 7D). Both sorafenib (n=12)
and palbociclib (n=14) significantly delayed tumour growth
(figure 7C) and increased survival (figure 7D) to 14 and
16 days, respectively. The combination of sorafenib and palboci-
clib (n=13) was even more effective, with a significant and pro-
nounced reduction in tumour growth (figure 7C) and by
significantly increasing the median survival to 22 days (figure
7D). The combination was also significantly more efficacious
than sorafenib (figure 7C, D), the standard of care for HCC
patients. Similar results were obtained in PLC5 xenografts,
which were treated for up to 30 days (figure 7E, F). Moreover,
tumour regressions were observed for this cell line, particularly
following combination treatment (figure 7E). The median sur-
vival with sorafenib (n=7) and palbociclib (n=5) was extended
from 37 days (vehicle, n=7) to 48 and 56 days, respectively
(figure 7F). The longest median survival was achieved with the
combination treatment (n=7; 71 days) (figure 7F). Three mice
treated with the combination therapy and one mouse treated
with palbociclib were kept for 4 months with no signs of
disease pointing to complete cures. In the remaining mice,
after stopping treatment at day 30, tumours grew back (see
online supplementary figure S7C), denoting that the arrest or
regression in tumour growth is temporary, at least for this cell
line. Taken together, our results indicate that palbociclib is as
beneficial as sorafenib, whereas the combination of palbociclib
and sorafenib is significantly more effective than sorafenib
alone.

In parallel with the in vivo efficacy tests (figure 7), additional
Huh7 tumours, treated for 5 days, were harvested for
pharmacodynamic and mechanistic analyses to test whether
antitumor activity correlated with modulation of the targets.
Phosphorylation of Ser780 in RB1 was significantly decreased in
tumours treated with palbociclib, alone or in combination with
sorafenib, and phosphorylation of ERK was significantly
decreased in sorafenib-treated tumours (figure 8A, B). However,
only a slight decrease in phosphorylation of ERK was observed
in the combination-treated tumours, possibly as a result of the
rebound in ERK phosphorylation (tumours were collected
4 hours after the last dose).39 Palbociclib has been shown to
provide a significant benefit when combined with inhibitors that
target the levels of D-type cyclins.7 8 To test whether this pre-
diction holds true for palbociclib and sorafenib, we tested the
effects of sorafenib on CCND1 levels in vitro in Huh7 and
PLC5 cells. Treatment with sorafenib led to a decrease in the
phosphorylation of ERK and CCND1 protein levels (see online
supplementary figure S8A), in part explaining the benefits of
combining palbociclib and sorafenib.

Mechanistically, Huh7 tumours in control-treated animals
were proliferative, determined by Ki67 staining. Quantification
revealed a significant reduction (68%) in Huh7 proliferation
upon palbociclib treatment, 63% with sorafenib and 73% with
combination therapy (figure 8C, D). However, no changes in
apoptosis were observed (see online supplementary figure
S8B, C). To test whether palbociclib could induce cellular senes-
cence in vivo, Huh7 cells (which show a senescent phenotype in
vitro) were subcutaneously injected into nude mice. Once the
tumours reached 100–200 mm3, we randomised the mice into
two groups and treated them with vehicle or palbociclib
(100 mg/kg) for 16 days. Tumour growth rate in palbociclib-
treated mice was significantly lower than in vehicle-treated mice
(figure 8E, F). However, once the treatment with palbociclib
was discontinued, the tumour growth rate significantly

Figure 6 Palbociclib (PD) is effective in organotypic ex vivo human
hepatocellular carcinoma (HCC) samples. (A) Immunostaining for Ki67
(×200 magnification), a marker of cell proliferation, in representative
responder (R) and non-responder (NR) ex vivo human HCC samples
treated with PD for 2 days. (B) Percentage of Ki67-positive cells in ex
vivo human HCC samples treated with dimethyl sulfoxide (DMSO)
(black) or PD (grey) for 2 days. The mean+SD is shown. The percentage
of change in Ki67 staining is shown in green. The blue line indicates
the threshold (–30%) used to assign responsiveness to PD.
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increased, suggesting tumour cells were reversibly arrested by
palbocilcib treatment (figure 8E, F). Analysis of tumours col-
lected after treatment with vehicle or palbociclib (for 16 days)
showed that palbociclib-treated tumours were positive for the
senescence marker SAβGAL (figure 8G). However, a fraction of
the tumour cells was negative for the staining. Those
SAβGAL-negative cells could either be proliferative, contributing
to the slow but positive growth of tumours upon palbociclib
treatment, or reversibly arrested, being able to resume prolifer-
ation upon palbociclib withdrawal. In fact, SAβGAL staining of
the tumours subjected to palbociclib withdrawal showed that
the decrease in percentage of SAβGAL-positive cells correlated
with the number of days in withdrawal (figure 8G; see online
supplementary figure S8D), further supporting the hypothesis
that SAβGAL-negative cells may be contributing to tumour
growth. Taken together, our results indicate that palbociclib
treatment of human liver tumours in vivo leads to cellular senes-
cence in a high percentage of tumour cells. However, the
remaining malignant cells are reversibly arrested and can still
contribute to tumour growth. In conclusion, our results indicate
that palbocilcib significantly reduces tumour growth, alone or in

combination with sorafenib, and could represent a promising
strategy for HCC.

DISCUSSION
HCC is one of the most lethal malignancies, in part due to the
lack of curative treatments. The multikinase inhibitor sorafenib
is the only effective targeted therapy for advanced HCC
patients, although most of them eventually undergo disease pro-
gression.4 Here, we provide the most comprehensive preclinical
evaluation of a CDK4/6 inhibitor, palbociclib, in HCC to date,
and build the case for its clinical development as first-line
therapy, potentially in combination with sorafenib. Palbociclib
efficiently reduced proliferation of HCC cells in vitro and of
primary human tumour tissues ex vivo. Moreover, palbociclib
decreased tumour burden in a genetically engineered mouse
model of liver cancer and in human HCC xenografts in vivo,
and cooperated with sorafenib to enhance therapeutic impact,
being well tolerated.

Mechanistically, RB1 loss constituted the main mechanism of
intrinsic and acquired resistance in human liver cancer cell lines,
suggesting the need to stratify patients based on RB1 status.

Figure 7 Palbociclib (PD), alone or in
combination with sorafenib (Sora), has
potent antitumour effects in vivo. (A)
Bioluminescence imaging of
representative mice (Myc;p53-sgRNA)
before and after 1 week of treatment.
The colour scale is shown on the right.
(B) The percentage of tumour growth
rate (per day) per each individual
mouse measured by bioluminescence
imaging. The average tumour growth
rate per group is shown as well as the
number of mice. (C) As in (B) but for
Huh7 xenografts. (D) Survival curves of
the mice in (C). The duration of
treatment and median survival per
group are indicated at the top. (E) As
in (B) but for PLC5 xenografts. (F)
Survival curves of the mice in (E). The
treatment window and median survival
per group are indicated as in (D).
combo, combination of sorafenib and
palbociclib; d, days; V, vehicle; W,
weeks.
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While acute loss of RB1 has been reported to have little effect
on the short-term response to palbociclib in liver cancer cells,
due to compensatory mechanisms by RB1 family members,26

we have now demonstrated that acquired resistance to palboci-
clib through chronic exposure to the drug is mediated by RB1
loss. Moreover, partial or complete loss of RB1 leads to palboci-
clib resistance, further confirming the key role of RB1 in
response to palbociclib in human HCC. By creating a signature
of ‘RB1-LOF’, we estimate that 70% of human HCC patients
could respond to palbociclib. Nevertheless, additional preclin-
ical and clinical studies will be needed to refine response predic-
tion in HCC patients and optimise patient selection.

Recent studies in other tumour types have shown that palbo-
ciclib can induce cellular senescence,40–43 which is an irrevers-
ible cell cycle arrest.16 In HCC cells, we observed a reversible
cell cycle arrest in most of the cell lines. Considering that the
current clinical regimen for palbociclib includes a week of drug
holiday, achieving an irreversible arrest in vivo or changing the
dosing schedule (lower dose, continuous treatment) will be

crucial to avoid tumour regrowth. This may also be avoided
with the use of abemaciclib, another CDK4/6 inhibitor that pre-
sents lower associated toxicity that allows continuous treat-
ment.7 Furthermore, understanding what determines the choice
between quiescence and senescence after palbociclib treatment
in HCC cells will be critical. As an alternative, the combination
of palbociclib with other compounds (targeted therapies, che-
motherapies, immunotherapies) may trigger senescence or apop-
tosis. In our in vivo models, combination of palbociclib with
sorafenib, the standard of care for HCC patients,4 had additive
effects and led, in some cases, to tumour regression and com-
plete responses. Strategies that target D-type cyclins, such as
inhibition of ER or ERK signalling, have been shown to
synergise with palbociclib,7 8 and the ability of sorafenib to
inhibit ERK signalling and CCND1 protein levels can explain
the beneficial effects of combining sorafenib and palbociclib.
The identification of synergistic partners for palbociclib in
HCC will allow stronger effects by minimising undesirable
toxicity.

Figure 8 Effects of mono or combinatorial therapies in vivo. (A) Top, immunoblotting of designated proteins in tumours isolated from Huh7
xenografted mice after 5 days of treatment. Bottom, heatmap showing phospho-RB (pRB) and phospho-ERK (pERK) levels relative to RB and ERK,
respectively, from (A). Red indicates high while blue indicates low, and it is relative in each row. (B) Dot plots with quantification of the relative pRB
and pERK levels. The mean±SD is shown. (C) Immunostaining for Ki67 (×200 magnification), a marker of cell proliferation, in representative tumours
treated with the indicated treatments for 5 days. (D) Quantification of Ki67 index in the different treatment groups. The mean±SD is shown.
(E) Spider plots depicting tumour growth in each group of treatment over time. The black bars represent the treatment period (16 days). (F)
Quantification of tumour growth rate in vehicle-treated and palbociclib-treated mice (during the 16 days of treatment and after treatment). The
mean±SD is shown. (G) Representative images of senescence-associated β-galactosidase (SAβGAL) staining in vehicle-treated and palbociclib-treated
tumours at day 16. A representative image of a tumour treated for 16 days and left untreated for additional 3 days it shown ×100 magnification.
Combo, combination of sorafenib and palbociclib; d, days; PD, palbociclib; Sora, sorafenib; V, vehicle; WD, withdrawal.
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Taken together, our findings support further clinical evalu-
ation of palbociclib, as a single agent or in combination with
sorafenib, in patients with HCC. Of note, palbociclib is well tol-
erated and lacks associated liver toxicity,8 9 further reinforcing
its potential for liver cancer treatment. ‘RB1_LOF’ signature
could be used as a predictor of resistance to palbociclib. The
assessment of additional response predictors in these clinical
trials may help to refine the patient subgroup most likely to
benefit from treatment with palbociclib. Finally, the use of syn-
ergistic drug combinations with palbociclib in HCC will lead to
stronger and more durable responses with reduced toxicity.

MATERIALS AND METHODS
Statistical analysis
Data are expressed as mean±SD. Statistical significance was
determined using Mann-Whitney U test (when n <10 or non-
normal distribution) or Student’s t-test (n >10 and normal dis-
tribution). Correlation was calculated using the Pearson test.
Group size was determined based on the results of preliminary
experiments and no statistical method was used to predetermine
sample size. Group allocation was performed randomly while
outcome assessment was not performed in a blinded manner.
The differences in survival were calculated using the
Kaplan-Meier test. Prism 6 software (GraphPad Software) was
used to create the graphs and for the statistical analysis.
Significance values were set at *p<0.05, **p<0.01 and
***p<0.001.

The rest of materials and methods can be found in online
supplementary material.
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