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Febuxostat, a drug recently approved in the US, European Union and Japan for treatment of gout, inhibits
xanthine oxidoreductase (XOR)-mediated generation of uric acid during purine catabolism. It inhibits
bovine milk XOR with a Ki in the picomolar-order, but we found that it is a much weaker inhibitor of
Rhodobacter capsulatus XOR, even though the substrate-binding pockets of mammalian and bacterial XOR
are well-conserved as regards to catalytically important residues and three-dimensional structure, and both
permit the inhibitor to be accommodated in the active site, as indicated by computational docking studies.
To clarify the reason for the difference of inhibitory potency towards the two XORs, we performed
molecular dynamics simulations. The results indicate that differences in mobility of hydrophobic residues
that do not directly interact with the substrate account for the difference in inhibitory potency.

X
anthine oxidoreductase (XOR) (Fig. 1) plays an important role in the catabolism of purine substrates, and is
found in a wide range of organisms from bacteria to man1–3. All XORs have similar molecular mass and
cofactor composition, although the subunit composition is different in eukaryotic and prokaryotic

enzymes (Fig. 1). Mammalian XOR is a homodimer with a molecular mass of 290 kDa: each subunit contains
one molybdenum cofactor (Moco, molybdopterin), two [2Fe–2S] centers, and one FAD center. On the other
hand, the bacterial enzyme from Rhodobacter capsulatus (RcXOR) is a (ab)2 heterotetramer with a molecular
mass of 275 kDa. Despite this enzyme’s heterotetrameric nature, the crystal structure of RcXOR proved to be
similar enough to its mammalian counterpart so that it was solved by molecular replacement techniques4. The
smaller a-subunit comprises the iron/sulfur domain (A1-A153), containing two [2Fe–2S] clusters, the FAD
binding domain (A185-462), and a 31-amino-acid extended peptide that links these two domains. The b-subunit
is the Moco-binding domain (B1-777). Although the polypeptide composition is different in mammalian and
bacterial enzymes, the spatial arrangement of the four redox centers is very similar in all XORs (Fig. 1). The
oxidative hydroxylation of purines takes place at the molybdenum center, and reducing equivalents thus intro-
duced are transferred via the two [2Fe-2S] centers to the FAD center, where reduction of the physiological
electron acceptor, NAD1 or O2, occurs5–8.

Human XOR is a target of drugs used to treat gout and hyperuricemia. Allopurinol, a hypoxanthine isomer,
which was introduced by Elion et al.9, has been widely prescribed as a treatment of gout for more than 40 years.
When XOR catalyzes the hydroxylation of allopurinol (Fig. 2a) to oxipurinol (alloxanthine) (Fig. 2b) at the
molybdenum center, Mo(VI) is converted to Mo(IV). The reduced enzyme in the Mo(IV) state forms a tightly
bound, inactive complex with oxipurinol. The crystal structures of the oxipurinol-bound form of RcXOR and
bovine milk XOR (bXOR) have been determined at 3.0 and 2.1Å resolution, respectively, and their features are
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very similar to each other4,10. In each XOR, clear electron density was
observed between the N2 atom of oxipurinol and the molybdenum
atom. Moreover, hydrogen bonds were observed with Glu802,
Arg880 and Glu1261 of bXOR (corresponding to Glu232, Arg310
and Glu730 of RcXOR, respectively). In addition, two phenylalanine
residues (Phe914 and Phe1009 of bXOR, corresponding to Phe344
and Phe459 of RcXOR, respectively), that constrain the inhibitor so
that the N2 atom of the pyrazole ring projects towards the Mo atom,
are also conserved. Those amino acid residues are essential for sub-
strate binding and activation11,12. Thus, it was proposed that the
oxipurinol nitrogen atom (N2) replaces the catalytically labile Mo-
OH ligand, resulting in mechanism-based inhibition.

On the other hand, febuxostat (Fig. 2c), which was developed as a
non-purine selective inhibitor of XOR, has a more potent and longer-
lasting urate-lowering effect than allopurinol in mammalian spe-
cies13,14. Clinical efficacy and tolerance to febuxostat have been con-
firmed15,16, and the drug is available as Adenuric (EU), Uloric (US), or
Feburic (Japan) for the chronic management of hyperuricemia in
patients with gout. Febuxostat (Fig. 2c) is a larger molecule than
allopurinol (Fig. 2a), and the binding mechanism to XOR is quite
different. Febuxostat fills most of the cavity (binding pocket) of
XOR17, acting as a structure-based inhibitor via multiple interactions,
including ionic bonding of its carboxyl group with Arg880, hydrogen
bonding of the nitrogen atom of the thiazole with Glu802, and sand-
wiching of the thiazole ring between Phe914 and Phe1009 in bXOR.

Structure-based drug design (SBDD) is a rapidly progressing tech-
nique for computational drug design, utilizing the three-dimensional

(3D) structures of biomolecules obtained by means of X-ray crystal-
lography or NMR spectroscopy. For example, HIV protease inhibitors18

(Nelfinavir, Viracept), a neuraminase inhibitor19 (Zanamivir, Relenza),
and Abl tyrosine kinase20 (an anti-cancer drug; STI-571, Gleevec) have
been developed with the help of SBDD. Although febuxostat was not
developed with the aid of SBDD, the interaction between the inhibitor
and the 3D structure of the binding pocket of XOR is crucial to an
understanding of the inhibition mechanism17 and SBDD is expected to
be an effective approach for further development of inhibitor design for
XOR, as well as other enzymes.

In this study, we experimentally found that, among human,
bovine, and bacterial XORs whose 3D structures are known thus
far, the bacterial XOR was only very weakly inhibited by febuxostat,
whereas the mammalian XORs were strongly inhibited. These find-
ings are in contrast to the case of allopurinol, which is covalently
bound to all the XORs mentioned above, and is equally effective on
all of them. These facts indicate that the binding mechanism of
febuxostat in the substrate-binding pocket is different between the
bacterial XOR and mammalian XORs, even though the important
residues for catalysis are all conserved and there is enough space for
febuxostat to enter the binding pocket of the bacterial XOR. In order
to clarify the reason for this difference in inhibitory potency, detailed
study of the interaction between febuxostat and the binding pocket is
necessary. Molecular dynamics (MD) is a powerful tool to address
this issue, because the experimentally observed Ki difference can be
examined in detail in terms of the calculated dynamic trajectories of
both the drug and the enzyme. We therefore conducted MD calcula-
tions, focussing on the Moco domain (,800 residues) of the XORs
(see supplementary Fig. S1), and compared the results with the
experimental findings. The MD findings could account well for the
difference in inhibitory potency of febuxostat towards the two XORs.
We believe such MD calculations can offer novel insights for struc-
ture-based drug discovery.

Results
Experiment. We measured the inhibitory potency of febuxostat
towards mammalian and bacterial XORs using steady-state
enzyme kinetics with xanthine as the substrate (see Methods for
details). Figure 2d shows the relative enzyme activity versus log
concentration of febuxostat. No inhibition of RcXOR was observed
up to 100 nM febuxostat, while bXOR was completely inhibited at
that concentration (Fig. 2d). The inhibition patterns were non-
competitive in double-reciprocal plots, with a constant Ki value
and decreasing Vmax value with increasing concentration of the
inhibitor (Fig. 2e). As febuxostat has detergent-like character, it
may influence protein structure at concentrations higher than
micromolar, which would be consistent with non-competitive
inhibition. Whatever the reason, the high Ki value (17.5 mM) for
RcXOR, compared with the estimated Ki value of around 0.1 nM
for bXOR17 indicated that febuxostat did not interact effectively
with the active site at the molybdenum center of RcXOR.

To understand these results, we employed a protein-ligand dock-
ing algorithm, the LigandFit21 module of Discovery StudioR 2.5
(Accelrys Inc., California), to predict the position of febuxostat in
the binding cavity of bXOR and RcXOR, using the protein data bank
(PDB) codes 1FO48 or 1JRO4, respectively. In this algorithm, the
receptor (apo-protein) is rigid and the ligand (febuxostat) is flexible.
In the case of bXOR, the position of febuxostat was almost identical
with that in PDB code 1N5X, which is the crystal structure of febuxo-
stat-included bXOR. Further, the position of febuxostat in the cavity
of RcXOR was essentially the same as in the case of bXOR (see
Supplementary Fig. S2), and the receptor-ligand binding affinity
scores obtained for bXOR and RcXOR were also almost the same,
in conflict with the experimental results.

The design of structure-based inhibitors for bXOR often includes
hydrogen-bonding interaction between a nitrile (-CN) of the inhib-

Figure 1 | Crystal structures and cofactor distances of mammalian and
bacterial XORs. (a) Crystal structure of bovine milk XOR (bXOR) as a

homodimer. (b) Crystal structure of Rhodobacter capsulatus XOR

(RcXOR) as a heterotetramer. Subunits are shown in different colors. (c)–

(d) Cofactors of each XOR selected interatomic distances are shown for

bXOR, (c) and RcXOR (d). All the structures were illustrated by PyMol

from the protein data bank codes 1FO4 and 1JRO.
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itor and Asn768 of bXOR. Thus, we experimentally mutated His198
to Asn198 in RcXOR to examine the importance of this residue,
where His198 of RcXOR corresponds to Asn768 of bXOR. As shown
in Figure 2d, there was no significant change in the inhibitory
potency of febuxostat, indicating that the hydrogen bond is not
important or is not formed in the case of RcXOR, even though
hydrogen bond formation seemed feasible based on the docking
results described above.

Therefore, the difference in binding affinities for febuxostat can-
not be understood in terms of the static 3D structures of the bacterial
and mammalian XORs. To address this issue further, we carried out
molecular dynamics (MD) simulations of the interactions.

Molecular dynamics simulations. Focusing only on the Moco-
binding domains, which contain the ligand-binding region, we
carried out MD simulations for both bXOR and RcXOR with the
ligand (febuxostat). This truncated system of ,800 residues (Figs. 3
and Supplementary Fig. S1; see also Methods) is called the Moco-
domain5,7. The terminal residues were appropriately processed for

the MD simulations (see Methods for detail). As shown below,
neglecting the other domains in the model systems does not affect
the stability of our MD simulations.

After preparing the Moco domains for bXOR and RcXOR, we
inserted febuxostat into these domains using the LigandFit21 module
of Discovery StudioR 2.5 (Accelrys Inc., California). The initial posi-
tion of febuxostat in the binding pocket of bXOR or RcXOR is shown
in Supplementary Figure S2a or S2c, respectively. The binding pocket
consists of ,100 residues and the residues around Moco are highly
conserved in the two XORs. There are, however, some unconserved
residues located far from the Moco site, as shown in Figures 4, 5a, and
5b. These residues became the main concern in this study.

We employed the AMBER software suite22 to simulate the two
Moco domains with febuxostat immersed in explicit water molecules
(see Methods for detail). For 10 ns MD simulations, it was found that
the amino acid backbones fluctuate with 1.4 Å and 1.6 Å RMSD in
bXOR and RcXOR, respectively, confirming the stability of the MD
simulations (see also the supplementary Fig. S3). Though there is a
concern as to whether or not the disordered loop region in RcXOR

Figure 2 | Difference of inhibitory effects of febuxostat on bovine and Rhodobacter capsulatus XORs. (a)–(c): Structures of (a) allopurinol, (b)

oxipurinol, and (c) febuxostat. (d) Activity in the presence of various concentrations of febuxostat as a percentage of that in the absence of inhibitor. X,

bXOR; m, RcXOR; &, RcXOR H198N mutant. (e) Kinetics of xanthine-NAD1 inhibition. Lineweaver-Burk plots of xanthine-NAD1 activity of RcXOR

in the presence of febuxostat. Final concentration of XOR (AFR 5 401) was 2.4 nM. Final concentrations of febuxotat: 3, no inhibitor; X, 5 mM; #,

10 mM; m, 15 mM; ., 20 mM. (inset) Secondary plots. The Ki value was obtained from secondary plots of slope of the Lineweaver-Burk plot versus

inhibitor concentration.
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Figure 3 | Stability of febuxostat in the binding pocket of bXOR or RcXOR evaluated from MD simulations. (a) The Moco-binding domain with

febuxostat. (b) Enlarged image of febuxostat and Moco; the distance between febuxostat (C19) and MPT (Mo) is indicated by a double-headed red arrow.

(c) Distances between febuxostat (C19) and Moco (Mo) during MD simulations of bXOR or RcXOR. The distances in the two simulations of bXOR are

plotted in red and orange, and those in the case of RcXOR, in blue/cyan.

Figure 4 | Initial and final positions of febuxostat in MD simulations. The initial position of febuxostat is shown in pink in all the figures (a)–(d). (a)–(b)

The final structures of febuxostat after two MD runs of bXOR and its surrounding residues. The residues in black are important for hydrogen-bonding

with allopurinol and the residues in red are not conserved between bXOR and RcXOR. (c)–(d) The final structure of febuxostat after two MD runs of

RcXOR and its surrounding residues. The residues in black are important for hydrogen-bonding with allopurinol and the residues in blue are not

conserved between bXOR and RcXOR.

www.nature.com/scientificreports
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would affect the results (see Supplementary Fig. S4), we believe that
the inclusion of such a loop region in MD simulations would be more
likely to increase the fluctuations of the active site, reinforcing our
conclusions below.

In two MD runs, febuxostat in bXOR was stable in the binding
pocket for 10 ns, while in RcXOR, it was not stable in the binding
pocket, and after 10 ns the distance between C19 of febuxostat and
the Mo atom of Moco was more than 8 Å (Figs. 3, 4 and
Supplementary Movie 1–4). The distances reflect the stability of
the drug inside the binding pocket, as shown in Figures 3b and 3c.
During the MD runs, the distance fluctuated by around 5 Å for
bXOR. In the case of RcXOR, however, the distance exceeded 8 Å

after 500 ps. The final structures of febuxostat (green) and bXOR are
shown in Figure 4a, b, which also depict the initial positions (pink) of
febuxostat for comparison. The corresponding structures of RcXOR
are shown in Figure 4c, d: febuxostat in RcXOR was found to move
out of the binding pocket (to the left-lower side in Fig. 4c and to the
left-upper side in Fig. 4d).

Several important residues strongly interacting with febuxostat are
also shown in Figure 4a–d: those colored black form hydrogen bonds
to febuxostat (also purine derivatives/allopurinol), and are conserved
in both bXOR and RcXOR. These residues also play an important
role in the hydroxylation of naturally occurring purine derivatives,
hypoxanthine and xanthine. On the other hand, the residues colored

Figure 5 | Comparison of bXOR with RcXOR: interaction between febuxostat and its surrounding three residues. (a) Hydrophobic residues of bXOR

around febuxostat, which was inserted using the docking pose obtained with the protein-ligand docking algorithm. (b) Corresponding RcXOR residues

around febuxostat, which was also inserted by using the docking calculation. The residues in black are the same as those in bXOR, and those in blue

correspond to the ones in red in (a). (c)–(d) Distances between the febuxostat tail atom (C16) and its surrounding three residues in two simulations of

bXOR. (e)–(f) Distances between the febuxostat tail atom (C16) and its surrounding three residues in two simulations of RcXOR. Main-chain atoms

(N,C,O) are not depicted (except Pro78 of RcXOR) in (a) and (b).

www.nature.com/scientificreports
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red in Figure 4a, b or blue in Figure 4c, d are different in the two
XORs, indicating that these residues are not associated with the
biological hydroxylation function. Because the purine derivatives
(hypoxanthine and xanthine) are smaller than febuxostat, the former
substrates would not direct contact these residues.

Febuxostat in bXOR is surrounded by hydrophobic residues,
except for four hydrogen-bonding residues (Glu802, Arg880,
Thr1010, and Asn768 in bXOR). The positions of these residues
and febuxostat in bXOR and RcXOR are shown in Figure 5a and
5b, respectively. In the two figures, the residues colored black are
conserved in both bXOR and RcXOR, and the residues colored red or
blue are different in the two XORs; it can be seen that the residues
around the head part of febuxostat are conserved, while those around
the tail part are not. We believe that this is a key observation for
understanding the difference of inhibitory potency, and we consider
in detail these unconserved residues (Leu648/Pro78, Phe649/Ala79,

Val1011/Leu461, and Phe1013/His463 in bXOR/RcXOR) and a
hydrogen-bonding residue (Asn768/His198 in bXOR/RcXOR) in
the following sections.

Discussion
Allopurinol has been used for remedy of hyperuricemia and gout for
more than 40 years, and so far febuxostat is the only other drug
licensed for these conditions. Since allopurinol is a suicide inhibitor,
its potency is much higher than that of competitive inhibitors23. XOR
is a highly expressed house-keeping gene product in humans, so
potent inhibition of XOR activity is essential to decrease the uric acid
level in blood. Febuxostat has a high affinity for XOR, with Ki51.2 3

10 210 M and Ki’5 1 3 1029, suggesting that it might be as effective
for clinical therapy as allopurinol17,24.

In this article, we focus on the difference in inhibitory potency of
febuxostat towards bXOR and RcXOR. Figure 5a, b shows febuxostat

Figure 6 | Comparison of hydrogen-bonding of bXOR and RcXOR with febuxostat in MD simulations. (a) Hydrogen-bonding residues around

febuxostat of bXOR. (b) Those of RcXOR. (c)–(d) Distances between febuxostat and four hydrogen-bonded residues in two simulations of bXOR. (e)–(f)

Distances between febuxostat and four hydrogen-bonded residues in two simulations of RcXOR.

www.nature.com/scientificreports
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and the conserved (black) and unconserved (red or blue) residues in
the van der Waals surface representation of these XORs. As shown
in Figure 5c, d, the interatomic distances during the molecular
dynamics (MD) runs are very stable for bXOR, indicating strong
interaction between the tail part of febuxostat and the surrounding
residues. On the other hand, the interatomic distances in the case of
RcXOR, although its 3D structure is similar to that of bXOR,
fluctuate considerably in the two MD runs, as shown in Figure 5e,
f. The blue-colored unconserved residues in RcXOR (Fig. 5b) do not
appear to contribute to the stabilization of febuxostat inside the
binding pocket. Carefully examination of the 3D structure of
RcXOR during the MD runs indicated that the packing is slightly
looser in the case of RcXOR, and a hydrophilic residue (His463)
seems to destabilize the binding. On the other hand, the unconserved
residues (red) in bXOR are hydrophobic ones, and the tail of febuxo-
stat contains several methyl groups, suggesting that hydrophobic
interaction between febuxostat and these unconserved hydrophobic
residues, Leu648, Phe649, and Phe1013, in bXOR contributes to the
strong binding affinity.

Figure 6a, b shows the hydrogen-bonding networks in the two
XORs in the wire representation, and the distances of these four
hydrogen bonds in MD simulations are shown in Figure 6c-f. In
the case of bXOR, the four hydrogen bonds remained stable for
10 ns. On the other hand, in the case of RcXOR, the hydrogen bonds
involving the bottom residues (His198 and Glu232) were broken
faster than the hydrogen bonds involving the other residues
(Arg310 and Thr460), implying that instability in the position of
the tail part of febuxostat results in breakage of these hydrogen
bonds.

Additional MD simulations were carried out using the same pro-
tocol for RcXOR in which His198 is replaced with Asn198 in silico,
focusing on the possible hydrogen-bonding interactions between the
nitrile (-CN) of febuxostat and some amino acids around febuxostat.
It turned out that febuxostat was not stable in the binding pocket,
indicating that the mutation does not contribute to the binding
affinity for RcXOR, in accordance with the experimental finding
using mutant enzyme (Fig. 2d).

The present results demonstrate that MD simulations are a power-
ful tool to predict the qualitative behavior of a tightly binding inhib-
itor, in circumstances where conventional docking software may be
inadequate. We have shown that even small differences in amino acid
sequence, involving residues that do not interact directly with the
substrate, can influence the mode of inhibition. Such differences may
be extremely important in drug development, for example, allowing
us to develop mammalian enzyme-specific inhibitors that would not
inhibit the corresponding intestinal bacterial enzyme, or bacterial
enzyme-specific inhibitors that would not cause side effects through
inhibition of the mammalian enzyme.

Methods
Expression and purification of R. capsulatus XOR in escherichia coli cells. R.
capsulatus wild-type XOR was expressed and purified as described previously25. The
mutation HB189N was introduced into R. capsulatus XOR by means of PCR
mutagenesis. Purification was achieved by nickel-nitrilotriacetic acid
chromatography, and ion exchange chromatography using Q-Sepharose. To separate
Moco-containing XOR from the enzyme lacking the cofactor, affinity
chromatography on Sepharose 4B/folate gel was used25. Finally, the protein was
purified by size exclusion chromatography. The XOR variants were stored in 50 mM
Tris-HCl, pH 7.8, 1 mM EDTA 2.5 mM dithiothreitol.

Purification of bovine XOR. Bovine milk XOR was purified according to Okamoto
et al.17. The concentration of the enzyme was determined spectrophotometrically by
using a molar extinction of 37,800 M21?cm21 at 450 nm26. The activity-to-flavin ratio
(AFR) values of the prepared enzyme were calculated by dividing the absorbance
change per minute at 295 nm under standard assay conditions by the enzyme
absorbance at 450 nm1.

Enzyme assays. Enzyme assays were carried out at 25uC in 50 mM Tris and 1 mM
EDTA, pH 7.8. Routine assay mixtures contained 0.5 mM NAD1 and various
concentrations of xanthine or febuxostat. XOR activities were determined by

monitoring the absorbance changes at 295 nm as a parameter of uric acid production.
Spectrophotometric studies were conducted with a U-3210 spectrophotometer
(Hitachi, Tokyo).

Preparation of starting structures. The coordinates for mammalian and bacterial
xanthine oxidoreductases (XORs) were taken from Protein Data Bank (PDB)
structures 1FO48 and 1JRO4, respectively. The position of febuxostat was determined
by a protein-ligand docking algorithm, LigandFit21 module of Discovery StudioR 2.5
(Accelrys Inc., California). To investigate the Moco-binding domain, residues 600–
1310 were selected for the bXOR and residues 30–377 & 402–777 for RcXOR. The N-
and C-termini of each selected region were capped with an acetyl (ACE) and an N-
methyl (NME) group, respectively (besides residue 777 of the bacterial enzyme, which
is the biochemical terminus). Although there are missing residues in the bacterial
XOR (see PDB: 1JRO) (see Supplementary Fig. S4), this section is far from the binding
region and is considered unlikely to be relevant to the enzymatic reaction (see
Supplementary Fig. S5). Thus, the missing region was deleted in the model,
mimicking the structure of bXOR, and its terminal residues were also appropriately
processed. Considering hydrogen-bonding between XOR and febuxostat, a hydrogen
atom was added to Glu802 of bXOR (Glu232 of RcXOR). All crystal water molecules
outside the cut-off range (.8.0 Å) from the regions of interest were removed, but after
this procedure, the systems were fully solvated with explicit solvent for the later
calculations.

Parameter generation for Moco. To parameterize the partial charges for
molybdopterin (Moco), which contains an unconventional Mo atom for molecular
dynamics simulations, ab initio quantum chemistry software Gaussian0927 was
utilized and the ESP charges were assigned at the level of B3LYP/LANL3DZ/6-
31G(d). The general AMBER force field (GAFF) parameters were automatically
assigned for the pyranopterin part using the antechamber module. The non-
electrostatic parameters for dioxothiomolybdenum were determined empirically and
combined with the pyranopterin part. Details of the force field for Moco are given in
Supplementary Fig. S6.

Molecular dynamics simulations. All simulations were performed using Amber 11
software22. The Amber ff03 force field was used for proteins and the general Amber
force field with the partial ESP charge parameters was assigned for febuxostat. The
systems studied were electrostatically neutralized by counter ions in the explicit water
(TIP3P) box. The total numbers of atoms in the system were 98,609 and 93,122 for
bXOR and RcXOR, respectively (see Supplementary Fig. S1). The systems were
minimized for 300 steepest-descent steps and equilibrated for 1 ns with gradually
reducing restraints. Finally 10 ns production runs were performed for trajectory
analysis with two different initial velocities for each XOR, i.e. two runs for each
species. The temperature and the pressure were kept constant by using the Berendsen
rescaling method28 and the long-range electrostatic forces were calculated using the
particle-mesh Ewald method29.
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