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Considering the limitation of machine and technology, we study the stability for nonlinear impulsive control system with some
uncertainty factors, such as the bounded gain error and the parameter uncertainty. A new sufficient condition for this system is
established based on the generalized Cauchy–Schwarz inequality in this paper. Compared with some existing results, the proposed
method is more practically applicable. ,e effectiveness of the proposed method is shown by a numerical example.

1. Introduction

Impulse control is based on impulsive differential equation
and has many applications [1–6], such as digital commu-
nication system, artificial intelligence, and financial sector.
In comparison with other methods, impulse control is more
efficient in dealing with the stability of complex systems.,e
stability is an important property of the impulsive control
system. Mathematically, its goal is to stabilize an unstable
system by proper impulse. Up to now, a wide variety of
achievements of impulse control theory have been developed
in the literature [7–13].

Generally, there are at least one “impulsively” changeable
state variable appearing in a plant P, which could be de-
scribed as following control system:

_x(t) � Ax + ϕ(x), t≠ τk,

Δx � U(k, x), t � τk, k � 1, 2, . . . ,

x t0( 􏼁 � x0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

Here, x ∈ Rn denotes the state variable and U(k, x) the
impulse control law. We assume that the control instance
satisfies

t0 < τ1 < · · · · · · < τk < τk+1 · · · ,

limk⟶∞ τk �∞.
(2)

A continuous nonlinear function ϕ(x): Rn⟶ Rn

stratifies ϕ(t, 0) � 0 and ‖ϕ(x)‖≤L‖x‖, where L is a Lip-
schitz constant. Many researchers have paid more attention
on control system (1) and achieved many sufficient condi-
tions for the stability of these systems [14–20]. Feng et al.
consider single state-jumps impulsive systems with peri-
odically time windows and give stability criteria for the new
model [21]. To make the nonlinear impulse control system
more reasonable, parameter uncertainty and bounded gain
error are introduced into the corresponding impulsive
differential equations [22–25]. Considering the limitation of
machine and technology, Ma et al. investigate stabilization of
impulse control systems with gain error and obtain a suf-
ficient criterion for global exponential stability [26]. Zou
et al. study impulsive systems with bounded gain error and
form a sufficient criterion for the stability [27].

Cauchy–Schwarz inequality is an important tool to study
nonlinear systems [28–31]. Recently, Peng et al. generalize
the Cauchy–Schwarz inequality, which is used to deduce
asymptotic stability for a class of nonlinear control systems
[30]. Under the assumption U(k, x) � BCx, they study the
after nonlinear system:
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_x(t) � Ax + ϕ(x), t≠ τk,

Δx � BCx, t � τk, k � 1, 2, . . . ,

x t0( 􏼁 � x0,

⎧⎪⎪⎨

⎪⎪⎩
(3)

where B and C are constant matrixes. Based on the gen-
eralized Cauchy–Schwarz inequality, we consider a class of
nonlinear impulsive control systems with the parameter
uncertainty, which can be written as follows:

_x(t) � (A + ΔA)x + ϕ(x), t≠ τk,

Δx � BCx, t � τk, k � 1, 2, . . . ,

x t0( 􏼁 � x0.

⎧⎪⎪⎨

⎪⎪⎩
(4)

Generally, one can express the parameter uncertainty as
ΔA � GF(t)H with FT(t)F(t) ≤ I. Here, matrixes G and H

are given with appropriate dimensions. In this paper, we will
find some conditions for the stability of system (4). We
organize the paper as follows. In Section 2, we briefly in-
troduce some related lemmas. ,en, we show sufficient
conditions in Section 3. ,e simulation experiment is shown
in Section 4, and conclusion is listed in Section 4.

2. Related Lemmas

First of all, we introduce some lemmas to be used later.
,roughout this paper, λmax and λmin are denoted as the
largest eigenvalue and the smallest eigenvalue, respectively.
‖ · ‖ is denoted as the Euclidian norm of matric or vector.

Lemma 1 (see [30]). Suppose that P is positive definite. If
x, y ∈ Rn satisfy |xTy|≤ σ(xTx)(yTy) for a certain
σ ∈ [0, 1], then

x
T
Py􏼐 􏼑

2
≤

λmax(P) − g(
��
σ

√
)λmin(P)

λmax(P) + g(
��
σ

√
)λmin(P)

􏼠 􏼡

2

x
T
Px􏼐 􏼑 y

T
Py􏼐 􏼑,

(5)

where g(σ) � (1 − σ/1 + σ).

Lemma 2 (see [27]). Suppose that Q is symmetric and
positive definite; then, for any A, B ∈ Rn×n and μ> 0,

A
T
QB + B

T
QA≤ μA

T
QA +

1
μ

B
T
QB. (6)

Lemma 3 (see [32]). Suppose that H is a real symmetric
matrix; then,

λmin(H)x
T
x≤ x

T
Hx≤ λmax(H)x

T
x. (7)

3. The Proposed Results

We give the main results in this section. Specifically, we will
analyze the stabilization of impulsive control system (4) with
bounded gain error and parameter uncertainty and then list
some sufficient conditions which assure the origin of the
related systems is asymptotically stable.

Theorem 1. Suppose P ∈ Rn×n be a symmetric and positive
definite matrix, λ1 � λmin(P), λ2 � λmax(P), I be the identity
matrix, λ3 be the largest eigenvalue of P− 1(PA + ATP), and
λ4 be the largest eigenvalue of the matrix
P− 1(I + BC)TP(I + BC). If

x
T
(t)ϕ(x(t))

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ σ x
T

(t)x(t)􏼐 􏼑 ϕ(x(t))
Tϕ(x(t))􏼐 􏼑, (8)

for a certain σ ∈ [0, 1] and

λ3 + 2

������������������������

λ2λmax G
T
G􏼐 􏼑λmax H

T
H􏼐 􏼑

λ1
⎛⎝ ⎞⎠

􏽶
􏽴

+ 2L
λ2 − g(

��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

��
λ2
λ1

􏽳

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ τk+1 − τk( 􏼁≤ − ln cλ4( 􏼁, (9)

where

g(σ) �
1 − σ
1 + σ

, c> 1. (10)

then, we obtain that the origin of impulsive control
system (4) is asymptotically stable.

Proof. We choose the Lyapunov function as follows:

V(x(t)) � x
T
(t)Px(t). (11)

When t≠ τk, we obtain Dini’s derivative of V(x(t)) for
impulsive control system (4) as follows:

D
+
V(x(t)) � 2x

T
(t)P((A + ΔA)x(t) + ϕ(x(t))),

� 2x
T
(t)PAx(t) + 2x

T
(t)PΔAx(t) + 2x

T
(t)Pϕ(x(t)).

(12)
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Next, we will calculate the three parts of the above
formula (12), respectively.,ematrices P− 1(PA + ATP) and
P− 0.5(PA + ATP)P− 0.5 have the same eigenvalues. By
Lemma 3, we have

2x
T
(t)PAx(t) � x

T
(t) PA + A

T
P􏼐 􏼑x(t),

� x
T
(t)P

0.5
􏼐 􏼑 P

− 0.5
PA + A

T
P􏼐 􏼑P

− 0.5
􏼐 􏼑 P

0.5
x(t)􏼐 􏼑,

≤ λ3 x
T
(t)P

0.5
􏼐 􏼑 P

0.5
x(t)􏼐 􏼑,

� λ3V(x(t)).

(13)

According to the Cauchy–Schwarz inequality, we obtain

x
T
(t)PΔAx(t) ≤

����������������������������

x
T
(t)P

2
x(t)􏼐 􏼑 x

T
(t)ΔATΔAx(t)􏼐 􏼑

􏽱

.

(14)

Since parameter uncertainty ΔA � GF(t)H and
FT(t)F(t) ≤ I, inequality (14) can be rewritten as

2x
T
(t)PΔAx(t) ≤ 2

��������������������������������������

x
T
(t)P

2
x(t)􏼐 􏼑 x

T
(t)H

T
F

T
(t)G

T
GF(t)Hx(t)􏼐 􏼑

􏽱

,

≤ 2
�����������������������������������������������

x
T
(t)P

1/2
􏼐 􏼑P P

1/2
x(t)􏼐 􏼑􏼐 􏼑 x

T
(t)H

T
F

T
(t)G

T
GF(t)Hx(t)􏼐 􏼑

􏽱

,

≤ 2
������������������������������������

λ2V((x(t)))( 􏼁 λmax G
T
G􏼐 􏼑x

T
(t)H

T
IHx(t)􏼐 􏼑

􏽱

,

≤ 2
���������������������������������������

λ2V(x(t))( 􏼁 λmax G
T
G􏼐 􏼑λmax H

T
H􏼐 􏼑x

T
(t)x(t)􏼐 􏼑

􏽱

,

� 2
����������������������������������������������������

λ2V(x(t))) λmax G
T
G􏼐 􏼑λmax H

T
H􏼐 􏼑 x

T
(t)􏼐 P

1/2
􏼐 􏼑P

−1
P

(1/2)
x(t)􏼐 􏼑􏼐 􏼑

􏽱

,

≤ 2

������������������������

λ2λmax G
T
G􏼐 􏼑λmax H

T
H􏼐 􏼑

λ1
⎛⎝ ⎞⎠

􏽶
􏽴

V(x(t)).

(15)

According to Lemma 1, we obtain

2x
T
(t)Pϕ(x(t)) ≤ 2L

λ2 − g(
��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

����������������������������

x
T
(t)Px(t)􏼐 􏼑 ϕ(x(t))

T
Pϕ(x(t))􏼐 􏼑

􏽱

,

≤ 2L
λ2 − g(

��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

�����������������������������

λ2 x
T

(t)Px(t)􏼐 􏼑 ϕ(x(t))
Tϕ(x(t))􏼐 􏼑.

􏽱
(16)

Since ‖ϕ(x)‖≤L‖x‖, inequality (16) can be obtained as
follows:

2x
T

(t)Pϕ(x(t)) ≤ 2L
λ2 − g(

��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

�����������������������

λ2 x
T
(t)Px(t)􏼐 􏼑 x(t)

T
x(t)􏼐 􏼑

􏽱

,

≤ 2L
λ2 − g(

��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

�����������������������

λ2 x
T
(t)Px(t)􏼐 􏼑 x(t)

T
x(t)􏼐 􏼑

􏽱

,

≤ 2L
λ2 − g(

��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

���������������������������
λ2
λ1

􏼠 􏼡 x
T
(t)Px(t)􏼐 􏼑 x(t)

T
Px(t)􏼐 􏼑

􏽳

,

� 2L
λ2 − g(

��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

��
λ2
λ1

􏽳

V(x(t)).

(17)
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Combining inequalities (13), (15), and (17), we obtain

D
+
V(x(t)) ≤ λ3 + 2

�������������������������

λ2λmax G
T
G􏼐 􏼑λmax H

T
H􏼐 􏼑

λ1
⎛⎝ ⎞⎠

􏽶
􏽴

+ 2L
λ2 − g(

��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

��
λ2
λ1

􏽳

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠V(x(t)). (18)

When t � τk, we compute the value of V as follows:

V(x(t) + BCx(t))|t�τk
� (x(t) + BCx(t))

T
P(x(t) + BCx(t))|t�τk

,

� x(t)
T
(I + BC)

T
P(I + BC)x(t)|t�τk

,

� x
T
(t)P

0.5
􏼐 􏼑 P

− 0.5
(I + BC)

T
P(I + BC)P

− 0.5
􏼐 􏼑 P

0.5
x(t)􏼐 􏼑|t�τk

.

(19)

It is known that the matrix
P− 0.5(I + BC)TP(I + BC)P− 0.5 has the same eigenvalues

with the matrix P− 1(I + BC)TP(I + BC). ,us, it follows
from (19) that

V(x(t) + BCx(t))|t�τk
≤ λ4 x

T
(t)P

0.5
􏼐 􏼑 P

0.5
x(t)􏼐 􏼑|t�τk

,

� λ4V(x(t))|t�τk
.

(20)

Now, we analyze the following comparison system:

_ω � λ3 + 2

������������������������

λ2λmax G
T
G􏼐 􏼑λmax H

T
H􏼐 􏼑

λ1
⎛⎝ ⎞⎠

􏽶
􏽴

+ 2L
λ2 − g(

��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

��
λ2
λ1

􏽳

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ω(t), t≠ τk,

ω τ+
k( 􏼁 � λ4ω τk( 􏼁,

ω τ+
0( 􏼁 � ω0 ≥ 0.

(21)

According to the related conclusion (see ,eorem 3 in
[29]), we obtain that if

􏽚
τk+1

τk

λ3 + 2

�������������������������

λ2λmax G
T
G􏼐 􏼑λmax H

T
H􏼐 􏼑

λ1
⎛⎝ ⎞⎠

􏽶
􏽴

+ 2L
λ2 − g(

��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

��
λ2
λ1

􏽳

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠dt + ln cλ4( 􏼁≤ 0, c> 1. (22)

,e origin of impulsive control system (4) is asymp-
totically stable. □

Remark 1. If the parameter uncertainty ΔA � 0, the con-
dition of (9) became the result of ,eorem 3.1 in reference

[30].,us, the proposed method is a generalization of Peng’s
method.

In many practical applications, it is inevitable to put
impulses with errors due to the limitation of machine and
technology. So, we integrate the bounded gain error into the
impulsive system (4). For simplicity, let D � BC. We rewrite
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the corresponding system as

x(t) � (A + ΔA)x(t) + ϕ(x(t)), t≠ τk,

Δx(t) � (D + ΔD)x(t), t � τk, k � 1, 2, . . . ,

x t0( 􏼁 � x0,

⎧⎪⎪⎨

⎪⎪⎩
(23)

where ΔD denotes the bounded gain error and has the
following form: ΔD � mF(t)D with m> 0 and
FT(t)F(t) ≤ I. It is easy to obtain a similar analysis from
,eorem 1.

Theorem 2. Let P ∈ Rn×n be a symmetric and positive def-
inite matrix, λ1 � λmin(P), λ2 � λmax(P), I be the identity
matrix, and λ3 be the largest eigenvalue of P− 1(PA + ATP). If

x
T
(t)ϕ(x(t))

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ σ x
T
(t)x(t)􏼐 􏼑 ϕ(x(t))

Tϕ(x(t))􏼐 􏼑. (24)

for a certain σ ∈ [0, 1] and

λ3 + 2

������������������������

λ2λmax G
T
G􏼐 􏼑λmax H

T
H􏼐 􏼑

λ1
⎛⎝ ⎞⎠

􏽶
􏽴

+ 2L
λ2 − g(

��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

��
λ2
λ1

􏽳

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ τk+1 − τk( 􏼁≤ − ln cλ4( 􏼁, (25)

where

λ4 �
λ2
λ1

(1 + μ)λmax (I + D)
T
(I + D)􏼐 􏼑 + 1 +

1
μ

􏼠 􏼡m
2λmax D

T
D􏼐 􏼑􏼠 􏼡, (26)

g(σ) �
1 − σ
1 + σ

, c> 1. (27)

*en, the origin of impulsive control system (23) is as-
ymptotically stable.

Proof. We choose the following Lyapunov function as
follows:

V(x(t)) � x
T
(t)Px(t). (28)

According to inequality (18), Dini’s derivative of
V(x(t)) for impulsive control system (23) is acquired as
follows:

D
+
V(x(t)) ≤ λ3 + 2

�������������������������

λ2λmax G
T
G􏼐 􏼑λmax H

T
H􏼐 􏼑

λ1
⎛⎝ ⎞⎠

􏽶
􏽴

+ 2L
λ2 − g(

��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

��
λ2
λ1

􏽳

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠V(x(t)). (29)

,en, we just need to compute
V(x(t) + (D + ΔD)x(t))|t�τk

.
We perform some calculations on

V(x(t) + (D + ΔD)x(t))|t�τk
and obtain

V(x(t) +(D + ΔD)x(t))|t�τk
� (x(t) +(D + ΔD)x(t))

T
P(x(t) +(D + ΔD)x(t))|t�τk

,

� x(t)
T
((I + D) + ΔD)

T
P((I + D) + ΔD)x(t)|t�τk

,

≤ λ2x(t)
T
((I + D) + ΔD)

T
((I + D) + ΔD)x(t)|t�τk

,

≤ λ2x(t)
T

(I + D)
T
(I + D) +(I + D)

TΔD + ΔDT
(I + D) + ΔDTΔD􏼐 􏼑x(t)|t�τk

.

(30)
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By using Lemma 2 and ΔD � mF(t)D, we rewrite in-
equality (30) as

V(x(t) +(D + ΔD)x(t))|t�τk
≤ λ2x

T
(t) (I + D)

T
(I + D) +(I + D)

TΔD + ΔDTΔD + ΔDT
(I + D)􏼐 􏼑x(t)|t�τk

,

≤ λ2x
T
(t) (1 + μ)(I + D)

T
(I + D) + 1 +

1
μ

􏼠 􏼡ΔDTΔD􏼠 􏼡x(t)|t�τk
,

� λ2x
T
(t) (1 + μ)(I + D)

T
(I + D) + 1 +

1
μ

􏼠 􏼡m
2
D

T
F

T
(t)F(t)D􏼠 􏼡x(t)|t�τk

.

(31)

It follows from (15) that

x
T
(t)x(t) � x

T
(t)P

1/2
􏼐 􏼑P

− 1
P
1/2

x(t)􏼐 􏼑≤
V(x(t))

λ1
. (32)

Combine inequalities (31) and (32) and FT(t)F(t) ≤ I,
we obtain

V(x(t) +(D + ΔD)x(t))|t�τk
� λ2x

T
(t) (1 + μ)(I + D)

T
(I + D) + 1 +

1
μ

􏼠 􏼡m
2
D

T
F

T
(t)F(t)D􏼠 􏼡x(t)|t�τk

,

≤ λ2x
T
(t) (1 + μ)(I + D)

T
(I + D) + 1 +

1
μ

􏼠 􏼡m
2
D

T
D􏼠 􏼡x(t)|t�τk

,

≤
λ2
λ1

(1 + μ)λmax (I + D)
T
(I + D)􏼐 􏼑 + 1 +

1
μ

􏼠 􏼡m
2λmax D

T
D􏼐 􏼑􏼠 􏼡V(x(t))|t�τk

,

� λ4V(x(t))|t�τk
.

(33)

Here, we emit the rest analysis process, which is similar
to,eorem 1. ,us, from equalities (29) and (33), we obtain
that if

λ3 + 2

������������������������

λ2λmax G
T
G􏼐 􏼑λmax H

T
H􏼐 􏼑

λ1
⎛⎝ ⎞⎠

􏽶
􏽴

+ 2L
λ2 − g(

��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

��
λ2
λ1

􏽳

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ τk+1 − τk( 􏼁≤ − ln cλ4( 􏼁,

λ4 �
λ2
λ1

(1 + μ)λmax (I + D)
T
(I + D)􏼐 􏼑 + 1 +

1
μ

􏼠 􏼡m
2λmax D

T
D􏼐 􏼑􏼠 􏼡,

(34)

the origin of impulsive control system (23) is asymptotically
stable. ,is completes the proof. □

4. A Numerical Example

In this section, we perform the proposed model on a nu-
merical example to display its effectiveness. ,e example is

produced by Qi and Chen [33]. Let x � [x1, x2, x3]
T,

ϕ(x) � [x2x3, −x1x3, x1x2]
T, and

A �

−a a 0

c −1 0

0 0 −b

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (35)
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,e corresponding state equation can be described as

_x � Ax + ϕ(x). (36)

According to the strategy of [33], some parameters of
this system are set as a � 35, b � (8/3), and c � 25. From
Figure 1, we can see that system (36) is chaotic for the initial
condition: x(0) � [3, 5, 10]T.

After simple calculation, we obtain that

‖ϕ(x)‖ �

�����������������������

x2x3( 􏼁
2

+ x1x3( 􏼁
2

+ x1x2( 􏼁
2

􏽱

,

≤max x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, x3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽮 􏽯

����������

x
2
1 + x

2
2 + x

2
3

􏽱

,

� max x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, x3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽮 􏽯‖x‖.

(37)

From Figure 1, we can intuitively find
max |x1|, |x2|, |x3|􏼈 􏼉≤ 45. Combining with inequality (37),
the parameter L can be set as 45. Since

45

40

35

30

25

20

15

10

5

0

x 3

20 10 0–10–40 –30 –20 –10 0 10 20 30 40x2 x1

Figure 1: ,e chaotic phenomenon of system (36) with the initial condition: x(0) � [3, 5, 10]T.
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
t

(b)

5

0

x3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
t
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(c)

Figure 2: Time response curves for the controlled system (36) with the parameter uncertainty.
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x
Tϕ(x)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
≤
1
9

x
T
x􏼐 􏼑 ϕ(x)

Tϕ(x)􏼐 􏼑, (38)

the parameter σ is chosen as σ � (1/9). In this section, some
matrices are chosen as follows:

G � H �

0.5 0 0

0 0.5 0

0 0 0.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

P � C �

1 0 0

0 1 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B �

−0.5 −0.01 0.02

−0.01 −0.5 0

0.02 0 −0.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(39)

,us, the parameter uncertainty can be formed as

ΔA �

0.5 0 0

0 0.5 0

0 0 0.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0.1 sin(t) 0 0

0 0.1 sin(t) 0

0 0 0.1 sin(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

0.5 0 0

0 0.5 0

0 0 0.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(40)

According to ,eorem 1, we calculate λ3 � 32.9638 and
λ4 � 0.2729. It follows from (8) that

τk+1 − τk ≤ −
ln cλ4( 􏼁

63.4638
. (41)

If c � 1.1, it yields τk+1 − τk ≤ 0.0190. We choose τk+1 −

τk � 0.0190 and show the simulation result in Figure 2. ,e
impulsive control system (36) is asymptotically stable.
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
t
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
t

(b)
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t

(c)

Figure 3: Time response curves for the controlled system (36) with parameter uncertainty and gain error.
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Next, we consider the controlled system (36) with the
parameter uncertainty and the bounded gain error. ,e gain
error is detailed as ΔD � m sin(t)D in this section. We
perform some similar calculation on (25) and obtain
λ3 � 32.9638. We choose μ � 1 and then obtain
λ4 � 0.5458(1 + m2) from (26). Let c � 1.1 and m � 0.05;
then,

τk+1 − τk ≤ 0.0080. (42)

,us, we choose τk+1 − τk � 0.0080 and show the ex-
perimental result in Figure 3. From this figure, we can obtain
that the impulsive control system (36) is asymptotically
stable.

5. Conclusion

We study the asymptotic stability of impulsive control
systems with some uncertainty factors, such as the bounded
gain error and the parameter. ,e proposed sufficient
condition is established based on the generalized Cau-
chy–Schwarz inequality. We think the proposed issue is
more practically applicable than some existing ones.
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