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The retinoblastoma susceptibility gene (RB1) was the first
tumor suppressor gene to be molecularly defined. RB1
mutations occur in almost all familial and sporadic forms
of retinoblastoma, and this gene ismutated at variable fre-
quencies in a variety of other human cancers. Because of
its early discovery, the recessive nature ofRB1mutations,
and its frequency of inactivation,RB1 is often described as
a prototype for the class of tumor suppressor genes. Its
gene product (pRB) regulates transcription and is a nega-
tive regulator of cell proliferation. Although these general
features are well established, a precise description of
pRB’s mechanism of action has remained elusive. Indeed,
in many regards, pRB remains an enigma. This review
summarizes some recent developments in pRB research
and focuses on progress toward answers for the three fun-
damental questions that sit at the heart of the pRB litera-
ture: What does pRB do? How does the inactivation of RB
change the cell? How can our knowledge of RB function
be exploited to provide better treatment for cancer
patients?

The textbook model for pRB function is appealingly sim-
ple (Fig. 1). pRB is a chromatin-associated protein that lim-
its the transcription of cell cycle genes, primarily via
regulation of the E2F transcription factor. In addition to
binding to E2F, pRB interacts with chromatin regulators.
These contacts allow pRB to recruit and stabilize com-
plexes that repress transcription. By suppressing transcrip-
tion of E2F targets, pRB restricts the expression of genes
that are needed for cell proliferation. pRB is broadly ex-
pressed, but its activity is controlled by cyclin-dependent
kinases (CDKs). Active pRB is found in quiescent cells,
during G1 phase of the cell cycle, and during check-
point-mediated cell cycle arrest. Hyperphosphorylation
of pRB at the G1/S transition relieves pRB’s inhibition of
E2F and allows cell cycle progression. An extensive body
of data shows that pRB is functionally compromised in
many tumors either as a result ofmutations inRB1 ormu-
tations that increase the phosphorylation of pRB or

through the expression of viral oncoproteins that target
pRB. The inactivation of pRB compromises the ability of
cells to exit the cell cycle, and this places them in a state
that is highly susceptible to oncogenic proliferation (for a
review, see Hinds and Weinberg 1994; Weinberg 1995;
Sherr 1996; Nevins 2001).

As readers of the RB literature will appreciate, this de-
scription glosses over several inconvenient gaps in the
data, and research over the past two decades has given
us an increasingly complex picture of pRB action (Fig. 2).
Although E2F is the best-known target of pRB, mapping
the genome-wide distribution of pRB on chromatin has
been technically challenging. Currently, there is surpris-
ingly little information about precisely which genomic
loci are controlled directly and specifically by pRB. The
genomic distribution of pRB varies between cycling, qui-
escent, and senescent cells (Wells et al. 2003; Chicas
et al. 2010; Ferrari et al. 2014; Kareta et al. 2015). It is
uncertain what proportion of pRB is bound directly at
E2F-regulated promoters or whether this is the most
functionally relevant population of the protein, and it is
unclear which or how many E2F-regulated promoters
are truly rate-limiting for pRB-mediated control of cell
proliferation.

In addition to the repression of E2F-regulated genes,
pRB has been implicated in the organization of chromo-
somal domains and has roles in gene activation, particu-
larly in response to apoptotic and differentiation signals
(Thomas et al. 2001; Ianari et al. 2009; Calo et al. 2010).
The RNA signatures associated with RB1 mutation in-
clude both up-regulated and down-regulated transcripts
(Black et al. 2003; Markey et al. 2007; Ertel et al. 2010).
Multiple proteins have been implicated in pRB-mediated
repression, but the mechanisms of pRB-mediated activa-
tion have not been characterized in as much detail. In ad-
dition to E2F, pRB associates at substoichiometric levels
with a large number of nuclear proteins. Factors reported
to interact with pRB include multiple cyclins, CDKs, and
phosphatases (that act on pRB) as well as an assortment of
chromatin-associated proteins that have varied activities
(Harbour and Dean 2000; Morris and Dyson 2001; Talluri
and Dick 2012). It is undoubtedly true that pRB is a cell
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cycle-dependent regulator of chromatin, but it is more ac-
curate to describe pRB as a multifunctional, chromatin-
associated protein rather than viewing it simply as a re-
pressor of E2F.
pRB-mediated control of cell cycle progression also

turned out to be more complex than initially imagined.
pRB not only targets E2F but also has transcription-inde-
pendent effects. Notably, a physical interaction with
Skp2 enables pRB to regulate the stability of p27 (Ji et al.
2004; Binne et al. 2007). Indeed, in some assay systems,
pRB-mediated cell cycle exit correlates better with its ef-
fects on p27 levels thanwith changes in proteins expressed
from E2F-regulated genes (Ji et al. 2004). A pool of pRB has
been detected at mitochondria, where it suppresses apo-
ptosis (Ferecatu et al. 2009; Hilgendorf et al. 2013), provid-
ing further support for the view that pRBhas effects on cell
proliferation that extend beyond transcription.
RB function is especially relevant during tumorigene-

sis. Cancer genome sequencing confirmed thatRB1 ismu-
tated in most retinoblastomas, osteosarcomas, and small-
cell lung cancers, and it is mutated at lower frequencies in
a variety of other cancer types. pRB is often described as a
component of a regulatory pathway that is inactivated in
most cancers (the INK4A/Cyclin D1/pRB/E2F pathway)
(Kato et al. 1993; Aagaard et al. 1995; Koh et al. 1995;
Lukas et al. 1995; Sherr 1996). The proteins in this “path-
way” are actually components of a much larger network
of cell cycle regulators. Significantly, individual types of
cancer typically associate with particular lesions in this
network (e.g., mutation of RB1 in retinoblastoma, muta-
tion of INK4A in pancreatic cancer, amplification of Cy-
clin D1 in breast tumors, etc.). This selectivity suggests
that the various perturbations of this “pathway” are not
identical but that specific mutations have different conse-
quences in different contexts. Data indicating that pRB re-
tains some degree of E2F regulation in INK4A mutant
cells or when phosphorylated by cyclin D-dependent ki-
nases (Haberichter et al. 2007; Narasimha et al. 2014)
and evidence that hyperphosphorylated pRB interacts
with the mTORC2 complex and attenuates Akt activa-
tion (Zhang et al. 2016) support the view that the inactiva-

tion of pRB by phosphorylation is not functionally
equivalent to the mutation of the RB1 gene.
Animal studies demonstrate that the biological role of

RB1 is context-dependent. In much of the developing
mouse embryo, pRB loss does not have major effects on
tissue pathology. In specific compartments, the genetic
ablation of RB1 alters cell cycle progression/cell cycle
exit, sensitivity to apoptosis, senescence, and differentia-
tion (for review, see Vooijs and Berns 1999; Goodrich
2006; Viatour and Sage 2011; Sage 2012). The mutation
of RB1 can alter the type of differentiation programs
that are activated, the extent of differentiation that oc-
curs, and the ability of differentiated cells to permanently
exit the cell cycle (for examples, see Thomas et al. 2001;
Calo et al. 2010; for review, see Thomas et al. 2003; Sage
2012).
Viewed together, the many reported pRB-associated

proteins and the evidence that the impact of RB1 muta-
tion is context-dependent highlight a central issue in RB
research that is not fully resolved. On one hand, pRB’s

Figure 1. pRB and E2F provide cell cycle regulation of promoter
activity. An interaction between pRB and E2F/DP heterodimeric
complexes represses transcription of E2F-regulated promoters.
This interaction can be detected in quiescent cells, differentiated
cells, and cells arrested in G1 by activation of checkpoint path-
ways. When cells enter a cell division cycle, CDKs phosphorylate
RB (depicted by yellow circles), leading to the disruption of E2F
repressor complexes and the accumulation of activator E2F com-
plexes that drive transcription.

Figure 2. pRB hasmultiplemechanisms of action. (A) Shortly af-
ter the discovery of the interaction between RB and E2F, themod-
el for pRB’s mechanism action was relatively simple: pRB acts in
the nucleus, where it associates with E2F complexes and repress-
es promoters. Initially, the mechanism of repression was not
known, and E2F targets were thought to be regulated in much
the sameway. (B) An updatedmodel illustrating several of the lay-
ers of complexity that have been added to pRB’smechanism of ac-
tion over the past two decades. Note that pRB recruits several
different types of corepressors to E2F targets (depicted in red
and pink), and, under certain conditions, E2F/RB complexes asso-
ciate with coactivator complexes (green) and increase transcrip-
tion of some targets. pRB does not act solely at E2F-binding
sites but also associates with several transcription factors in addi-
tion to E2F. pRB has transcription-independent activities in the
nucleus (illustrated here by its association with Skp2) and in
the cytosol, where it associates with mitochondria.
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interaction with E2F has been conserved during evolu-
tion, and this role is evident inmany different experimen-
tal systems. On the other hand, it is also clear that pRB has
the ability to interact with various proteins, sometimes
with context-specific effects. The relative importance of
these two aspects of RB biology is uncertain. Does pRB
primarily function in the same way in most cell types,
with the variable effects of RB1 inactivation mostly re-
flecting the impact of a complex phenotype in different
situations, or is pRB such a multifunctional protein that
its key mechanism of action is fundamentally different
in different situations?

The textbook models of pRB function were built by
combining results fromdifferent cell systems. In those ear-
ly studies, it was generally assumed that results obtained
in one cell type would be true in all others. In current re-
search, much more emphasis is placed on understanding
pRB’s role in specific contexts. This thinking was influ-
enced in part by evidence of a variable functional overlap
between RB1 and the two related genes p107 and p130
(Dyer and Bremner 2005) and also the observation that
the expression of these three familymembers varies great-
ly during animal development (Jiang et al. 1997). The im-
portance of context has been beautifully illustrated by
the extensive efforts that have been devoted to identifying
the precise cell type of origin of retinoblastoma (Chen et al.
2004; Dyer and Bremner 2005; Xu et al. 2009, 2014), an or-
igin that differs between mouse models and the human
disease. Such detailed studies were needed because of
the possibility that there may be unique features to the
molecular circuitry around pRB in these progenitor cells
that could not be inferred by studying other cell types. Pre-
sumably, equivalent studies will be needed to understand
the activity of pRB in each of the contexts inwhich it plays
an important role. In a sense, RB research has matured
from searching for a simple generic model that explains
all observations to a more nuanced picture in which the
precise role of pRB may vary and the consequences of
RB1 inactivation are extensive.

In summary, we know a great deal about what pRB can
do. Despite the multitude of theories or perhaps because
of the number of possibilities, it is difficult to pinpoint
the precise mechanism by which pRB acts. As a result,
pRB has remained an enigma—a tumor suppressor whose
action is more easily described in general terms rather
than in specific details. Despite this, there has been a great
deal of progress. Below, I summarize some of the recent
studies that provided new insights into the biochemical
properties of pRB and studies that have examined the con-
sequences of RB1 inactivation. Ultimately, the most
meaningful test of our understanding of pRB is whether
this knowledge has been used to improve treatments for
cancer patients, and the final section describes some of
the progress toward the translation of this research.

How large is the pRB interactome and how is it organized?

Shortly after the cloning of RB1 (Friend et al. 1986; Fung
et al. 1987; Lee et al. 1987), it was discovered that a set

of viral oncoproteins directly targets pRB and that these
physical interactions were necessary for the transform-
ing properties of the viral products (DeCaprio et al.
1988; Whyte et al. 1988; Dyson et al. 1989). The notion
that viral proteins might interfere with pRB’s interaction
with its normal cellular partners led to extensive searches
for these pRB-interacting proteins. By 2001, >110 pRB-as-
sociated proteins had been reported,many of which bound
to pRB in a manner that was disrupted by viral proteins
or tumor-derived mutations (for review, see Morris and
Dyson 2001). According to current interaction databases
(Euorpoean Bioinformatics Institute [EBI]-IntAct,Molecu-
lar Interaction [MINT], Interologous Interaction Database
[I2D], and String), there are >300 proteins that interact
with pRB. These lists are useful starting points for discus-
sion so long as one accepts thatmany of these interactions
need additional validation.

In the absence of a quick, simple, and definitive assay
for pRB’s tumor suppressor function, there is little con-
sensus on the number of “true” pRB partners, and it is un-
certain how many of the reported interactions with pRB
are functionally significant. In a few cases, mutant alleles
of binding partners have been shown to modify the tumor
phenotype associated with mutant RB1 alleles (Yamasaki
et al. 1998; Ziebold et al. 2003; Lasorella et al. 2005; Parisi
et al. 2007; Wang et al. 2010; Sun et al. 2011). However,
these alleles can have dominant effects, and it is unclear
howmuch of the genetic interaction should be attributed
specifically to the loss of the physical interaction between
the proteins. Indeed, one of the most remarkable features
of the pRB literature is that, even after close to 30 years of
study, the molecular mechanism of pRB-mediated tumor
suppression has not been definitively identified. There are
no mutational studies of RB1, for example, showing that
the precise elimination of pRB’s interaction with a single
partner (or even a class of proteins) eliminates its tumor
suppressor activity. In the absence of definitive data, the
mechanism of pRB-mediated tumor suppression remains
a matter of debate. At present, it seems likely that pRB
does not have a single activity but that it acts as a tumor
suppressor through its effects on multiple targets.

The large body of literature on pRB-associated proteins
may be evidence that pRB is a very versatile protein in-
volved in many processes and capable of nucleating a va-
riety of interactions (for review, see Dick and Rubin
2013). A contrarian viewpoint is that the length of these
lists of interacting proteins is a testament to the sensitiv-
ity of molecular biology techniques but little more. An
important but often overlooked feature of this literature
is that different groups have focused on different partners
of pRB, and very few of the reported interactions have
been confirmed by independent studies. The vast number
of potential interactions creates difficulties for structure/
function studies on pRB; it is now extremely difficult to
examine the potential impact of any RB1 mutation on
pRB’s interactions with all of its possible partners. This
task is compounded by the fact thatmost of the tumor-de-
rived mutant alleles of RB1 that have been characterized
to date have extensive effects on protein structure or
stability and are little use for separating activities (Dick
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2007). As a result, each single study of pRB-associated pro-
teins provides only part of the picture. For several years, it
has been unclear howwe should think about pRB’s overall
mechanismof action or how the different activities of pRB
are controlled.
Recent studies of RB structure have led to a new per-

spective on the pRB “interactome.” At 928 amino acids,
pRB is a relatively large protein. It has not yet been possi-
ble to determine the structure of the full-length protein,
but analyses of pRB fragments have provided valuable in-
sights, and recent progress has shed light on the structural
changes triggered by individual phosphorylation events
(Rubin 2013). Remarkably, phosphorylation of T373 pro-
motes a major conformational change that allows the N-
terminal domain to dock against the pocket domain
(Burke et al. 2010, 2012). Phosphorylation of S608 also
triggers a conformational change in which a loop contain-
ing the phosphorylation site interacts with part of the
pocket domain. In both cases, the structural changes driv-
en by individual phosphorylation events alter specific
binding domains but do not compromise the overall integ-
rity of the protein and leave other binding surfaces intact.
These observations are especially significant when com-
bined with experiments that used isoelectric focusing
gels to assess the number of phosphorylation events on en-
dogenous pRB (Narasimha et al. 2014). Narasimha et al.
(2014) reported that the “hypophosphorylated” form of
pRB isolated from asynchronously dividing cells in tissue
culture is entirely composed of monophosphorylated
protein. Remarkably, the single phosphorylation event
can be found at many, perhaps all, of the 14 known sites
for CDK phosphorylation. Narasimha et al. (2014) show
that monophosphorylated protein is the predominant
form of pRB in contact-inhibited cells and cells arrested
by DNA damage, situations in which pRB is known to
be active (Fig. 3A).
These biochemical studies raise the fascinating possi-

bility that there may be many different forms of “active”
pRB in a cell. Indeed, a single cellmay contain up to 14 dif-
ferent monophosphorylated forms of pRB, each potential-
ly having a different set of binding partners. The idea that
pRB’s binding activity is tailored by phosphorylation is
only part of the story. Evidence that pRB is both acetylated
and methylated in specific contexts (Chan et al. 2001;
Nguyen et al. 2004; Leduc et al. 2006; Munro et al. 2010;
Saddic et al. 2010), evidence of interplay between different
post-translational modifications (Carr et al. 2011; Mac-
donald and Dick 2012; Munro et al. 2012; Kim et al.
2015), and evidence that pRB interacts with specific part-
ners in response to cellular cues (MacLellan et al. 2000;
Miyake et al. 2000; Dick and Dyson 2003; Nguyen et al.
2004; Carr et al. 2014) all suggest additional levels of diver-
sity. Collectively, these observations raise several intrigu-
ing possibilities: (1) There may be multiple pools of pRB
that perform different functions. (2) Depending on their
precise location (subcellular compartment or chromatin
location) and modification, pRB molecules may interact
with different sets of proteins. (3) The roles that pRB plays
may be determined by signals that direct its specific post-
translational modifications.

One of the appealing features of this model is that it
helps to explain why pRB has been reported to interact
with so many different proteins yet, at the same time,
whyso little of pRB is stablybound to anyoneof these part-
ners. It also suggests howthemultiple activities attributed
to pRB might be regulated. If this model is correct, then
pRB has a very complex mechanism of action (Fig. 3B).
Clearly, a key goal for future studies of pRB will be to un-
ravel this complexity: How many different types of pRB
are there? How are these pools of pRB controlled? What
are the biochemical properties of each different form of
theprotein?Which formsof pRBarekey for specificmolec-
ular events and biological activities? The proof of themod-
el will lie in the details and whether it is possible to define
unique roles for specific isoforms of pRB.

The cellular consequences of RB inactivation

Since it is the inactivation of pRB that is linked to tumor-
igenesis, understanding how cells change when RB1 is
mutated is a central issue. A clear picture of these changes
may guide therapeutic strategies for targetingRB1mutant
cells.

Figure 3. Multiple forms of pRB. (A) During G1 and in several
types of arrested cells, pRB is hypophosphorylated. A recent study
(Narasimha et al. 2014) revealed that this form of pRB is mono-
phosphorylated on any one of 14 Cdk phosphorylation sites (de-
noted by the different yellow shapes) and converted to a fully
inactive, hyperphosphorylated protein by Cyclin E/Cdk2 (or Cy-
clin A/Cdk2). Evidence that individual phosphorylation sites
can selectively affect pRB’s interaction with binding proteins
leads to the speculation in B that specific monophosphorylation
events may determine the localization and function of pRB.
Note that the modified forms of pRB can coexist and that the
post-translation regulatory code modulating pRB function need
not be limited to phosphorylation but may also involve other
types of protein modification. The specific functional properties
of the monophosphorylated forms of pRB are as yet unknown.
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In agreement with the idea that pRB is a key negative
regulator of proliferation,RB1 loss has been demonstrated
to lead to defects in cell cycle exit, facilitate entry into the
cell division cycle, compromise G1/S arrest, and reduce
senescence (for review, see Burkhart and Sage 2008; Sage
2012). The transcriptional signatures associated with
RB1mutation include anup-regulationofmanygenes that
are needed for cell proliferation, although careful exami-
nation shows that the mutation of RB1 increases tran-
scription of some, but not all, E2F targets (Hurford et al.
1997; Black et al. 2003). Recent analysis of transcriptional
patterns in the mouse intestine shows that, in addition to
E2F, Myc plays an important role in the altered transcrip-
tional profiles of RB1mutant cells (Liu et al. 2015). Unex-
pectedly, RB1 loss leads to the redistribution of both Myc
and E2F3 proteins on chromatin, raising the possibility
that these transcription factors act differently in RB1mu-
tant cells compared with normal cells. Such observations
underscore the fact that relatively little is known about
the overall impact of pRB loss on chromatin biology.

A theme emerging from many different studies is the
idea that that the functional consequences of RB1 inacti-
vation extend much further than the G1/S transition or
the deregulation of E2F. One example of this is a series
of studies showing that the loss of pRB affects progression
through mitosis, increasing the incidence of lagging chro-
mosomes and reducing the fidelity of chromosome segre-
gation (Hernando et al. 2004; Iovino et al. 2006; Amato
et al. 2009; Manning et al. 2010). These changes promote
aneuploidy, particularly when combined with mutations
in p53 (Zheng et al. 2002; Manning et al. 2014a). The mi-
totic phenotypes resulting from pRB loss have been linked
to the altered expression of mitotic proteins (Hernando
et al. 2004), reduced loading of the Condensin II protein
CapD3 (Longworth et al. 2008; Coschi et al. 2010;
Manning et al. 2010), reduced chromosomal cohesion
(Manning et al. 2010; van Harn et al. 2010), and altered
accumulation of cohesin complexes at pericentromeric
chromatin (Manning et al. 2014b).

The mitotic defects associated with the inactivation of
pRB are subtle. They do not lead to catastrophic mitotic
failure, for example. At first glance, such changes might
seem unimportant, particularly when compared with
the abrupt cell cycle arrest seen when pRB is expressed
in RB1 mutant tumor cell lines such as Saos2 cells that
are primed for arrest and senescence when they regain
pRB (Hinds et al. 1992). However, chromosome instability
and aneuploidy are common features of tumor cells.
These phenotypes correlatewithworse outcomes (Rajago-
palan and Lengauer 2004; McClelland et al. 2009), and
changes that increase chromosomal instability have
been shown to promote resistance to targeted therapies
(Sotillo et al. 2010).While retinoblastomas resemble other
early-childhood cancers in having relatively low numbers
of genetic lesions, pan-cancer studies show that muta-
tions in the pRB pathway are associated with tumors
that have elevated levels of gene copy number changes
(Ciriello et al. 2013). Surveys of cell line and genomic
data show that loss of one copy of RB1 is associated
with an increased level of genome instability (Coschi

et al. 2014). Thus, the mitotic defects resulting from
pRB inactivationmay be relevant inmany cancers. Signif-
icantly, the mitotic defects associated with pRB loss can
be suppressed by knockdown of the checkpoint protein
Mad2 (Hernando et al. 2004; Sotillo et al. 2010; Schvartz-
man et al. 2011), depletion of Wapl (to increase cohesin
loading) (Manning et al. 2014b), addition of nucleosides
(which improves replication dynamics and chromosome
cohesion) (Bester et al. 2011; Burrell et al. 2013; Manning
et al. 2014a), or manipulations that change chromatin
marks at centromeric and pericentromeric heterochroma-
tin (Manning et al. 2014b; Tanno et al. 2015). These raise
the intriguing idea that it may be possible to reduce ge-
nome instability caused by RB1 mutation.

Additional lines of evidence point to roles for pRB that
seem separable from cell cycle control. A set of reports
highlights a series of links between RB and metabolic
pathways. RB1 mutation (either alone or in conjunction
with other pRB family members) causes change in meta-
bolic pathways. These alterations include reduced mito-
chondrial respiration, reduced activity in the electron
transport chain, changes inmitochondrial polarity, and al-
tered flux from glucose or glutamine in RB1 mutant cells
(Sankaran et al. 2008; Clem and Chesney 2012; Nicolay
et al. 2013, 2015; Reynolds et al. 2014; for review, see
Nicolay and Dyson 2013; Lopez-Mejia and Fajas 2015). In-
deed, proteomic studies show that changes in mitochon-
drial function are a major feature of RB1 mutant mouse
tissues (Nicolay et al. 2015). While the mechanistic basis
for these metabolic changes has not been fully elucidated,
these results are consistent with reports showing that E2F
and RB proteins bind directly to promoters of genes en-
coding important regulators of metabolic flux, oxidative
phosphorylation, and mitochondrial function (Cam et al.
2004; Hsieh et al. 2008; Chicas et al. 2010; Blanchet
et al. 2011; Ambrus et al. 2013). Indeed, in Drosophila,
E2F1 is needed for full activation of mitochondrial and
muscle-specific genes during myogenic differentiation,
and the presence of E2F in adult skeletal muscles is essen-
tial for animal viability (Zappia and Frolov 2016).

A key part of the explanation for the metabolic changes
in pRB-deficient cells may stem from functional interplay
between pRB, RBP2/KDM5a, and PGC-1α (PPARGc1A)
(Varaljai et al. 2015). Varaljai et al. (2015) proposed that
pRB promotes expression of these mitochondrial proteins
by antagonizing a repressive activity of the KDM5a H3K4
lysine demethylase, thereby enhancing the effects of the
PCG-1α coactivator. Remarkably, manipulations that in-
crease mitochondrial function in pRB-deficient cells (in-
activation of KDM5a and overexpression of PCG-1α) not
only increase oxygen consumption rate but also suppress
the muscle differentiation defects of RB1 mutant cells.
Changes in mitochondrial biogenesis have also been im-
plicated in the ineffective erythropoiesis observed in
RB1mutantmice (Sankaran et al. 2008), and other studies
have shown that autophagy inhibitors also promote a
healthy mitochondrial network in RB1 mutant cells and
promote differentiation (Ciavarra and Zacksenhaus
2010, 2011). Taken together, these studies suggest that
metabolic changes are likely a major cause of the
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differentiation defects seen in RB1 mutant mouse tissues
(for review, see Benevolenskaya and Frolov 2015).
Other studies have shown that a subpopulation of pRB

is located at the outer mitochondrial membrane, where
it physically interacts with Bax and promotes apoptosis
(Hilgendorf et al. 2013), suggesting that pRB loss impacts
multiple aspects of mitochondrial function. This observa-
tion adds to a large number of studies showing that, under
specific conditions, pRB can cooperate with other factors
to promote the transcriptional activation of differentia-
tion programs and regulate the expression of apoptotic
regulators (for examples, see Thomas et al. 2001; Ianari
et al. 2009; Calo et al. 2010; for review, see Attardi and
Sage 2013).
In the light of such results, onemight question whether

the long-standing focus on the role of pRB/E2F in the con-
trol of the G1/S transition has given us a complete picture
of the cellular changes that occur when RB1 is mutated.
Proteomic profiles of RB1 mutant mouse tissues show
that changes in the levels of proliferation proteins are
not a uniform feature of RB1 mutant tissues or the major
proteomic effect of pRB loss (Nicolay et al. 2015). Substan-
tial differences between the effects of pRB loss on mRNA
and protein levels suggest that post-transcriptional con-
trols are likely to play a significant role in determining
the ultimate effects of RB1 inactivation.
Muchmore research is needed to understand howmany

cellular processes are altered when RB1 is mutated. How-
ever, already it is clear that the consequences ofRB1 inac-
tivation are far-reaching, affecting many aspects of cell
biology (Fig. 4). Moving forward, the key questions will
be:Which of these changes are relevant during tumorigen-
esis and which can be exploited to target cancer cells?

The translation of RB research

The genetic lesions causing the frequent functional inac-
tivation of pRB in tumors create two different types of
challenges: In cells where RB1 is mutated, the challenge
is to identify features that distinguish RB1 mutant cells

from normal cells and represent points of vulnerability
that can be exploited; in tumors where pRB is present
but functionally inactivated, there is an additional possi-
bility to reactivate the latent tumor-suppressive proper-
ties of pRB.
The development of effective inhibitors for Cdk4/6 ki-

nases has been one of the most impactful applications of
pRB research (Fry et al. 2004; for review, see Sherr et al.
2016). Complexes of Cdk4/6 and D-type Cyclins have
multiple substrates, but it is clear that pRB is one of their
most important targets. Cdk4/6 inhibitors have a capacity
to activate pRB in G1 phase, and, in most normal cells,
this triggers a reversible pRB-dependent cell cycle arrest.
Cdk4/6 inhibitors also have pRB-independent effects, par-
ticularly when used at high concentrations. In contexts
where deregulation of Cyclin D:Cdk4/6 kinases drives tu-
morigenesis, inhibition of these kinases can trigger cellu-
lar senescence or apoptosis (Fry et al. 2004; Thangavel
et al. 2011; Choi et al. 2012; Sawai et al. 2012). Cdk4/6 in-
hibitors hadmodest effects when tested as amonotherapy
in solid tumors (Flaherty et al. 2012; Dickson et al. 2013;
Cadoo et al. 2014; DeMichele et al. 2015; Vaughn et al.
2015). This may reflect the fact that many signaling path-
ways converge on CDK regulation, and cells can express
alternative CDKs that phosphorylate similar or overlap-
ping sets of substrates. However, Cdk4/6 inhibitors have
shown great efficacy when combined with other inhibi-
tors targeting key mitogenic and/or survival pathways.
Cdk4/6 inhibitors synergize strongly with inhibition of
HER2, PI3K/mTOR, MEK, IGF1R/IR, and B-RAF (Finn
et al. 2009; Franco et al. 2014; Heilmann et al. 2014;
Vora et al. 2014; Yadav et al. 2014). In 2015, the Food
and Drug Administration granted accelerated approval
to a combination of the Cdk4/6 inhibitor palbociclib and
letrozole for the treatment of hormone receptor-positive
advanced breast cancer (Finn et al. 2015), and the efficacy
of palbociclib in this setting has been confirmed in subse-
quent large-scale trials (Turner et al. 2015). Large-scale
studies of mouse models of patient-derived xenografts
show that Cdk4/6 inhibitors are synergistic with many
different classes of compounds (Gao et al. 2015), and
they may ultimately be useful in a variety of combination
therapies.
Several strategies have been described for targeting RB1

mutant tumor cells. The fact that RB1 mutant cells fail
to arrest at the G1/S transition in response to checkpoint
signals (Harrington et al. 1998; Knudsen et al. 1998; Bosco
et al. 2007) may explain why RB1 mutant tumors are
often sensitive to DNA-damaging agents and why some
RB1 mutant tumors initially respond well to treatment
(Sharma et al. 2007; Ertel et al. 2010; Witkiewicz et al.
2012). The current models of RB function predict that
the uncontrolled cell proliferation of RB1 mutant cells is
driven by deregulated E2F. Remarkably, studies using
mouse models of retinoblastoma have shown that the
short-term exposure of fetuses to E2F or CDK inhibitors
is sufficient to suppress tumor formation in long-term as-
says (Sangwan et al. 2012). One might imagine that effec-
tive inhibitors of E2F activationwould be high on thewish
list of many pharmaceutical companies, but, to date, very

Figure 4. The consequences ofRB1 inactivation. The ablation of
RB1 impacts many cellular processes. These effects are highly in-
terconnected, and it remains to be determined which specific
changes are essential for tumorigenesis. A key goal in the imme-
diate future will be to identify the consequences of RB1 inactiva-
tion that can be best exploited therapeutically to target RB1
mutant tumors.
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little progress has been reported on this subject, and only a
few compounds have been available for research (Ma et al.
2008; Sangwan et al. 2012; Kurtyka et al. 2014).

UnlikemostRB1mutant tumors, retinoblastomas lack
mutations in p53. These tumors develop from progenitor
cells that are dependent on Mdm2 (Xu et al. 2009), and, as
they also often express high levels of Mdm4 (Laurie et al.
2006), they may be targetable by agents such as Nutlin
that activate p53 signaling (Elison et al. 2006; Laurie et
al. 2006, 2007). Retinoblastoma tumor cells have also
been reported to be selectively sensitive to inhibition of
the Syk kinase (Zhang et al. 2012; Pritchard et al. 2014).
However, follow-up studies were unable to show similar
effects in orthotopic xenografts (Pritchard et al. 2014),
and drug sensitivity profiles of a broad panel of cell lines
do not show a general association between RB1 status
and sensitivity to Syk inhibitors (Garnett et al. 2012).

In most human cancers, RB1 mutations occur in tu-
mors that also mutate p53. Zhu and colleagues (Wang
et al. 2010; Gordon et al. 2013; Zhao et al. 2013) have
shown that inactivation of Skp2 can suppress proliferation
of p53- and pRB-deficient cells in part through an up-reg-
ulation of p27 (Zhao et al. 2015) and the activation of
E2F1-mediated apoptosis (Lu et al. 2014). This genetic
interaction is effective at suppressing tumorigenesis in
mousemodels but has yet to be applied to human tumors.
Based on genetic interactions that were discovered inDro-
sophila, others have suggested targeting TSC2 to elevate
reactive oxygen species (ROS) in RB1 mutant tumors (Li
et al. 2010; Gordon et al. 2013). Potentially, other meta-
bolic features of RB1 mutant cells, such as the changes
in mitochondrial activity, depletion of nucleotide pools,
or changes in autophagy, might provide alternative thera-
peutic strategies (Angus et al. 2002; Tracy et al. 2007;
Macleod 2008). Ultimately, there may not be a single vul-
nerability that is characteristic of all RB1 mutant cells,
but different strategies may be necessary for specific types
of tumors. Changes that activate differentiation programs
are one potential strategy (MacLellan et al. 2000; Lasorella
et al. 2005; Lin et al. 2011). Recent work has suggested
that Notch signaling may be important in mouse models
of small-cell lung cancer, one of the most common types
of RB1 mutant cancers (George et al. 2015). Inactivation
of Sox2 has also been shown to suppressRB1mutant pitu-
itary tumors in mouse models (Kareta et al. 2015). In part,
these effects may reflect the context-specific signals that
are important for the formation of tumor-initiating cells,
signals that likely vary between cancer types. Collective-
ly, these studies illustrate the fact that theremay bemany
ways to target an RB1mutant cell, and there are good rea-
sons to expect that the next decade will be a very exciting
time for pRB research.

In summary, the retinoblastoma susceptibility gene
was identified in the pregenomic era, at a time when the
tools for molecular biology were relatively limited. Mod-
ern technologies are providing a wealth of new informa-
tion, and, in keeping with this, the ideas about the role
of pRB are evolving too. The notion that pRB suppresses
E2F-regulated transcription is still true, but the emerging
view is that pRB’s molecular activity is far more complex

than initially supposed, with many different forms of pRB
and many potential partners. It is also evident that the
mutation of RB1 is not a surgical change that alters cell
cycle control while leaving the cell otherwise unaffected.
pRB loss causes extensive changes to chromatin organiza-
tion, patterns of transcription, metabolic pathways, and
the proteome. The idea that RB1 mutation has such far-
reaching effects is consistent with the fact that this
change is sufficient, in some contexts, to cause cancer.
However, the central issue in RB research has not changed
at all: The challenge for us all is to use this information to
improve cancer treatment.
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