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More than 15 years ago the serial engagement model was proposed as an attempt to
solve the low affinity/high sensitivity paradox of TCR antigen recognition. Since then, the
model has undergone ups and downs marked by the technical and conceptual advance-
ments made in the field ofT lymphocyte activation. Here, I describe the development of the
model and survey recent literature providing evidence either for or against the idea that ser-
ialTCR/pMHC engagement might contribute toT lymphocyte activation. I also discuss how
the concept of serialTCR engagement might be useful in the design of immunotherapeutic
approaches aimed at potentiating T lymphocyte responses in vivo.
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INTRODUCTION
αβ T lymphocytes are activated by the engagement of their antigen
receptors (TCR) with peptide/MHC complexes (pMHC) displayed
on the surface of antigen presenting cells (APC). An apparent
paradox in T lymphocyte biology is that the binding of a TCR
with pMHC complexes displayed on the surface of APC has low
affinity and a fast off-rate, yet allows the TCR to remain highly
sensitive and specific to a particular antigen. How T cells decipher
and amplify the information collected on the surface of APC and
translate it into versatile biological responses is a central question
in T cell biology.

The TCR serial engagement model was proposed as a stepping
stone to address this unresolved question (Valitutti et al., 1995b). A
drawback of this model is that it is not based on direct visualization
of TCR dynamics at the T cell/APC contact site, but on an esti-
mate of TCR/pMHC binding that uses TCR down-regulation as a
parameter of TCR occupancy (Valitutti et al., 2010). As discussed
below, this approach has been challenged. Moreover measure-
ments of the TCR/pMHC binding parameters in solution provided
results that were difficult to reconcile with the possibility that TCR
might be rapidly and serially engaged by cell-bound pMHC (Stone
et al., 2009). Collectively, these observations cast doubts on the
idea that serial TCR engagement might actually contribute to the
high level of sensitivity characteristic of T lymphocyte responses.
Nevertheless, recent studies in which two-dimensional (2-D) bind-
ing parameters of TCR interaction with pMHC were considered,
provided data in support of the idea that TCR/pMHC binding
might be sequential, thus reopening the discussion on whether
serial TCR engagement might take place at the T cell/APC contact
site (Huang et al., 2010; He and Bongrand, 2012; Robert et al.,
2012).

Here I discuss the development of the model and position the
old serial engagement hypothesis in the context of what we cur-
rently know about T lymphocyte activation. Finally, I discuss how

the concept of TCR serial engagement might be helpful in the
design of therapies based on adoptive transfer of T cells carrying
engineered tumor-specific TCR.

THE SERIAL TCR ENGAGEMENT MODEL FROM AN
HISTORICAL PERSPECTIVE
When the serial engagement model was proposed T lymphocyte
activation was viewed as a paradox. Biochemical studies aimed
at defining the minimum number of specific pMHC required to
trigger T lymphocyte activation revealed that T cells could pro-
liferate and produce cytokines in response to APC displaying as
few as 50–100 specific pMHC complexes among a large num-
ber of structurally similar non-stimulatory pMHC (Demotz et al.,
1990; Harding and Unanue, 1990). In addition, cytotoxic T cells
(CTL) were reportedly able to kill target cells that were estimated
to express as few as 1–10 specific pMHC (Sykulev et al., 1996). In
spite of the high sensitivity of antigen recognition, the affinity of
binding between TCR and pMHC appeared to be much lower than
those measured for antibodies. Using different recombinant TCR
and pMHC, the affinity of TCR/pMHC interaction in solution
was estimated to range between 10−4 and 10−7 M with half-lives
of seconds (Matsui et al., 1991, 1994; Corr et al., 1994). A com-
plication to the high sensitivity/low affinity conundrum of T cell
responses was the notion that T cell activation required sustained
signaling, and needed to last for at least a few hours in order to pro-
mote cytokine secretion (Weiss et al., 1987; Goldsmith and Weiss,
1988; Gray et al., 1988).

During the last 15 years, the development of high-resolution
imaging techniques moved the focus of investigation from the
measurement of functional and phenotypic parameters in cell
populations to the visualization of molecular dynamics in indi-
vidual cells at the level of the immunological synapse (IS, Monks
et al., 1998; Grakoui et al., 1999). Recent studies clearly illustrate
the high sensitivity of individual T cells to antigenic stimulation, as
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well as the importance of sustained signaling for T cell activation.
In one such study, work by M.M. Davis and colleagues, showed
that murine CD4+ T cells undergo sustained [Ca2+]i increase
when interacting with APC that display as few as 10–15 specific
pMHC at the IS, demonstrating that sustained signaling is actu-
ally triggered by a few antigen specific ligands (Irvine et al., 2002).
Sustained activation of signaling pathways in T cells (including
Ca2+-calcineurin pathway, PI3K pathway, and PKCθ pathway, etc.)
has been mechanistically linked to the nuclear translocation of
transcription factors required for cytokine production and prolif-
eration (Timmerman et al., 1996; Fabre et al., 2005; Zanin-Zhorov
et al., 2011). Moreover, it has also been shown that, not only the
duration of signaling, but also the intensity and the frequency of
signal oscillations are important factors that modulate the out-
come of T cell responses (Dolmetsch et al., 1998; Utzny et al.,
2005).

About 17 years ago, we observed that when TCR/pMHC inter-
actions in pre-formed conjugates of T cells and APC were blocked
by the addition of anti-MHC Class II antibodies, [Ca2+]i increases
ceased within a few minutes and T cells failed to produce IFN-γ
(Valitutti et al., 1995a). This finding suggested that sustained sig-
naling resulted from the prolonged and uninterrupted engagement
of TCR with pMHC displayed on the APC surface. A functional
actin cytoskeleton appeared to be instrumental for this process by
allowing T cells to scan the APC surface and to form areas of tight
adhesion with the opposing cell membrane (Valitutti et al., 1995a).
These observations, particularly evident at low antigenic densities,
raised the question of how TCR could remain bound to the same
few pMHC for long enough to achieve sustained signaling within
dynamic T cell/APC contacts.

To determine the number of TCR triggered by pMHC, we mea-
sured TCR down-regulation (i.e., the reduction of TCR expression
on the cell surface due to internalization and targeting to lysosomes
(Valitutti et al., 1997),and compared it to immuno-precipitation of
iodinated peptides bound to MHC molecules. We calculated that,
in T cells interacting with APC displaying low antigenic pMHC
densities (∼100 pMHC per APC), a large number of TCR were
triggered (up to 18,000 per T cell; Valitutti et al., 1995b). The
above estimates, together with the observation that sustained sig-
naling in T cells required uninterrupted TCR engagement inspired
the serial engagement model (Valitutti et al., 1995b; Valitutti and
Lanzavecchia, 1997).

According to the model, during a dynamic T cell/APC inter-
action an increasing number of TCR are engaged and triggered
by a small number of specific pMHC displayed on the APC sur-
face resulting in sustained signaling. Such a process is compatible
with the short half-lives of TCR/pMHC binding which have been
observed in other studies (Figure 1).

The use of TCR down-regulation as a measure of TCR occu-
pancy has been debated. It has been reported that in dual-TCR-
expressing T cells a substantial fraction of non-engaged TCR could
be co-modulated in a bystander fashion (San Jose et al., 2000).
As discussed elsewhere (Valitutti et al., 2010), the various stud-
ies addressing bystander TCR co-modulation are contradictory.
Moreover, the extent to which co-modulation is observed appears
to be related to the type of cells used in the different studies. For
example, co-modulation is often reported as a phenomenon in
Jurkat T cells, but is rarely seen (or reported to be limited) in
studies with human T cell clones or mouse primary cells (Val-
itutti et al., 1995b; Niedergang et al., 1997; San Jose et al., 2000;

FIGURE 1 |The serialTCR engagement model. At the IS, a few specific pMHC (red) sequentially trigger incoming TCR resulting in sustained signaling.
Triggered TCR are internalized and targeted to lysosomes for degradation while unbound pMHC bind new TCR.
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Schrum and Turka,2002; Bonefeld et al., 2003; Gladow et al., 2004).
Why differences among cell systems exist is presently unclear. It
is likely that the extent of detectable TCR co-modulation may
depend on various cellular parameters, including the fraction of
monomeric versus pre-aggregated TCR present on the surface of
different T cells. This issue is still debated. One study reported that
TCR/CD3 complexes are expressed on the T cell surface essentially
as monomers (James et al., 2007), while others reported that TCR
are, in part, pre-aggregated forming nano-clusters (Schamel et al.,
2005; Lillemeier et al., 2010). Discrepancies among these studies
might be due to the different experimental approaches used to
determine TCR clustering. Further research is required to address
this key point.

In conclusion, in its original formulation the serial engagement
model offered a plausible explanation to the low affinity/high sen-
sitivity paradox of T cell activation and suggested a mechanism
for the induction of sustained signaling by a few antigenic ligands.
However, the original idea of comparing the number of pMHC
with the number of down-regulated TCR is per se a limitation of
the model. Serial TCR engagement needs to be further assessed
with modern and more direct experimental approaches.

3-D VERSUS 2-D TCR/pMHC INTERACTIONS
The serial engagement model predicts that there is a defined win-
dow of half-lives of TCR-pMHC binding required for optimal
T cell activation (Valitutti and Lanzavecchia, 1997). While short
half-lives (with rapid TCR/pMHC binding off-rates) prevent pro-
ductive TCR triggering, as stated by the kinetics-proofreading
model (Rabinowitz et al., 1996), long half-lives (with slow bind-
ing off-rates) reduce the efficiency of TCR serial engagement
(Figure 2A). However, measurements of TCR/pMHC binding
parameters in solution (defined as three-dimensional or 3-D para-
meters) using surface plasmon resonance (SPR) or comparing
the binding of different pMHC tetramers to T cells, provided
results that were inconsistent with the optimal half-life hypoth-
esis. While this hypothesis is supported by computational studies
(Wofsy et al., 2001; Coombs et al., 2002) and by some experimen-
tal results (Hudrisier et al., 1998; Kalergis et al., 2001; Cemerski
et al., 2007; Adams et al., 2011), other studies failed to provide
evidence for an optimal half-life window (Holler et al., 2001; Tian
et al., 2007). It is possible that some of the discrepancies arise from
the different readouts used to monitor T cell activation in the
different studies (Corse et al., 2011). Recent work has been able
to reconcile these apparently contrasting results by showing that,
depending on the on-rate of binding, the potency of some pMHC
ligands for stimulating T cells correlates better with pMHC/TCR
affinity, while the stimulation potency of others is determined
instead by an optimal half-life (Aleksic et al., 2010; Govern et al.,
2010). It is important to note that, SPR and tetramer measure-
ments, although useful to compare different TCR ligands, rely on
parameters that are estimated from 3-D binding, a condition that
might not accurately mimic the situation within the confines of a
T cell/APC IS.

Recent technological breakthroughs have made it possible to
measure TCR/pMHC binding using experimental approaches that
more accurately mimic the 2-D TCR/pMHC interaction within the
IS (He and Bongrand, 2012).

Huppa et al. investigated the interaction between TCR labeled
with fluorescent antibody and expressed on the cell surface, with
pMHC embedded in supported lipid bilayers using fluorescence
resonance energy transfer (FRET). This analysis showed that in
2-D the on-rate of binding between TCR and pMHC is much
faster than that measured in 3-D, and that the dissociation rate of
TCR/pMHC bonds in 2-D is 4- to 12-fold more rapid than the
rate measured in 3-D. Interestingly, when T cell actin cytoskele-
ton is poisoned, the differences between 3-D and 2-D off-rates are
abolished, indicating that the accelerated off-rates observed in 2-D
depend on active cellular dynamics. The study also showed that the
2-D binding affinity is high and correlates with ligand potency, in
agreement with previous SPR measurements (Huppa et al., 2010).

Huang at al. used micropipettes to immobilize T cells and to
form contacts with either red blood cells or beads coated with
pMHC to estimated the 2-D on/off-rates of binding by moni-
toring either red blood cell deformation or thermal fluctuation
in the TCR/pMHC binding. This approach reports very fast 2-
D on-rates. Surprisingly, off-rates of binding were also found to
be extremely rapid (∼8,000 times faster than those measured in
solution) and are faster for agonist pMHC ligands than for weak
ligands, suggesting serial TCR engagement (Huang et al., 2010).
The importance of considering both 3-D and 2-D binding kinet-
ics is emphasized by a recent study by K. C. Garcia and colleagues.
They show that TCR/pMHC binding parameters are different if
measured in solution (in the absence of physical constraints) or in
2-D (Adams et al., 2011).

Finally, in a recent and detailed study, Robert et al. used TCR
coated microbeads in laminar flow chambers and measured their
interaction with surface-immobilized pMHC under cell free con-
ditions (Pierres et al., 1996; Robert et al., 2012). This analysis
showed that 2-D dissociation rates are comparable to 3-D dissoci-
ation rates when measured in a cell free system such as this, sup-
porting the idea that accelerated 2-D dissociations of TCR/pMHC
bonds found in other studies (Huang et al., 2010; Huppa et al.,
2010), result from active cellular dynamics. Robert et al. (2012)
also found that T cell activation increases with a longer binding
half-life, but negatively correlates with bond mechanical strength.
As discussed below, these results reconcile SPR measurements
(reporting that ligand potency increases with binding half-life,
Holler et al., 2001; Tian et al., 2007) with the requirement of
rapid bond disruption and re-formation for serial TCR trigger-
ing (Valitutti and Lanzavecchia, 1997). These observations are also
compatible with recent studies showing that TCR can function
as mechanosensors (e.g., receptors converting mechanical energy
into biochemical signals; Kim et al., 2009, 2012; Li et al., 2010;
Husson et al., 2011; He and Bongrand, 2012) and with models of
T cell activation postulating that mechanical forces are involved in
TCR triggering (Ma and Finkel, 2010).

Based on these findings, a current view of T cell activation
posits that cytoskeletal movements can fine-tune the half-life of
TCR/pMHC interactions in live T cell/APC conjugates. Optimal
TCR ligands would have long enough half-lives to trigger receptors
but low mechanical strength. Together, these parameters would
allow TCR/pMHC bonds to rapidly dissociate and reform within
dynamic T cell/APC contacts thus enhancing serial TCR trigger-
ing (Ma and Finkel, 2010; Robert et al., 2012). It is interesting to
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FIGURE 2 | (A) The serial engagement model postulates that pMHC ligands exhibiting optimal binding half-lives to TCR behave as optimal agonists; (B) At high
pMHC densities, pMHC exhibiting long binding half-lives are stimulatory; (C) At low pMHC densities, pMHC exhibiting long binding half-lives fail to trigger T cell
responses.
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note that this view goes back to initial observations showing that a
functional actin cytoskeleton and T cell motility are instrumental
for sustained signaling in T cells triggered by cell-bound ligands
(Valitutti et al., 1995a).

In conclusion, results obtained from 2-D measurements are
still too limited and somewhat contradictory to either support or
refute the model of serial TCR engagement. Further work, using
additional panels of TCR/pMHC pairs and well-standardized 2-
D assays, is required to convincingly test the model. However, by
showing that binding off-rates can be faster at cellular interfaces
due to cytoskeleton-driven dynamics and that bond mechanical
strength might influences ligand potency, 2-D methods have re-
opened the discussion on the purported relevance of serial TCR
engagement.

COULD TCR SERIAL ENGAGEMENT BE RELEVANT FOR
IMMUNOTHERAPY?
THE IMPORTANCE OF LIGAND DENSITY
Since its inception, it was implicit that the model of TCR serial
engagement would only apply under conditions in which T cells
interacted with APC displaying a very small number of antigenic
ligands. At high densities of cognate pMHC, TCR serial engage-
ment would be not only difficult to envisage, but also unneces-
sary. Thus, optimal half-lives of TCR/pMHC binding would be
required for serial TCR engagement only at low antigen densities
(Figures 2B,C).

The first direct evidence supporting this idea came from a
study by Gonzales et al. in which the relationship between the
density of antigenic ligands and their affinity for TCR was investi-
gated. This study provides computational and experimental data
showing that an appropriate TCR/pMHC half-life window is only
required to elicit T cell responses at low pMHC densities (Gonza-
lez et al., 2005). Furthermore, Dushek et al. recently emphasized
the importance of the strength of antigenic stimulation when
comparing “affinity” versus “productive hit rate” models of T
cell activation. They employed computational and experimental
approaches to correlate solution measurements of TCR/pMHC
binding parameters with the potency of a panel of pMHC vari-
ants. They reported that dose-responses are better indicators of T
cell activation than EC50 (half-maximal effective concentration)
when relating TCR/pMHC binding affinities to elicited responses
(Dushek et al., 2011). Direct evidence that serial TCR engagement
is dispensable in conditions in which a strong stimulation is pro-
vided to T cells also comes from recent findings showing that,
when a substantial fraction of TCR is cross-linked with monova-
lent pMHC embedded in supported lipid bilayers, T cell activation
is sustained and amplified (Xie et al., 2012).

REQUIREMENT FOR AN OPTIMAL AFFINITY WINDOW IN CLINICALLY
ORIENTED STUDIES
Understanding whether or not TCR exhibiting an intermediate
affinity might efficiently trigger T cell activation at low antigen
densities, is relevant for cancer immunotherapies that are based
on adoptive T cell transfer. In contrast to infectious diseases,
malignant neoplastic diseases are characterized as having rela-
tively slow progression and displaying low antigen densities. A
study in which the functional properties of T cells transduced

with TCR exhibiting various binding affinities were compared
in vitro, reported that human T cells transduced with TCR of
intermediate affinity are sensitive to low antigenic stimuli and do
not exhibit cross-reactivity (Zhao et al., 2007). Recent clinically
oriented studies further illustrate the importance of the balance
between the strength of antigenic stimulation and TCR binding
properties. Thomas et al. showed that human non-transformed T
cells transduced with affinity-matured TCR (specific for a HIV-
derived Gag peptide) that exhibit 700-fold increased affinity to
its cognate pMHC, require much higher pMHC densities to trig-
ger T cell responses than wild-type TCR (Thomas et al., 2011).
Irving et al. used a rational design to generate a panel of human
TCR specific for a tumor antigen peptide and that exhibited a
variety of affinity/off-rates (measured in 3-D using SPR). They
show that human non-transformed T cells transduced with TCR
engineered to have supraphysiologic affinity for pMHC, exhibit
defective responses at low/intermediate antigen doses. By increas-
ing antigen dose, the deficiency of high affinity TCR to elicit
optimal T cell responses is gradually overcome (Irving et al., 2012).

In conclusion, increasing evidence indicates that appropriate
TCR/pMHC binding half-lives would, at low antigen densities,
potentiate T cell responses. However, on the basis of available data,
it is difficult to predict whether TCR ligands with an intermedi-
ate affinity might elicit stronger responses in vivo and, in turn,
substantially improve the outcome of immunotherapies based on
T lymphocyte adoptive transfer. It may be important to test this
hypothesis in clinics and therefore consider T cell-based therapies
using intermediate affinity engineered TCR.

CONCLUDING REMARKS
More than 17 years after its proposal the serial TCR engagement
model is still avidly debated. Recent observations showing that
TCR with intermediate binding half-lives for pMHC can effi-
ciently trigger T cells at low antigen densities, and that TCR/pMHC
dissociation rates in 2-D are very rapid suggest that serial TCR
engagement events might actually occur within the confines of T
cell/APC synapses. However, available data are contradictory. It
is unlikely that the serial TCR engagement model will be able to
explain results obtained in all the different systems and experi-
mental conditions. Several parameters, such as the strength and
quality of antigenic stimuli, the quality of the APC and the con-
text in which antigen presentation takes place, influence T cell
responses. The fact that available data have been obtained using
different T cell models (such T cell hybridomas, transgenic T cell
systems, non-transformed T cells, etc.) does not help clarify our
understanding on whether or not, and to what extent, TCR serial
engagement might contribute to T cell activation.

In the future it should be possible to address these unresolved
issues. For example, the recent development of high-resolution
live cell microscopy techniques should allow the visualization
of the dynamics of individual TCR/pMHC encounters at the
IS by combining single particle tracking with other florescence
microscopy techniques. These approaches will allow investiga-
tors to “see” under which conditions serial engagement may take
place. Furthermore, the necessity of testing panels of T cells car-
rying engineered tumor-specific TCR for adoptive transfer ther-
apies, will allow systematic and in-depth analysis of 3-D and

www.frontiersin.org August 2012 | Volume 3 | Article 272 | 5

http://www.frontiersin.org
http://www.frontiersin.org/T_Cell_Biology/archive


Valitutti Serial TCR engagement

2-D TCR/pMHC binding parameters and help to clarify the rela-
tionship between different binding parameters and stimulation
potency.

It is intriguing that these clinically oriented studies are bringing
back the idea of serial TCR engagement to the experimental sys-
tem in which it was originally conceived: human non-transformed
T cells. The actual relevance of serial TCR engagement in the
process of T cell activation in different T cell systems is still
elusive and may well be limited. Nevertheless, it would be an
excellent outcome for this model if it can contribute, at least to

a certain extent, to the design of immunological strategies to fight
cancer.
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