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Abstract

HIV can evolve remarkably quickly in response to antiretroviral therapies and the immune

system. This evolution stymies treatment effectiveness and prevents the development of an

HIV vaccine. Consequently, there has been a great interest in using population genetics to

disentangle the forces that govern the HIV adaptive landscape (selection, drift, mutation,

and recombination). Traditional population genetics approaches look at the current state of

genetic variation and infer the processes that can generate it. However, because HIV

evolves rapidly, we can also sample populations repeatedly over time and watch evolution

in action. In this paper, we demonstrate how time series data can bound evolutionary

parameters in a way that complements and informs traditional population genetic

approaches. Specifically, we focus on our recent paper (Feder et al., 2016, eLife), in which

we show that, as improved HIV drugs have led to fewer patients failing therapy due to resis-

tance evolution, less genetic diversity has been maintained following the fixation of drug

resistance mutations. Because soft sweeps of multiple drug resistance mutations spreading

simultaneously have been previously documented in response to the less effective HIV ther-

apies used early in the epidemic, we interpret the maintenance of post-sweep diversity in

response to poor therapies as further evidence of soft sweeps and therefore a high popula-

tion mutation rate (θ) in these intra-patient HIV populations. Because improved drugs

resulted in rarer resistance evolution accompanied by lower post-sweep diversity, we sug-

gest that both observations can be explained by decreased population mutation rates and a

resultant transition to hard selective sweeps. A recent paper (Harris et al., 2018, PLOS

Genetics) proposed an alternative interpretation: Diversity maintenance following drug

resistance evolution in response to poor therapies may have been driven by recombination

during slow, hard selective sweeps of single mutations. Then, if better drugs have led to

faster hard selective sweeps of resistance, recombination will have less time to rescue

diversity during the sweep, recapitulating the decrease in post-sweep diversity as drugs

have improved. In this paper, we use time series data to show that drug resistance evolution

during ineffective treatment is very fast, providing new evidence that soft sweeps drove

early HIV treatment failure.
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Introduction

Diversity signatures from a single time point provide information about

evolution

In population genetics, we often sample data at a single time point and build models to explain

how the observed patterns of genetic diversity might have been generated. Many species evolve

so slowly that researchers cannot directly observe the evolutionary process, and working with

snapshot data is the only possibility.

One particularly active field of study uses patterns of genetic diversity to understand the his-

torical and ongoing role of selection. Selection can lead to many characteristic signatures,

including the depression of diversity surrounding a recently fixed beneficial allele. As a single

adaptive allele rises to high frequency, hitchhiking genetic neighbors also fix in the population

in an event known as a hard selective sweep. The ratio of selection strength and recombina-

tion rate governs the distance on the chromosome from the adaptive site with depressed diver-

sity following a sweep. The most widely used methods for detecting positive selection scan the

genome for such sweep signatures [1,2].

More recently, there has been increased attention to cases in which beneficial mutations

enter the population rapidly and repeatedly. If a beneficial mutation lands on multiple

genetic backgrounds before any single background can sweep, the backgrounds carrying the

beneficial mutation will spread concurrently. In such a case, substantially, more genetic diver-

sity will be retained following the fixation of the beneficial mutation, because diverse genetic

backgrounds can be brought to intermediate frequency. This is known as a soft selective

sweep. Because hard and soft sweeps leave different diversity signatures, traditional selective

scans do not detect them sensitively, and new approaches have been developed to identify soft

sweeps [3,4].

Whether sweeps will be hard or soft depends largely on the rate at which beneficial muta-

tions enter the population each generation, which can be computed by the effective popula-

tion size (Ne) times the beneficial mutation rate (μb). Note that the effective population size

must be computed over the timescale relevant to adaptation [5–7]. The product of these terms

(called θ) controls how long the population must wait to produce a beneficial mutation with

fitness 1 + s relative to the nonmutant (� 1/θs generations). If θ is small (θ� 1), adaptation is

mutation limited: In this regime, the population must wait between beneficial mutations, and

when one does appear and establish, it will spread in the population to the exclusion of the

ancestral type, in a hard sweep. However, if θ is large (θ ~ O(1)), beneficial mutations enter

the population rapidly, and adaptation is not mutation limited. If 1 or more additional benefi-

cial mutations enter the population before the first one fixes, the result is a soft sweep. It is

therefore possible under certain circumstances to determine θ by looking for characteristic

signatures of hard and soft sweeps [7–10].

Because of an interdependence through θ, whether a sweep will be hard or soft is also

related to the probability of adaptation in a fixed period of time. Assuming that beneficial

mutations sweep rapidly, when many mutations are expected to enter a population in quick

succession (i.e., θ large), adaptation will be likely in a short period of time, and sweeps will be

soft. When the population must wait for a beneficial mutation of large effect (θ small), adapta-

tion is less likely to happen in a fixed period of time, and if it does happen, the sweep is more

likely to be hard. Later in this paper, we will demonstrate this principle via simulations. How-

ever, the reasoning is much more general: If an independent event is likely to occur in a fixed

time, it is likely to happen multiple times.
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Diversity signatures in single time point HIV data suggest 2 hypotheses

characterizing early HIV evolution

As described above, we expect the probability of evolution in a fixed period of time to be

dependent on θ and s. What might this imply about HIV evolution? Better HIV drugs have

resulted in the probability of a patient evolving drug resistance in a year on therapy falling

sharply from over 80% in the early 1990s to< 10% in the early 2010s. We might therefore

expect that as the probability of resistance evolution has decreased, hard sweeps have become

more prevalent. In [11], we examined differences in the diversity signatures of intra-patient

HIV populations to understand if this decreasing prevalence of drug resistance evolution was

indeed accompanied by a transition from soft sweeps to hard sweeps, as might be expected if

these better drugs had effectively increased the waiting time for a beneficial mutation. This is

illustrated in the left-hand panels of Fig 1.

Consistent with our hypothesis, we found that in response to early, ineffective therapies

with a high probability of failure via drug resistance evolution, genetic diversity was largely

unaffected by the number of sweeps of resistance mutations within a patient. This is consistent

with soft sweep signatures, whereby populations can fix mutations without losing genetic

diversity. However, in response to more modern therapies with a low probability of resistance

evolution, fixing a drug resistance mutation was associated with a significant loss in genetic

diversity, consistent with the signature of a hard selective sweep.

Fig 1. Cartoon of explanations for post-sweep diversity loss patterns observed in Feder et al. [11]. We seek to explain why more diversity is retained

following the fixation of drug resistance to early, ineffective therapies than modern, effective ones. The soft sweeps of recurrent mutations hypothesis

[11] suggest that the primary difference is that θ is high for ineffective drugs, leading to short waiting times between resistance mutations and

subsequent soft sweeps (top left), whereas θ is lower for effective drugs, leading to long waiting times between resistance mutations subsequent and hard

sweeps (bottom left). The recombination-rescued diversity hypothesis [12] suggests that the primary difference is the opportunity for recombination

to rescue diversity following a beneficial mutation: Sweeps in response to ineffective drugs are slow and occur after wider population bottlenecks, which

gives recombination time to rescue diversity (top right). Sweeps in response to effective drugs are fast and occur after narrow population bottlenecks, so

recombination has less opportunity to rescue genetic diversity (bottom right). Stars represent drug resistance mutations entering the population de

novo and drug pressure starts at the x-intercept.

https://doi.org/10.1371/journal.pgen.1009050.g001
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Harris and colleagues [12] have recently proposed that different levels of recombination

during a selective sweep can generate the patterns we observed in Feder and colleagues [11]

without invoking soft sweeps. They argue that first, if ineffective drugs induce less severe popu-

lation bottlenecks than those from effective drugs, more diversity will be present that can be

rescued via recombination during a selective sweep. Second, if ineffective drugs have longer

sweep times than effective drugs, recombination will have more time to recombine genetic

diversity on to the sweeping haplotype. This hypothesis is illustrated in the right-hand panels

of Fig 1.

Fig 1 shows that under both models, when resistance is acquired in response to ineffective

drugs, little population diversity is lost. We discuss 2 explanatory hypotheses: soft sweeps in

which recurrent mutation brings multiple genetic backgrounds to intermediate frequency or

slow sweeps that allow for the rescue of diversity via recombination (upper row, Fig 1). These

hypotheses cannot be readily distinguished using the snapshot data analyzed in Feder and col-

leagues [11]. However, because HIV is a well-studied system, we can draw upon external

sources of information about drug resistance evolution in HIV to understand constraints on

the timescales at play, specifically the speed and the probability of adaptation. We argue here

that because time series data show that drug resistance evolution in HIV is rapid and predict-

able, it requires that HIV evolution in response to ineffective drugs is driven by a very rapid

input of strongly selected mutations. This means post-sweep diversity is unlikely to be main-

tained through recombination-driven diversity rescue during hard, slow sweeps of rare weakly

adaptive mutations.

HIV time series data suggest rapid adaptation and soft sweeps likely in

early HIV evolution

Time series data show just how rapidly HIV can evolve. For example, Fig 2 shows the frequen-

cies of drug resistance mutation M184V, which arises rapidly in 19 of 20 patients who were

treated with 3TC monotherapy in the early 1990s [13]. Among the 20 patients, 16 had drug

Fig 2. Frequencies of drug resistance mutation M184V in response to 3TC monotherapy in 20 patients. In total, 16/20 have drug

resistance observed above frequency 50% in 4 weeks (approximately 28 generations, shown in dashed line). Moreover, 19/20 have

drug resistance above 50% in 12 weeks. The patient with no drug resistance is not plotted. Data replotted from Schuurman et al. [13]

via WebPlotDigitizer [18].

https://doi.org/10.1371/journal.pgen.1009050.g002
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resistance over 50% frequency by week 4 (approximately 28 generations, at 1 HIV generation/

day). Note, M184V is costly and unlikely to be present at high frequency as standing genetic

variation before treatment [14]. Also note that 4 of the 20 patients had prior exposure to drugs

for which M184V rendered partial resistance to therapy, but the percentage of these patients

with M184V emerging within 4 weeks was very similar to the cohort as a whole (3/4 patients).

This represents just 1 of many examples showing that HIV evolves drug resistance rapidly and

predictably in response to early drug therapies [15–17]. These examples provide information

about multiple population genetic parameters.

HIV’s ability to adapt rapidly depends strongly on the strength of selection, s, for the drug

resistant variant under monotherapy. Understanding the sweep time of a beneficial variant (�

log (NS)/s generations when s� 1) allows us to place bounds on s. The predictability of

HIV’s evolution in a short period of time tells us about the number of beneficial mutations

entering the population each generation, θ. That mutations appear promptly and consistently

across populations suggests that θ must be high.

To quantify what the rapidity and predictably of drug resistance evolution can tell us about

HIV evolution in response to monotherapy, we simulated a single locus model of drug resis-

tance during evolution of resistance in HIV for a wide variety of values for θ and s (see Materi-

als and methods for full details). The value of θ is set by the mutation rate, which we set at 10−5

per site [19] and on the short-term effective population size relevant for such rapid adaptation.

This short-term effective population size is bounded by the census population size of HIV,

which can be on the order of 109 and possibly much larger [20] (giving us θ< 104). The effec-

tive population size is smaller than the census size, but how much smaller depends on many

biological specifics of the HIV population in question, such as the proportion of infectious par-

ticles. Here, we varied θ from 10−3 to 10. For each parameter combination, we recorded the

probability that beneficial mutations reached frequency� 50% in 30 generations (Fig 3A), as

an analog to the data presented in Fig 2. For sweeps to be very predictable on this timescale

(80% of cases), both s and θ must be large: s needs to be on the order of 1 and θ must be greater

than 0.1. For higher, potentially more realistic values of N (or, more correctly, the short-term

Ne relevant to rapid adaptation on the timescales of tens of generation) [5,8], even higher s val-

ues are needed for sweeps as fast as observed.

We then asked, conditional on a sweep occurring at each combination of parameters, what

is the probability of that sweep being soft (Fig 3B). The parameter combinations in which

sweeps are likely (i.e., > 80% probability of a sweep in 30 generations) are exactly those in

which soft sweeps are most likely to occur. Specifically, as θ increases, the probability of both a

sweep and a soft sweep increases (Fig 3C).

Note, the probability of a soft sweep depends on both θ and s, and if s>> θ, hard sweeps

can occur because the sweep time is less than the waiting time for a new beneficial mutation.

For example, when s = 10, θ = 0.1, sweeps are likely to occur in 30 generations (93%), but they

are hard more often than not (87% of sweeps hard). However, even when s is so large, there is

a relatively constrained part of the parameter space with respect to θ that makes both sweeps

and hard sweeps very likely. Specifically, θ must be on order 0.1: Indeed, if θ< 0.025, sweeps

do not happen with necessity (< 50% frequency), but if θ> 0.25, sweeps are soft more than

25% of the time. Moreover, if θ� 0.1 and s is large, these hard sweeps will retain little diversity

anyway and thus are unlikely to be the dominant mode of early adaptation given the observa-

tion of diversity retention in Feder and colleagues [11].

Note that standing genetic variation may also contribute to these sweeps. However, for

these mutations to be reliably present before the start of treatment, θ must also be high.

Although this does depend on the fitness cost of the mutation in the absence of the drug,

much more important for predictability of presence is the population mutation rate [21]. In
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the θ regimes in which the beneficial mutation is likely to arise via standing genetic variation,

it is also likely to arise multiply via recurrent mutation after the onset of treatment [22].

The simulations above suggest that when sweeps happen on the timescales observed in

early HIV drug resistance evolution data, we might expect them to be driven at least in part via

soft sweeps of recurrent mutations. Indeed, we have clear, corroborating evidence that soft

sweeps happen in HIV treated with ineffective therapies. Pennings, Kryazhimskiy, and Wake-

ley studied how a strongly beneficial drug resistance mutation to protease inhibitors, K103N,

emerges in viruses from treated patient sampled over time. K103N can be created by either an

A! T or A! C mutation at the third nucleotide of the codon. Among a dataset of 17 patients

fixing K103N in response to therapy, both A! T or A! C mutations were simultaneously

observed in > 40% (7/17) of patients. One such patient is shown in Fig 4. At day 0, no drug

Fig 3. The probability of a sweep and a soft sweep are closely connected. For a variety of combinations of θ and s, we plot (A) the probability of the 1

or more beneficial alleles reaching 50% frequency in 30 generations, and (B) we plot the proportion of sweeps that are soft conditional on occurring.

Gray squares indicate the beneficial allele(s) did not reach 50% frequency in any simulations, and the white dashed line indicates the selection strength

of mutations conferring resistance to inefficient drugs simulated by Harris et al. (s = 0.025). In (C), we plot the relationship between how likely a sweep

is and its probability of being soft conditional on occurring and find that the 2 are strongly, positively correlated P(sweep) = 80% (i.e., [13]) is shown in

a dashed line. Point size shows increasing values of θ for fixed values of s (s = (0.52, 1, 5.2), shown in red, green, and blue). Other simulation

parameters: 104 replicates, μ = 10−5.

https://doi.org/10.1371/journal.pgen.1009050.g003
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resistance is present in 8 sequenced viral samples. At day 28, drug resistance is visible in 2 dif-

ferent encodings. Drug resistance must therefore have arisen from at least 2 independent

mutations within these patients [8] and could not have been generated via recombination of a

single mutation on to different backgrounds. This is a conservative estimate of the number of

soft sweeps, because when 2 or more mutations of the same type happen (e.g., A! T occurs

twice), the soft sweep appears to us as hard. There are extensive other examples of soft sweeps

in response to ineffective therapies from studies where multiple sequences are available

per individual in HIV-infected humans [13,15,23–29] and Simian-HIV-infected macaques

[30–33].

Rapid adaptation allows recombination little opportunity to rescue

diversity

Given the parameter constraints on HIV’s evolutionary process in response to monotherapy

demonstrated above, we return to the hypothesis that slow hard sweeps in response to ineffec-

tive drugs allow the rescue of genetic diversity. Recombination during a selective sweep rescues

Fig 4. Soft selective sweep from Pennings, Kryazhimskiy, and Wakeley [8]. Viruses were sampled from a patient before (day 0) and after (day 28) the

fixation of drug resistance mutation K103N. At site 103, both A! T and A! C mutations spread at the third codon position. All genetically variable

sites are plotted, with black squares representing synonymous substitutions and orange squares representing nonsynonymous substitutions.

https://doi.org/10.1371/journal.pgen.1009050.g004
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genetic diversity proportionally to the ratio of the selection strength and the recombination

rate (s/r) [34]. The strength of selection therefore determines whether recombination will

result in rescue of genetic diversity (assuming r fixed).

Harris and colleagues suggest that if sweeps in response to ineffective drugs are slow

(s = 0.025), they can fix mutations without a loss of diversity. They compare these sweeps to

those in response to simulated modern drugs (s = 0.1) which do lose genetic diversity with the

sequential fixations of drug resistance mutations [12]. However, time series data suggest that

selection in response to monotherapy is stronger than either of these values (Figs 2 and 3). The

selection strength simulating monotherapy (s = 0.025) is more than an an order of magnitude

too low to recapitulate the speed of drug resistance evolution expected from Fig 3. Even the

strongest selection strength considered (s = 0.1) is not strong enough to lead to any sweeps

within 4 weeks. Since even stronger selection observed in data will lead to even more drastic

reductions in diversity, the recombination-rescued diversity hypothesis cannot explain how

diversity is maintained for HIV responding to ineffective drugs.

We also note that the recombination rate put forward in support of the recombination-res-

cued diversity hypothesis may be too high. It was estimated from untreated patients where

coinfection (and therefore recombination) is more likely than in the simulated bottlenecked

HIV populations [35]. Harris and colleagues therefore likely overestimate how much diversity

will be maintained due to recombination during a sweep. Because HIV populations treated

with monotherapies experience both much stronger selection and potentially weaker recombi-

nation than what was assumed by Harris and colleagues [12], abundant recombination during

slow hard sweeps does not represent a viable alternative to create the patterns observed in

Feder and colleagues [11].

Conclusions

Population genetics is a powerful tool to translate modern day genetic variation into an under-

standing of the forces acting over evolutionary history. Integrating time series data can provide

important calibration on our understanding of the evolutionary process. For example, even

small amounts of ancient DNA found in specific places at specific times have transformed the

understanding our history as a species (reviewed in [36]). In the case of HIV, detailed time

series data help provide strong bounds on the population genetic forces at play. Through track-

ing changing populations over time, we can see that HIV has high θ and large s for drug resis-

tance mutations in response to ineffective therapies.

Bounding the timescales of these population genetic forces can help us understand whether

soft sweeps of multiple recurrent mutations or hard, slow sweeps with recombination can

explain how HIV populations became resistant to early therapies without losing genetic diver-

sity. When populations fix beneficial mutations rapidly and predictably, soft sweeps are not

only possible, but probable. While slow, hard sweeps can retain diversity after a sweep in gen-

eral, parameter constraints on s and θ suggest that this is not an appropriate model for HIV.

Materials and methods

We simulated a 1 locus model of drug resistance with a fixed mutation rate of μ = 10−5 [19].

We simulated a range of parameter values with N = 102 − 106 (resulting in Nμ = θ = 0.001

− 10) and s = 0.01 − 10. For each parameter combination, we ran104 forward simulation repli-

cates and recorded the percentage of runs in which the sum of all drug resistance mutations

reached 50% frequency by generation 30, which we called a sweep. If a sweep occurred, we also

recorded whether more than 1 mutation was at frequency above 5%, which we recorded as a

soft selective sweep.
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