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In the face of chronic changes in incoming sensory inputs, neuronal networks are
capable of maintaining stable conditions of electrical activity over prolonged periods of
time by adjusting synaptic strength, to amplify or dampen incoming inputs [homeostatic
synaptic plasticity (HSP)], or by altering the intrinsic excitability of individual neurons
[homeostatic intrinsic plasticity (HIP)]. Emerging evidence suggests a synergistic
interplay between extracellular matrix (ECM) and metabotropic receptors in both
forms of homeostatic plasticity. Activation of dopaminergic, serotonergic, or glutamate
metabotropic receptors stimulates intracellular signaling through calmodulin-dependent
protein kinase II, protein kinase A, protein kinase C, and inositol trisphosphate
receptors, and induces changes in expression of ECM molecules and proteolysis
of both ECM molecules (lecticans) and ECM receptors (NPR, CD44). The resulting
remodeling of perisynaptic and synaptic ECM provides permissive conditions for HSP
and plays an instructive role by recruiting additional signaling cascades, such as those
through metabotropic glutamate receptors and integrins. The superimposition of all
these signaling events determines intracellular and diffusional trafficking of ionotropic
glutamate receptors, resulting in HSP and modulation of conditions for inducing Hebbian
synaptic plasticity (i.e., metaplasticity). It also controls cell-surface delivery and activity of
voltage- and Ca2+-gated ion channels, resulting in HIP. These mechanisms may modify
epileptogenesis and become a target for therapeutic interventions.

Keywords: mGluRs, extracellular matrix, HCN channels, SK channels, AMPARs, ADAMTS, dopamine receptors,
5-HT7 receptors

INTRODUCTION

Homeostatic plasticity enables neurons to stabilize network activity within an optimal dynamic
range over prolonged periods of time, thereby playing a fundamental neuroprotective role
during pathological conditions that tend to alter function and integrity of neuronal networks.
Homeostatic plasticity entails negative feedback mechanisms that can alter diverse aspects of
network function: the number of shared connections, the strength of excitatory and inhibitory
synaptic transmission, the excitatory/inhibitory ratio [phenomena collectively designated as
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homeostatic synaptic plasticity (HSP)] and the level of intrinsic
excitability [homeostatic intrinsic plasticity (HIP)] (Silberberg
et al., 2005; Hahn et al., 2019). Recent evidence suggests
that many of these homeostatic mechanisms are not always
active but instead are triggered by behavioral states, such the
sleep–wake rhythm, and by modulatory neurotransmitters and
metabotropic receptors, such as the glutamatergic, dopaminergic,
and serotonergic receptors (Tononi and Cirelli, 2014; Hengen
et al., 2016; Diering et al., 2017).

In addition to extensive analyses of ion channel trafficking
and intracellular signaling pathways involved in the different
forms of homeostatic plasticity, several studies have revealed the
importance of synaptic extracellular matrix (ECM) molecules,
such as neuronal activity-regulated pentraxin (Narp) (Chang
et al., 2010), and major ECM receptors such as β3 integrin
(Cingolani et al., 2008; McGeachie et al., 2012). More recently,
the attention was drawn also to the hyaluronic-acid-based
perisynaptic ECM (Korotchenko et al., 2014; Valenzuela et al.,
2014), incorporating lecticans, link proteins, and tenascin-R
(Ferrer-Ferrer and Dityatev, 2018). Here, we review emerging
common themes linking ECM remodeling with other major
mechanisms of homeostatic plasticity, which are intriguingly
“clustered” around regulation of metabotropic receptors.

mGluRs IN HOMEOSTATIC SYNAPTIC
PLASTICITY

Metabotropic glutamate receptors (mGluRs) represent a
prominent family of class C G protein-coupled receptors
(GPCRs). These receptors assemble into constitutive dimers
with each subunit comprising a “Venus flytrap” domain, a large
extracellular N-terminal domain that contains the endogenous
ligand-binding site (Pin and Bettler, 2016). Based on sequence
homology, G-protein coupling, and ligand selectivity, we
can distinguish three major groups of mGluRs. In neurons,
group I mGluRs (mGluR1 and 5) are enriched in postsynaptic
compartments where they couple to Gαq heterotrimeric G
proteins and activate phospholipase C. Group II (mGluR2 and
3) and III mGluRs (mGluR4, 6, 7, and 8) are instead localized
mainly presynaptically where they couple to Gαi/o and inhibit
adenylyl cyclase (Niswender and Conn, 2010).

Group I mGluRs are involved in the induction of both
Hebbian and homeostatic forms of synaptic plasticity. The
mechanism of activation of these receptors in the two forms
of plasticity is, however, different. In Hebbian mGluR-induced
long-term depression (mGluR-LTD), mGluR1/5 are activated by
synaptically released glutamate; consequently, only mGluR1/5
localized in close proximity to the activated synapses will
contribute to weakening of synaptic transmission in a synapse-
specific manner (Oliet et al., 1997; Luscher and Huber, 2010).
Conversely, in homeostatic synaptic downscaling, mGluR1/5
are activated by the immediate early gene Homer1a, which
is induced in response to the increase in network activity.
Rather than being synapse specific, Homer1a induction is
cell wide and promotes mGluR1/5 activity in a glutamate-
independent manner by disrupting the scaffold formed by the

constitutively expressed long forms of Homer, which firmly
anchor mGluR1/5 at perisynaptic sites (Ango et al., 2001;
Hu et al., 2010). Because disruption of mGluR1/5 clusters
favors constitutive activation of these receptors, Homer1a acts
effectively as an endogenous mGluR1/5 allosteric modulator. It
is noteworthy that, albeit different in the induction mechanism,
mGluR-LTD and homeostatic synaptic downscaling eventually
converge as both forms of synaptic plasticity induce tyrosine
dephosphorylation of GluA2 subunits of AMPA-type glutamate
receptors (AMPARs), with a consequent increase in the
internalization rate of GluA2-containing AMPARs (Figure 1;
Moult et al., 2006; Gladding et al., 2009; Scholz et al.,
2010; Jang et al., 2015). Interestingly, these mechanisms
appear to be relevant to synapse remodeling and memory
consolidation during sleep because the synaptic levels of
Homer1a are dramatically increased during sleep, leading to loss
of synaptic mGluR5, constitutive activation of these receptors,
and weakening of synapses (Diering et al., 2017).

RECIPROCAL INTERACTIONS
BETWEEN EXTRACELLULAR
ENVIRONMENT AND mGluRs IN
HOMEOSTATIC SYNAPTIC PLASTICITY

Functional characterization of mGluRs has focused
predominantly on proteins involved in intracellular scaffolding
and signaling (O’Connor et al., 2014). However, it is becoming
increasingly clear that mGluRs also associate with cell adhesion
molecules (CAMs) and ECM components and that these
interactions play a crucial role in regulating localization and
signaling of mGluRs. Recently, group III mGluRs have been
shown to interact with ELFN1 [extracellular leucine-rich
repeat (LRR) and fibronectin type III domain-containing 1
(Tomioka et al., 2014; Cao et al., 2015; Wang et al., 2017;
Dunn et al., 2018)], a member of the family of LRR CAMs,
which play an essential role in specifying synaptic connectivity
(de Wit and Ghosh, 2016). The interaction likely involves the
glutamate-binding domains on mGluRs and the N-terminal
LRR protein-interaction domain on ELFN1 (Stachniak et al.,
2019). In the hippocampus and cortex, ELFN1 is found
exclusively in somatostatin interneurons from where it interacts
transsynaptically with presynaptic mGluR7 expressed in
pyramidal neurons, thereby recruiting mGluR7 selectively
at synapses between pyramidal neurons and somatostatin
interneurons (Tomioka et al., 2014). The enrichment of mGluR7
is responsible for reducing neurotransmitter release probability
and for endowing these synapses with their distinctive short-term
facilitation properties (Sylwestrak and Ghosh, 2012). Similarly,
in the retina, transsynaptic interaction between ELFN1 and
mGluR6 plays an essential role in retaining mGluR6 at the
synapses between rods and bipolar cells (Cao et al., 2015; Wang
et al., 2017). These observations exemplify the relevance of
extracellular interactions for clustering mGluRs at synapses.

Perhaps more importantly, recent work suggests that ELFN1
has not only a structural role, but it could also promote
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FIGURE 1 | Metabotropic glutamate receptors 1/5 (mGluR1/5) in long-term depression (LTD) and homeostatic synaptic plasticity (HSP). Top, in LTD, mGluR1/5 are
anchored at perisynaptic sites via Homer 1b/c and activated in a synapse-specific manner by synaptically released glutamate. Activation of mGluR1/5 leads to
tyrosine dephosphorylation of the GluA2 subunit of AMPARs (1), with consequent increase in AMPAR endocytosis (2). Bottom, in HSP induced by chronic increase in
network activity, induction of Homer1a decouples mGluR1/5 from the synaptic signaling machinery and induce a constitutive glutamate-independent activation of
mGluR1/5. Homer1a-induced mGluR1/5 signaling requires upregulation of the striatal-enriched protein tyrosine phosphatase (STEP61; 1), with consequent
dephosphorylation of the GluA2 subunit of AMPARs (2) and increase in AMPAR endocytosis (3) in a non-synapse-specific manner.
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constitutive activation of group III mGluRs. Specifically, the
interaction between ELFN1 and group III mGluRs may favor
dimerization of these receptors and stabilize them in a
constitutive active conformation (Dunn et al., 2018; Stachniak
et al., 2019). In this model, postsynaptic ELFN1 would act
therefore as an endogenous allosteric modulator to bias group
III mGluR activity from a glutamate-induced to a tonic-signaling
mode. This dual role of ELFN1 as scaffold protein and allosteric
modulator is closely reminiscent of the well-characterized
function of Homer proteins in regulating localization and basal
activity of group I mGluRs in homeostatic plasticity (Ango
et al., 2001; Hu et al., 2010; Shim et al., 2016). Crucially, the
interplay between ELFN1 and mGluR7 is physiologically relevant
because loss of either proteins induces similar phenotypes
in mice, specifically hyperactivity and increased susceptibility
to seizures (Sansig et al., 2001; Dolan and Mitchell, 2013;
Tomioka et al., 2014).

The interplay between ECM and mGluRs is twofold: on
the one hand, the extracellular environment controls mGluRs,
as exemplified above, but on the other hand, the signaling
through mGluRs modulates the extracellular environment. For
instance, stimulation of group I mGluRs activates the disintegrin
metalloproteinase tumor necrosis factor-α-converting enzyme
(TACE; alias, ADAM 17), which in turn cleaves the membrane
protein neuronal pentraxin receptor (NPR). This process, known
as “shedding,” induces the release of a soluble ectodomain of
NPR, which coclusters the pentraxin Narp and AMPARs through
extracellular interactions, and stimulates AMPAR endocytosis.
Remarkably, this mechanism is relevant for both hippocampal
and cerebellar mGluR-LTD, which rely otherwise on divergent
signaling pathways (Cho et al., 2008).

Although it is not known whether similar signaling pathways
are engaged in homeostatic plasticity, it is worth noting that one
of the best-studied substrates of TACE is tumor necrosis factor
alpha (TNF-α), which is required for inactivity-induced HSP
both in vitro and in vivo (Stellwagen and Malenka, 2006; Kaneko
et al., 2008). TNF-α increases surface expression of β3 integrin,
which interacts directly with the GluA2 subunit of AMPARs
and is required for regulating network activity and HSP but not
mGluR-LTD (Cingolani et al., 2008; McGeachie et al., 2012; Pozo
et al., 2012; Jaudon et al., 2019). In addition, under conditions
of hyperactivity, expression and secretion of the pentraxin
Narp is rapidly and dramatically upregulated, which promotes
clustering and retention of AMPARs on parvalbumin-expressing
interneurons, thus increasing excitatory inputs to these cells,
which culminates in homeostatic upregulation of principal cell
inhibition (Chang et al., 2010). Accordingly, Narp−/− mice
display increased sensitivity to kindling-induced seizures.

METABOTROPIC RECEPTOR-DRIVEN
ECM REMODELING AND HOMEOSTATIC
SYNAPTIC PLASTICITY

Like TACE-induced extracellular proteolysis is important for
downregulation of excitatory transmission, disintegrin and

metalloprotease with thrombospondin motifs (ADAMTS)-
mediated proteolytic modifications of ECM are associated with
inactivity-induced homeostatic synaptic upscaling (Valenzuela
et al., 2014). Using an antibody specific for a brevican fragment
cleaved by the matrix metalloproteases ADAMTS4 and 5, the
researchers revealed perisynaptic brevican processing by these
proteases. Interestingly, after induction of homeostatic plasticity
in neuronal cell cultures by prolonged network inactivity, there
is an increased brevican processing at inhibitory as well as
excitatory synapses, corresponding to the ADAMTS4 subcellular
localization. This study suggests therefore a permissive role of
perisynaptic ECM remodeling in removing inhibitory constrains
of synaptic growth necessary for synaptic upscaling.

Which factors control the activity of ADAMTS and other
extracellular proteases and hence the integrity of perisynaptic
ECM? Recent findings implicate dopaminergic and serotonergic
neuromodulation. Activation of D1-type dopamine (DA)
receptors induces proteolysis of brevican and aggrecan via
ADAMTS4 and 5 specifically at excitatory synapses of rat
cortical neurons (Mitlöhner et al., 2019). Pharmacological
inhibition and short hairpin RNA-mediated knockdown of
ADAMTS4 and 5 reduces brevican cleavage. The study further
demonstrates that synaptic activity and DA neuromodulation
are linked to ECM rearrangements via increased cAMP levels,
NMDA receptor (NMDAR) activation, and signaling via
protein kinase A (PKA) and the Ca2+/calmodulin-dependent
protein kinase II (CaMKII). These findings are in line with
the previously reported increase in the extracellular activity of
the tissue plasminogen activator (tPA) protease after activation
of D1-like DA receptors via a PKA-dependent pathway (Ito
et al., 2007). Strikingly, tPA may directly activate ADAMTS4
(Lemarchant et al., 2014), suggesting that at least partially
elevated remodeling of perisynaptic ECM may be due to
tPA-ADAMTS4 processing. Previous analysis of tPA function
in homeostatic plasticity had revealed a bidirectional effect
of tPA on the composition of the postsynaptic density (PSD)
(Jeanneret and Yepes, 2017). In inactive neurons, tPA induces
phosphorylation and accumulation of pCaMKIIα in the PSD,
resulting in pCaMKIIα-induced phosphorylation and synaptic
recruitment of GluA1-containing AMPARs. In active neurons,
tPA drives pCaMKIIα and pGluA1 dephosphorylation and
subsequent removal from the PSD. These effects require active
NMDARs and cyclin-dependent kinase 5 (Cdk5)-induced
phosphorylation of the protein phosphatase 1 (PP1). Thus,
tPA, and hence ADAMTS4 and potentially other members
of the ADAMTS family, may act as homeostatic regulators
of the postsynaptic efficacy in a CaMKII-dependent manner.
In addition, enzymatic digestion of highly sulfated forms of
heparan sulfates with heparinase I was reported to induce
homeostatic synaptic upscaling in association with upregulated
phosphorylation of CaMKII in cultured hippocampal neurons
(Korotchenko et al., 2014). This is noteworthy, as heparan
sulfate proteoglycans are major components of the ECM and
play key roles in misfolding, oligomerization, and fibrillation
of amyloidogenic proteins, stabilization of protein aggregates,
as well as for cellular uptake of proteopathic seeds during their
spreading (Maiza et al., 2018).
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In contrast to DA, serotonin (5-HT) induces ECM remodeling
by activating the matrix metalloproteinase 9 (Bijata et al.,
2017). This study revealed a physical interaction between 5-HT7
receptors and CD44, the major receptor of the neural ECM
backbone, hyaluronic acid. 5-HT7 receptor stimulation increases
local matrix metalloproteinase 9 activity, which leads to CD44
cleavage and Cdc42 activation, followed by an increase in
neuronal outgrowth and elongation of dendritic spines. Although
there is no experimental evidence that this signaling may induce
homeostatic plasticity, hyaluronic acid is known to control
activity of postsynaptic L-type Ca2+ channels (Kochlamazashvili
et al., 2010), which have been implicated in inactivity-induced
HSP (Thiagarajan et al., 2005). Indeed, enzymatic digestion of
hyaluronic acid leads to epileptiform activity in vitro (Vedunova
et al., 2013), and mice deficient in hyaluronic acid synthase HAS3
show epileptic seizures (Arranz et al., 2014).

mGluRs IN HOMEOSTATIC INTRINSIC
PLASTICITY

Homeostatic adaptation of neuronal firing following prolonged
changes in sensory inputs can be achieved not only by adjusting
synaptic strength, to amplify or dampen incoming inputs (i.e.,
HSP), but also by altering intrinsic excitability (i.e., HIP).
Observed initially in primary cortical cultures in response to
the same pharmacological manipulations that induce HSP (Desai
et al., 1999), HIP has been shown to contribute to network
stability of various brain regions in vivo, often in cooperation
with HSP (Debanne et al., 2019). As for HSP, both sensory
deprivation and elevated network activity, as observed in status
epilepticus, can induce HIP (Maffei and Turrigiano, 2008;
Kirchheim et al., 2013; Kuba et al., 2015; Milshtein-Parush et al.,
2017). Although the molecular mechanisms and ion channels
that contribute to stabilizing intrinsic excitability vary widely
according to the brain region and neuron type considered, much
attention has been given to hyperpolarization-activated, cyclic
nucleotide-gated (HCN) and K+ channels. Here, we will consider
the contribution of HCN channels and of a subclass of K+
channels, the small-conductance Ca2+-activated K+ channels
(SK channels) to HIP, and their interplay with metabotropic
signaling and ECM.

HCN Channels
Hyperpolarization-activated, cyclic nucleotide-gated channels,
whose family comprises four members (HCN1, 2, 3, and
4), are of special interest because they are activated by
membrane hyperpolarization, but they mediate a mixed Na+
and K+ current (Ih), whose net effect is depolarizing. This
means that opening (and closing) of HCN channels will
counteract membrane hyperpolarization (and depolarization),
thereby stabilizing membrane potential. Crucially, this negative-
feedback regulation occurs also in the subthreshold range because
HCN channels are partially open at voltages near the resting
membrane potential (Biel et al., 2009). HCN channels play also a
key role in regulating dendritic integration in CA1 hippocampal
and layer V cortical pyramidal neurons. In these neurons, the

dendritic density of HCN channels, and most notably of HCN1,
increases dramatically along the apical dendrites with distance
from the soma. As a consequence of this somato-dendritic
gradient, HCN1 effectively dampens excitatory synaptic currents
originating in distal apical dendrites, thus limiting their temporal
summation (Stuart and Spruston, 2015).

A complex network of cell-autonomous, non-cell-
autonomous, and activity-dependent mechanisms regulates
distal dendritic targeting of HCN1 in pyramidal neurons.
For example, the brain-specific HCN channel auxiliary
subunit tetratricopeptide repeat-containing Rab8b-interacting
protein (TRIP8b) supports dendritic enrichment of HCN1
via intracellular interactions (Piskorowski et al., 2011). The
ECM protein Reelin provides instead a non-cell-autonomous
extracellular factor for anchoring HCN1 at distal dendrites.
Reelin is a large glycoprotein whose signaling is important
for regulating both neuronal positioning during development
and synaptic plasticity in the adult brain (Ferrer-Ferrer and
Dityatev, 2018). In the adult, it is secreted by a subset of
inhibitory interneurons with a non-uniform distribution across
the hippocampus and the neocortex. This sets the conditions
for establishing gradients of Reelin across these two brain
regions. Binding of Reelin to the lipoprotein receptors, the
apolipoprotein E receptor type 2 (APOER2) and the very
low-density lipoprotein receptor (VLDLR), on pyramidal
neurons activates Src family tyrosine kinases and the cytoplasmic
signaling molecule Dab1. This signaling pathway promotes
Hebbian synaptic plasticity by tyrosine phosphorylation of
NMDARs (Beffert et al., 2005) and is required for giving the
distal dendritic compartments of CA1 and layer V pyramidal
neurons their molecular identity, including the enrichment in
HCN1 (Kupferman et al., 2014).

Hyperpolarization-activated, cyclic nucleotide-gated channel
expression is also under the control of neuronal activity both
in vitro (Brager and Johnston, 2007; Shin and Chetkovich,
2007; Arimitsu et al., 2009; Gasselin et al., 2015; Shim et al.,
2016; Schanzenbacher et al., 2018) and in vivo. Indeed, whisker
trimming, to induce sensory deprivation in the barrel cortex,
causes a decrease in HCN channel density in the distal region
of the apical dendrites of layer V pyramidal neurons (Breton
and Stuart, 2009). The network-activity-dependent regulation is
bidirectional as pharmacological treatments that increase and
decrease network activity up- and downregulate HCN activity,
respectively. These adaptations are homeostatic because HCN
channels actively oppose excitatory drive. Interestingly, they also
play an essential metaplastic role as they counterbalance the
complementary changes in synaptic strength that take place
following HSP, thus ensuring that the propensity to induce
Hebbian long-term potentiation (LTP) does not vary following
chronic changes in network activity (Gasselin et al., 2015).

In hippocampal CA1 pyramidal neurons, more proximal
apical dendrites are innervated by the Schaffer collateral pathway
from CA3 pyramidal neurons, while distal apical dendrites
are contacted by the perforant pathway from the entorhinal
cortex (Megias et al., 2001). The localization of HCN1 in distal
dendrites of CA1 neurons requires the activity of the perforant
pathway and opening of NMDARs with subsequent elevation
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of intracellular Ca2+ and activation of CaMKII (Shin and
Chetkovich, 2007). Conversely, activation of group I mGluRs
at the Schaffer collateral and downstream activation of PKC
downregulates HCN channels (Brager and Johnston, 2007).
It is therefore plausible that a differential balance between
NMDAR and mGluR1/5 signaling at the Schaffer collateral and
perforant pathway synapses (Xu et al., 2010) may contribute to
distal HCN enrichment.

As opposed to the situation in pyramidal neurons, HCN
channels are uniformly distributed on the dendrites of cerebellar
Purkinje cells (Angelo et al., 2007). Furthermore, neuronal
activity affects the expression of HCN channels in Purkinje
cells and pyramidal neurons in opposite directions. In Purkinje
cells, chronic activity deprivation upregulates, rather than
downregulating, HCN channels, thus decreasing the excitability
of these neurons. Because Purkinje cells are inhibitory, these
adaptations have a net homeostatic effect on network function.
It is worth noting that HIP in Purkinje cells is initiated by
glutamate-independent activation of mGluR1 (Shim et al., 2016),
similarly to what happens for HSP in cortical neurons (Hu
et al., 2010). Hence, constitutive group I mGluR signaling is
important for the induction of both HSP and HIP and may
change dramatically neuronal network function and stability.
For example, in CA3 hippocampal pyramidal neurons, transient
pharmacological stimulation of group I mGluRs appears to
switch mGluR1 into a constitutive active state with consequent
changes in multiple intrinsic ion conductances [including
suppression of the Ca2+-dependent K+ current mediating the
slow afterhyperpolarization (sIAHP) and activation of a voltage-
gated cationic, TRPC-like current (ImGluR(V))], which have an
overall epileptogenic effect in the hippocampus (Bianchi et al.,
2009, 2012; Young et al., 2013).

SK Channels
Small-conductance Ca2+-activated K+ channels, whose family
comprises four members (SK1–4), are voltage-independent
K+ channels broadly expressed in the brain (Stocker and
Pedarzani, 2000; Pedarzani and Stocker, 2008; Gymnopoulos
et al., 2014). Low concentrations (in the submicromolar range) of
intracellular Ca2+ activate SK channels by binding to calmodulin,
which serves as intrinsic Ca2+ sensing subunit. In addition
to calmodulin, SK channels interact constitutively with protein
kinase CK2 and protein phosphatase 2A, which modulate
Ca2+ sensitivity (Adelman et al., 2012). Because SK channels
hyperpolarize membrane potential in response to intracellular
Ca2+ rises, they have a well-recognized role in counteracting
somatic excitability and Hebbian synaptic plasticity (Lujan et al.,
2009). Recent evidence suggests a possible role for SK channels
also in homeostatic plasticity. Notably, SK2 channels colocalize
and coassemble with mGluR1 and mGluR5 in Purkinje cells and
hippocampal pyramidal neurons, respectively (Garcia-Negredo
et al., 2014; Lujan et al., 2018). In CA1 hippocampal and
layer V cortical pyramidal neurons, stimulation of group I
mGluRs activates inositol trisphosphate receptors (IP3Rs), which
support intracellular Ca2+ waves in dendrites and somata.
While these Ca2+ waves often evoke a transient SK-mediated

hyperpolarization (Hagenston et al., 2008; El-Hassar et al., 2011),
selective pharmacological stimulation of mGluR5 reduces SK
currents in layer V pyramidal neurons (Sourdet et al., 2003;
Cannady et al., 2017).

Our recent data indicate that the ECM proteoglycan
brevican may constitutively inhibit activity of group III mGluRs
postsynaptically in CA1 pyramidal neurons (Song et al.,
2019). Under conditions of brevican deficiency, these receptors,
however, become active and reduce cAMP levels in neurons.
This results in inhibition of PKA activity, which normally drives
endocytosis of SK channels, and hence in increased cell surface
expression of SK channels and reduced excitability of pyramidal
neurons. Such mechanism may be induced by activity-dependent
proteolysis of brevican and plays therefore a homeostatic role by
reducing dendritic neuronal excitability.

HEPARAN SULFATE PROTEOGLYCANS
IN AXONAL EXCITABILITY

Similar to dendritic, also axonal excitability is under the control
of ECM molecules, which accumulate at the axon initial segment
(AIS). Among these molecules are tenascin-R and heparan
sulfate proteoglycans of glypican and syndecan subfamilies.
Acute treatment of hippocampal slices with heparinase I results
in impaired LTP due to a reduction in axonal excitability (Minge
et al., 2017). Our recent findings demonstrate elevated CaMKII
activity 24 h after intrahippocampal heparinase I injection
in vivo, which is accompanied by reduced axonal excitability and
impaired context discrimination in fear conditioning paradigms
(Mironov et al., 2018). These effects appear to be mediated by
CaMKII because cotreatment with heparinase I and the CaMKII
inhibitor AIP fully rescues neuronal excitability and context
discrimination and because the increase in CaMKII expression at
the AIS is accompanied by changes in accumulation of ankyrin
G. In summary, these data suggest that the CaMKII signaling
cascade activated by ECM remodeling is essential for both
HSP and the control of axonal excitability. So far, no specific
GPCRs have been implicated in the mechanisms linking heparan
sulfates to CaMKII. Still, heparan sulfates are known to modulate
presentation of diverse positively charged ligands to GPCRs. For
instance, they stabilize the formation of chemokine dimers and
higher order chemokine oligomers that are required for binding
to the G-protein-coupled chemokine receptors. One of these,
CXCR4, is activated by chemokine C-X-C motif ligand CXCL12α

bound to heparan sulfates (Thakar et al., 2017) and is known to
regulate CaMKII activity (Hu et al., 2017).

HOMEOSTATIC PLASTICITY AND
METAPLASTICITY

Synaptic and intrinsic homeostatic responses may cooperate
with each other to maintain constant conditions for the
induction of Hebbian-type synaptic plasticity. A good example
is the aforementioned homeostatic regulation of HCN channels.
Downscaling of excitatory synaptic currents following chronic
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FIGURE 2 | Interplay between metabotropic receptors and extracellular matrix
in homeostatic plasticity. (1) Network activity and neuromodulatory systems
stimulate G protein-coupled receptors (GPCRs) [metabotropic glutamate
receptors 1/5 (mGluR1/5), D1/5 dopamine receptors, 5-HT7R serotonin
receptors] and (2) downstream signaling networks [including
calmodulin-dependent protein kinase II (CaMKII), protein kinase A (PKA),
protein kinase C (PKC), and inositol trisphosphate receptors (IP3Rs)]. (3) This
results in activation of extracellular proteinases [tumor necrosis
factor-α-converting enzyme (TACE), disintegrin and metalloprotease with
thrombospondin motifs 4/5 (ADAMTS4/5), matrix metalloproteinase 9
(MMP9)], which (4) may process ECM molecules (lecticans) or (5) ECM
receptors (NPR, CD44), enabling synaptic modifications (not shown) as well
as (6) signaling back through modulation of GPCRs (group III mGluR) and (7)
additional intracellular signaling events. (8) Inactivity increases cell surface
expression and signaling through major extracellular matrix (ECM) receptors,
β3 integrins. (9) Activity stimulates secretion of Narp and its coaggregation
with GluAs on interneurons. (10) Intracellular signaling cascades are
converging on regulation of trafficking of GluAs [homeostatic synaptic
plasticity (HSP)] or voltage- and Ca2+-gated ion channels (HIP).

network hyperactivity would favor subsequent induction of LTP
because of the reduced initial synaptic strength. Concomitant
homeostatic upregulation of HCN activity counteracts, however,
the increased propensity of CA1 excitatory synapses to undergo
LTP (Gasselin et al., 2015).

Similarly, downregulation of chondroitin sulfate-rich ECM
increases signaling through β1 integrins, which may upregulate
expression of GluN2B subunits of NMDARs (Schweitzer et al.,
2017) and hence activates metaplastic mechanisms, which will
promote synaptic plasticity (Song et al., 2019). These changes
are counteracted by modulation of intrinsic excitability through
activation of SK channels, which inhibits induction of LTP
by theta-burst stimulation because of increased afterburst-
hyperpolarization (Song et al., 2019).

Metaplasticity may occur also at the network level. For
example K+ channels of the KV1 subfamily are enriched in the
distal part of the AIS where they colocalize with scaffold proteins
(PSD-93) and CAMs (contactin-associated protein-like 2, axonal
glycoprotein TAG-1, and disintegrin and metalloproteinase
domain-containing protein 22) (Leterrier, 2018). Although it
is unclear whether these proteins are important for localizing
KV1 channels at the AIS, high-frequency stimulation of the

Schaffer collaterals has been shown to downregulate KV1
channel activity in hippocampal parvalbumin interneurons via
activation of mGluR5. This enhances feed-forward inhibition
mediated by parvalbumin interneurons, thus balancing increased
synaptic and intrinsic excitation in CA1 pyramidal neurons
(Campanac et al., 2013).

Another known ECM-dependent metaplastic mechanism is
activated by deficiency in the ECM glycoprotein tenascin-R,
which leads to upregulation of excitatory transmission to CA1
pyramidal neurons and reduction in perisomatic inhibition in
the CA1 region through activation of postsynaptic metabotropic
GABAB receptors. This mechanism impairs TBS-LTP and results
in a 10-mV metaplastic shift in the depolarization threshold
necessary to induce LTP by low-frequency stimulation (Bukalo
et al., 2007). In summary, downregulation of ECM may
activate homeostatic non-Hebbian plasticity (via modulation of
excitability) in parallel with metaplasticity (i.e., changes in rules
of Hebbian plasticity) and call for careful dissection of their
interplay in the context of neurological diseases.

CONCLUDING REMARKS

We have highlighted emerging evidence suggesting a synergistic
interplay between metabotropic receptors and ECM in regulating
homeostatic plasticity. Activation of metabotropic receptors for
glutamate, DA, and serotonin can initiate intracellular signaling
pathways through tyrosine and serine kinases that culminate in
the proteolytic cleavage of ECM molecules and ECM receptors.
This structural remodeling of the extracellular environment
provides either permissive or instructive conditions for HSP and
HIP by regulating trafficking of synaptic and extrasynaptic ion
channels, respectively. Furthermore, ECM proteins can also affect
directly localization and signaling of metabotropic receptors.
Although the experimental evidence is still scant, we propose
that the superimposition of these reciprocal signaling pathways
between intracellular and extracellular environments provides
a robust and dynamic regulatory system for multiple forms of
homeostatic plasticity (Figure 2).
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