
Published online 3 June 2022 NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 2 1
https://doi.org/10.1093/nargab/lqac045

Systematic evaluation of parameters in RNA bisulfite
sequencing data generation and analysis
Zachary Johnson1,2,†, Xiguang Xu1,3,†, Christina Pacholec1,3 and Hehuang Xie 1,2,3,4,5,*

1Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061,
USA, 2Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA 24061, USA,
3Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine; Virginia
Tech, Blacksburg, VA 24061, USA, 4Translational Biology, Medicine and Health Program, Virginia Tech, Blacksburg,
VA 24061, USA and 5School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, USA

Received February 18, 2022; Revised May 05, 2022; Editorial Decision May 16, 2022; Accepted May 23, 2022

ABSTRACT

The presence of 5-methylcytosine (m5C) in RNA
molecules has been known for decades and its im-
portance in regulating RNA metabolism has gradu-
ally become appreciated. Despite recent advances
made in the functional and mechanistic understand-
ing of RNA m5C modifications, the detection and
quantification of methylated RNA remains a chal-
lenge. In this study, we compared four library con-
struction procedures for RNA bisulfite sequencing
and implemented an analytical pipeline to assess the
key parameters in the process of m5C calling. We
found that RNA fragmentation after bisulfite conver-
sion increased the yield significantly, and an addi-
tional high temperature treatment improved bisulfite
conversion efficiency especially for sequence reads
mapped to the mitochondrial transcriptome. Using
Unique Molecular Identifiers (UMIs), we observed
that PCR favors the amplification of unmethylated
templates. The low sequencing quality of bisulfite-
converted bases is a major contributor to the methy-
lation artifacts. In addition, we found that mitochon-
drial transcripts are frequently resistant to bisulfite
conversion and no p-m5C sites with high confidence
could be identified on mitochondrial mRNAs. Taken
together, this study reveals the various sources of
artifacts in RNA bisulfite sequencing data and pro-
vides an improved experimental procedure together
with analytical methodology.

INTRODUCTION

Post-transcriptional modification of RNA molecules plays
a fundamental role in the regulation of RNA func-
tion and metabolism (1–4). Among the more than 170

types of RNA modifications that have been identified (5),
RNA 5-methylcytosine (m5C) is one of the most well-
known and widely present in transfer RNAs (tRNAs),
ribosomal RNAs (rRNAs) and messenger RNAs (mR-
NAs) (6–8). RNA m5C modification in tRNAs, medi-
ated by DNA methyltransferase 2 (DMNT2) and members
of the NOP2/Sun RNA methyltransferase enzyme family
(NSUN) (6,9–11), promote tRNA stability and protein syn-
thesis (9)). RNA m5C modification in rRNAs, introduced
by NSUN5, serves as a conserved mechanism in rRNA-
mediated translational regulation (12). Compared to tR-
NAs and rRNAs, mRNAs carry relatively few m5C mod-
ifications, the functions of which have been better under-
stood in recent years (8,13–16). Specifically, the m5C mod-
ification promotes the export of mRNAs from the nucleus
to the cytoplasm via the RNA binding protein ALYREF
(16), stabilizes mRNAs by facilitating the binding of the
m5C reader protein YBX1 (17–19), and modulates mRNA
translation efficiency (20). Moreover, mRNA m5C modifi-
cation is involved in diverse physiological and pathologi-
cal conditions including facilitating the maternal-to-zygotic
transition in early embryos of zebrafish (18), promoting
ovarian germ line stem cell development in drosophila (19),
and driving the pathogenesis of bladder cancer in humans
(17).

Along with advances in high-throughput sequencing,
RNA bisulfite sequencing (RNA BS-seq) was developed
and widely used for the identification of RNA m5C mod-
ification at single nucleotide resolution (8,14,16,21,22). De-
spite the successful confirmation of m5C sites in tRNAs
(9,23,24) and rRNAs (7,12) using RNA BS-seq, it remains
a challenge to obtain reproducible sets of m5C in mRNAs,
even among biological replicates. Currently, a wide range
of m5C sites in the mammalian transcriptome has been re-
ported, ranging from <100 to >10 000 sites per transcrip-
tome (8,14–16,22). Such a large variation in the number
of m5C sites determined in mRNAs is speculated to be
associated with differences in experimental versus compu-
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tational approaches including inefficient bisulfite conver-
sion, sequencing data-quality controls, methylation calling,
and methylation filtering strategies (Supplementary Table
S1) (14–16,22,25,26). From an experimental aspect, sev-
eral versions of RNA BS-seq library construction proto-
cols have been published (14–16,22). The primary differ-
ences in these protocols lie in the timing of RNA frag-
mentation, the temperature and duration of thermal con-
ditions during bisulfite conversion, and the usage of ACT
or regular random hexamers for first strand cDNA syn-
thesis. Despite an elegant toolkit meRanTk (25) imple-
mented to provide accurate sequence mapping, methylation
calling, and high-confidence filtering; the pipelines used to
process RNA BS-seq data vary across different research
groups.

Recent studies utilizing high-stringency bisulfite con-
ditions, a ‘C-cutoff’ of RNA BS-seq reads, and other
statistical techniques have identified hundreds of high-
confidence m5C sites in mRNAs in mouse and human tis-
sues (20,22,27). mRNAs carrying high-confidence m5C sites
were found to be enriched in the mitochondrial gene path-
way (22). Research groups focusing on non-coding RNAs
have identified the m5C modification of mitochondrial tR-
NAs and one rRNA (11,28–30), indicating the presence of
NSUN2 (29,31), NSUN3 (32,33) and NSUN4 (30,34–36)
activity within the mitochondrial complex. Some studies
identified methylated mRNAs originating from the mito-
chondrial genome (14,16,22), however, other studies were
unable to support this finding (15,37).

Despite the promising results obtained in recent RNA
BS-seq studies, it remains a challenge to select an ideal ex-
perimental protocol for library construction and appropri-
ate parameters in the data processing procedure to accu-
rately identify m5C sites. In this study, we compared four
different protocols for RNA BS-seq library construction.
RNA samples isolated from the mitochondria of mouse
neural stem cells (NSCs) was used as starting materials. The
small size of mitochondrial transcriptome helps in produc-
ing sequences with sufficient read depth and minimizing
artifacts resulted from multi-mapping, in addition to the
cross-validation of methylation sites identified in previous
studies (11,29–33,38). To provide a robust technical analysis
of RNA BS-seq data, Unique Molecular Identifiers (UMI)
were introduced to estimate the error rates resulting from
PCR and sequencing steps (39), and a stringent analytical
pipeline was implemented to assess key parameters in m5C
calling.

MATERIALS AND METHODS

Mouse neural stem cell isolation and culture

Adult mouse neural stem cells (NSCs) were isolated
from the subventricular zone (SVZ) of the lateral ven-
tricles as described previously (40). NSCs were seeded
on poly-Ornithine and laminin-coated plates and cul-
tured in DMEM/F12 medium supplemented with 2%
B27 supplement, 2 mmol/l L-glutamine, 1× penicillin–
streptomycin, 20 ng/ml epidermal growth factor (EGF, Pe-
proTech), 20 ng/ml basic fibroblast growth factor (bFGF,
PeproTech).

Mitochondrial BS-seq library construction

Mitochondria were isolated from NSCs using a mitochon-
drial isolation kit (Abcam, ab110171) following the man-
ufacturer’s instructions. RNA was extracted from the iso-
lated mitochondria and subjected to DNase digestion. One
round of poly(A) selection was performed to enrich mito-
chondrial molecules. ERCC RNA mixes (Thermo) and un-
methylated Xef mRNA were spiked into the samples as ex-
ternal RNA controls. The mitochondrial BS-seq libraries
were constructed using the NEBNext® Ultra™ II Direc-
tional RNA Library Prep Kit for Illumina (NEB, E7760S)
and bisulfite treatment was performed using the EZ RNA
methylation kit (Zymo Research) under four different con-
ditions: (A) bisulfite conversion using three cycles of 70◦C
for 10 min and 64◦C for 45 min. After bisulfite conversion,
RNA fragmentation and priming was performed by incu-
bation at 94◦C for 8 min in first strand reaction buffer and
6 bp random primers for first strand cDNA synthesis; (B)
RNA fragmentation was performed before bisulfite conver-
sion by incubation at 90◦C for 50 s in 1× RNA fragmenta-
tion buffer and quenched by adding 1× stop buffer, then pu-
rified by Zymo Research RNA clean and concentrator-5 kit.
Then, bisulfite conversion was performed using three cycles
of 70◦C for 10 min and 64◦C for 45 min. After bisulfite con-
version, RNA fragmentation was omitted and priming was
performed by incubation at 65◦C for 5 min in first strand
reaction buffer and random primers for first strand cDNA
synthesis; (C) RNA fragmentation was performed first,
then bisulfite conversion was performed using three cycles
of 95◦C for 1 min, 70◦C for 10 min and 64◦C for 45 min.
After bisulfite conversion, RNA fragmentation was omit-
ted and priming was performed by incubation at 65◦C for 5
min in first strand reaction buffer and random primers for
first strand cDNA synthesis; (D) RNA fragmentation was
performed first, then bisulfite conversion was performed us-
ing three cycles of 95◦C for 1 min, 70◦C for 10 min, and 64◦C
for 45 min. After bisulfite conversion, RNA fragmentation
was omitted, and priming was performed by incubation at
65◦C for 5 min in first strand reaction buffer and 6 bp ACT
random hexamer primers for first strand cDNA synthesis.

Methylation calling and post-call filtering of BS-seq reads

Raw reads were processed using fastp v0.20 (26) using the
parameters (-Q -l 50 –trim poly x –poly x min len 10). We
then removed low-quality reads and trimmed read ends us-
ing the parameters (-q 25 -5 -3 -M 25 -f 6 -t 6). Clean reads
were then mapped to the mm10 genome using meRanGh
of the meRanTk package (25). Methylation calling was per-
formed using meRanCall. A p-m5C site was defined as any
C→T variants (or G→A variants in the complementary
strand) compared to the converted reference genome. All
p-m5C sites with quality above Q30 and at least 10x (C + T)
coverage were called using the parameters (-mBQ 30 -sc 10
-cr 1 -mr 0.00001 -mcov 10). To achieve high-confidence in
methylation calling, a ‘standard filter’ was applied to each
site: (i) at least three variants (i ) to be called at a position;
(ii) the (C + T) coverage ( j ) to be 20 or greater; (iii) the
methylation level, defined as i/j , to be at least 0.1. Bisul-
fite converted reads with multiple cytosines identified were
considered as incomplete conversion artifacts (15,20,24). To
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determine the threshold of cytosines (C-cutoff) identified
in a read, we calculated the Gini coefficient following the
previously described procedure (22). After C-cutoff filter-
ing, the p-m5C sites with ‘signal/noise’ ratios >0.9 (20,22)
and FDR adjusted P-values less than 0.05 (14,25) were re-
tained. Lastly, RNAfold of the ViennaRNA v2.2.9 soft-
ware (–maxBPspan 150, -T 70, –MEA 0.1) was used to pre-
dict conversion-resistant regions (41). p-m5C sites located
in these regions were removed. To ensure high-confidence
in methylation calling among biological replicates, a methy-
lated site must pass all the filtering steps described above in
at least one sample and was present in at least one other
replicate after the C-cutoff. Sites were annotated using a
custom script and the Ensembl mm10 v79 GTF.

UMI deduplication and analysis

UMIs of mitochondrial libraries were grouped and dedupli-
cated using umi-tools (42)). Concordance and discordance
rates of ERCC sequences were analyzed using a custom
python script. A UMI-group was considered discordant if
reads reported different nucleotides at a given variant posi-
tion.

RNA-seq library analysis

RNA-seq libraries were filtered using the same parameters
applied to BS-seq libraries and mapped to the reference
genome using meRanGh. The expression values for each
gene were calculated using featureCounts of the Subread
package suite v2.0.0 using default parameters.

Statistical Analysis

Statistical analyses were performed using SciPy v1.7 and
R v4.1.1. Fisher Exact test was used to determine differ-
entially methylated sites among mitochondrial replicates.
Wilcoxon rank-sum was used to compare methylation levels
of shared m5C sites among RNA BS-seq libraries.

RESULTS

Experimental design and construction of RNA bisulfite se-
quencing libraries

Considering the RNA bisulfite treatment conditions used
in previous studies, we isolated mitochondria from mouse
NSC culture and constructed RNA BS-seq libraries with
four different conditions (Figure 1) to examine the impacts
of: (i) the order of RNA fragmentation and bisulfite treat-
ment; (ii) the inclusion of a heat denaturation step dur-
ing bisulfite treatment and (iii) the use of random hexam-
ers containing all four nucleotides vs ACT-only primers
for first strand cDNA synthesis. NSCs were chosen in this
study since previous reports identified RNA m5C methyla-
tion plays a critical role in stem cell differentiation (24,43).
Western blot and RT-qPCR were performed to confirm the
successful enrichment of mitochondrial isolation (Supple-
mentary Figure S1A and B). For each condition, RNA-seq
and RNA BS-seq libraries were constructed for two bio-
logical replicates and sequenced on the HiSeq 4000 plat-
form in 150 bp paired end mode. RNA BS-seq libraries

were constructed using four different procedures, which we
named MT-A/B/C/D. In these libraries, adaptors carrying
UMIs were used to remove PCR duplicates and assess the
errors generated during PCR amplification. External RNA
Controls Consortium (ERCC) consisting of pre-formulated
blends of 92 transcripts were spiked in as unmethylated con-
trols to estimate the bisulfite conversion rate. In addition to
the eight RNA BS-seq libraries constructed in this study, we
included an external RNA BS-seq dataset, Huang libraries,
generated from mouse muscle tissues (22). Throughout this
study, putative methylated sites (C in mRNA strands or G
in the complementary cDNA strands) were denoted as ‘p-
m5C’. We aimed to assess the effects of each analytical step
in the pipeline for p-m5C identification and determine the
potential sources of p-m5C artifacts.

Read pre-processing and the influence of sequencing quality
filter on methylation calling

Read pre-processing and cleaning are essential steps in most
NGS analyses. These steps are especially critical in RNA
BS-seq data processing, as sequencing artifacts heavily in-
fluence downstream analysis due to the extremely low m5C
signal. In this study, raw reads were processed using fastp
(26) to identify low-quality reads and called bases. First,
non-overlapping pair-end reads and reads with lengths
shorter than 50 bp after adapter trimming were discarded.
For each subsequent step, this criterion was maintained.
Second, reads were subjected to polyX trimming with a
threshold of a 10-base nucleotide repeat. Two quality fil-
ters were applied to remove reads with: (i) an average score
<Q25 and (ii) >40% of the bases with a Phred33 score less
than Q25. Last, we trimmed 6 bp from the 5′ and 3′ ends
of both the forward and reverse reads. This was performed
to reduce the influence of methylation bias resulting from
any residual bases derived from the hexamer primers used
in first-strand cDNA synthesis (Supplementary Figure S2).

We evaluated the sequencing quality of the four types of
nucleotides (A, T, C, G) at each step of read pre-processing.
For libraries generated in this study, the average Phred score
of cytosine in unprocessed reads was 3 points lower than
those of the other three kinds of nucleotides, and 6 points
lower in the RNA BS-seq dataset generated with Huang li-
braries (Figure 2A). The overall low sequencing quality of
Cs in forward reads and Gs in reverse reads is presumably
due to the composition of nucleotides in the RNA BS-seq
libraries being unbalanced during sequencing. In addition,
a significant drop in the Phred score of cytosine occurred
starting from the 70th base position, with this trend dimin-
ishing after sequence trimming (Figure 2A and B). Such a
phenomenon was observed in RNA BS-seq libraries, but
not in the regular RNA-seq libraries (Supplementary Fig-
ure S3). Despite the stringent filters employed to remove
low quality reads and/or bases in the pre-processing steps,
the average Phred scores of p-m5C sites in our BS-seq li-
braries was 2 points lower than other nucleotides, and 7
points lower in Huang libraries. (Figure 2C). In Huang li-
braries, the quality of p-m5C sites in clean reads was one
point lower on average than in raw reads due to removal of
high-quality p-m5Cs within adaptors. Therefore, additional
removal of those p-m5C sites with low quality scores is nec-
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Mitochondria RNA

Mouse Neural Stem Cells (NSCs)

Library Construc�on Condi�ons

Libraries RNA Fragmenta�on Bisulfite Conversion (x3) Primers

MT-A A�er Bisulfite conversion 70°C (10min), 64°C (45min) Random

MT-B Before Bisulfite conversion 70°C (10min), 64°C (45min) Random

MT-C Before Bisulfite conversion
95°C (1min),

70°C (10min), 64°C (45min)
Random

MT-D Before Bisulfite conversion
95°C (1min),

70°C (10min), 64°C (45min)
ACT

RNA BS-seq

UMI adapters,
ERCC RNA spike-in

RNAseq

Figure 1. RNA library constructed in this study. Fragmentation timing, bisulfite conversion conditions, and primers used in RNA BS-seq libraries are
described as individual conditions. ‘ACT’ denotes the use of ACT primers rather than random primers.

essary to minimize false-positive methylation calls resulting
from sequencing errors. For this reason, we included an ad-
ditional Q30 cutoff filter for all p-m5C sites.

Estimation of the influence of bisulfite conversion rate and
PCR error on methylation calling

Using the built-in mapper functions of the meRanTk
toolkit (25), all clean reads from both the RNA BS-seq
and RNA-seq libraries were mapped to the mm10 refer-
ence genome (meRanGh) and transcriptome (meRanT). Se-
quence reads derived from RNA-seq show a higher percent-
age of uniquely mapped reads compared to those derived
from RNA BS-seq. On average, the percentages of uniquely
mapped reads using meRanGh are 52.4% and 44.4% higher
than those using meRanT for RNA BS-seq and RNA-
seq, respectively. We also examined the mapping efficien-
cies of the aggregated approach to recover multi-mapped
and unmapped reads using meRanGh or meRanT alone.
meRanGh alone was able to provide unique mapping rates
similar to the combination of meRanGh and meRanT (Sup-
plementary Figure S4A). More than 50% of mapped reads
were mapped to exonic regions in all analyzed samples (Sup-
plementary Figure S4B).

Using UMI adaptors and the mapping coordinates,
uniquely mapped reads in this study’s libraries were grouped
using the ‘group’ command of the umi-tools package (42).
Reads that were mapped to the same genomic coordinate
and contained an identical UMI-ID were considered to
be PCR amplicons. These PCR amplicons may contain
small sequence variations due to PCR error, and so the

most prevalent sequence was retained for methylation call-
ing. In this study, all bisulfite converted libraries were sub-
jected to PCR amplification to obtain enough DNA suit-
able for Illumina sequencing. We found that the cDNA
yields of the MT-B/C/D libraries were much lower than
that of the MT-A libraries. Thus, 20 cycles of PCR were per-
formed to amplify MT-B/C/D libraries while only 16 cycles
were needed for MT-A libraries. Such a difference in the
number of PCR cycling across libraries was manifested by
UMI-based PCR deduplication. More specifically, less than
20.0% of uniquely mapped reads in MT-A libraries were
derived from PCR amplicons. Compared to those of MT-
A libraries, PCR duplication rates for MT-B/C/D libraries
increased by an average of 57.9% (Supplementary Table
S2). This indicated that in all four conditions tested for
RNA BS-seq library construction, RNA fragmentation af-
ter bisulfite sequencing (MT-A libraries) is the best in terms
of cDNA yield and reducing the need for additional PCR
cycles.

Besides PCR deduplication, the UMI-IDs also allowed
for the examination of PCR errors within a UMI-group. We
focused on reads mapped to ERCC references to determine
PCR or sequencing error, which was reported as the discor-
dance rate at each nucleotide position within a UMI group.
As mentioned, MT-B/C/D libraries exhibited higher per-
centages of PCR amplicons than those of MT-A libraries.
Consequently, the read depths of UMI groups identified in
MT-B/C/D libraries were found to be much larger than
those of MT-A libraries (Figure 3A). The increased read
depth within a UMI group led to a higher probability of
a PCR and/or sequencing error. Indeed, compared with



NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 2 5

P
hr

ed
 S

co
re

A

B
Position (bp)

40

30

20

0 75 150

40

30

20

40

30

20

40

30

20

P
hr

ed
 S

co
re

MT RNA BS-seq (MT-A) Huang Replicate 2

Position (bp)

Read 1 – Raw

Read 2 - Raw

Read 1 – Clean

Read 2 - Clean

MT RNA BS-seq (MT-A) Huang Replicate 2

C p-m5C sites

All bases

P
hr

ed
 S

co
re

Sequence trim
Raw reads

Quality filter

Read 1 – Raw

Read 2 - Raw

Read 1 – Clean

Read 2 - Clean

Read 1 – Clean

0 75 150

0 75 150 0 75 150

Figure 2. Quality score analysis of p-m5C bases. (A, B) Mean Phred score per base sequence of adenosine (blue), thymine (yellow), guanine (green), and
cytosine (red) in MT-A replicate 1 and Huang replicate two datasets before (A) and after (B) all cleaning steps. (C) Mean base-level Phred scores at each
step of the sequence cleaning pipeline (shades of red). p–m5C sites are ‘Cs’ in Read 1 and ‘Gs’ in Read 2. The p-m5C bases are depicted in the top figure,
and the average of all nucleotides are represented in the bottom figure.

MT-A libraries, discordance ratios were found to be higher
in MT-B/C/D libraries (Figure 3B). Interestingly, discor-
dance ratios were similar for three types of nucleotides (cy-
tosine, guanine, and thymine), but the discordance ratios
of adenine were two to six times higher. This is likely due
to the high proportion of adenine in mRNA molecules, i.e.
shorter poly-A tails not removed by the polyX filter. Impor-
tantly, for libraries generated under all four conditions, the
discordant rates of p-m5C sites ranged from 0.1% for MT-
A libraries to 0.7% for MT-D libraries. This indicates that
PCR and sequencing errors at p-m5C sites are very low, even
with 20 cycles of PCR amplification in the RNA BS-seq pro-
cedure. We further examined the nucleotide ratios at each
discordant p-m5C site and found that C/T was the discor-
dance type most frequently observed (Figure 3C). In addi-
tion, MT-A libraries had the highest C/T ratio while MT-D
libraries had the lowest C/T ratio. This suggests an increase
in PCR amplicons enriched for reads carrying thymine but
not cytosine.

Since ERCC references were unmethylated spike-in con-
trols, they were ideal for the estimation of bisulfite conver-
sion rate. In other words, any p-m5C site in reads mapped

to ERCC should be an artifact. Over 90% of ERCC reads
in all libraries were found to be free of p-m5C sites. Af-
ter PCR deduplication, the proportion of reads without
m5C artifacts decreased by 1% for MT-A libraries, but 3%
to 6% for MT-B/C/D libraries (Figure 3D). As a result,
ERCC conversion rates for libraries MT-B/C/D decreased
after deduplication (Figure 3E). Further examination of the
ERCC reads carrying methylation artifacts revealed that
the majority of these reads only carried one cytosine while
some ERCC reads contained more than twenty cytosines.
This suggests that, for some RNA molecules such as ERCC
00002/00096/000130 (Supplementary Figure S5A), bisul-
fite conversion reactions may not take place properly due to
RNA secondary structure (13,44). In addition, PCR dedu-
plication increased the percentages of reads carrying more
than twenty cytosines, particularly for MT-B/C/D libraries
(Figure 3F). This result is consistent with the observation
that PCR amplification favors reads with fewer cytosines
(Figure 3D). Regardless of PCR deduplication, bisulfite
conversion rates for two MT-A libraries were higher than
99.7%. However, incomplete bisulfite conversion was ob-
served in the MT-B and MT-D libraries.
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Since each ERCC reference was provided with a known
concentration, we further examined the influence of the
bisulfite sequencing procedure on the abundance of tran-
scripts. For the regular RNA-seq libraries, the read cover-
ages of the ninety-two ERCC references were highly cor-
related with the concentrations provided by the manufac-
turer. Similar trends were observed in RNA BS-seq li-
braries except for two ERCC molecules: ERCC-00004 (7500
attomoles/ul) and ERCC-00096 (15 000 attomoles/ul). The
read coverages of these two ERCCs were significantly below
the expected concentrations in all mitochondrial BS-seq li-
braries (Supplementary Figure S5B).

To determine the transcriptome-wide effect of the bisul-
fite sequencing procedure, the expression levels of all
mapped transcripts were determined using featureCounts
(45). For RNA BS-seq libraries, the CPM (counts per
million) values were determined with and without UMI-
deduplication. After deduplication, the MT-B/C/D li-
braries reported at least a log two-fold reduction in CPM
for 10.2–12.7% of genes, while <1% of genes experienced
a change in expression level in MT-A libraries (Supple-
mentary Figure S6A). We further examined the effect of
bisulfite conversion on gene expression values by compar-
ing CPM values of bisulfite converted libraries to non-
converted RNA-seq libraries. MT-A RNA BS-seq libraries
reported the highest correlation to the RNA-seq control
with a Spearman correlation of 0.99, and only 2.6% of tran-
scripts with changes greater than two-fold. In contrast, MT-
B/C/D libraries reported over 60% of transcripts with a
greater than log two-fold change (Supplementary Figure
S6B). This result suggests that for the majority of genes, ex-
pression profiles remain comparable to regular RNA-seq if
bisulfite sequencing libraries are constructed using the MT-
A condition with 16 cycles of PCR amplification.

Multi-level filter for highly confident methylation callings

After determination of p-m5C sites in uniquely mapped
reads, multi-level filters with various strategies were widely
used to achieve highly confident methylation callings (Sup-
plementary Table S1). For each library, p-m5C sites with
at least 10X read coverage were compiled as a starting set.
We followed a multi-step filtering procedure (Figure 4A) to
evaluate the influence of each filtering step on the number
of methylation calling (Supplementary Table S3). The first
step was a ‘Standard filter,’ which filtered sites based on
the read depth and the frequencies of p-m5C observed for
a given p-m5C site. Approximately 30–40% of the p-m5C
sites identified in the MT-B/C/D libraries exhibited shal-
low read depths of less than 20, which may have been due
to the loss of coverage from deduplication. In contrast, over
95% of p-m5C sites in MT-A libraries exhibited read depths
over 20 (Figure 4B). The majority of p-m5C sites, ranging
from 62%-85% across libraries, were filtered when the fre-
quencies of p-m5C observed was less than three at a given
site (Figure 4C).

To determine an appropriate C-cutoff for each library,
the Gini coefficient was employed to assess the distribution
of incomplete bisulfite conversion events. The C-cutoff is
the threshold of cytosine identified in a bisulfite sequenc-
ing read that is considered as an incomplete conversion ar-

tifact. The Gini coefficient was calculated with the number
of sites per gene (Supplementary Figure S7A) and the num-
ber of unique genes (Supplementary Figure S7B) for each
sample. The Gini coefficient decreases when the p-m5C sites
are evenly distributed across genes. By increasing C-cutoff
stringency, reads which bear the largest proportion of Cs
are removed resulting in a smaller Gini coefficient (Sup-
plementary Figure S7C). For all RNA BS-seq libraries, the
majority of reads carrying any candidate methylated base
only had one p-m5C site identified (Supplementary Figure
S8). Following a Gini coefficient threshold of 0.15, recom-
mended previously (22), the C-cutoffs of MT-A and MT-
B RNA BS-seq datasets were determined to be between 3
and 5. Interestingly, for MT-C/D libraries, the Gini coeffi-
cient was below 0.15 when the C-cutoff was set as 15 and
8, respectively (Figure 4D). For a given position, the fre-
quencies of p-m5C observed before and after the C-cutoff
were used to calculate the signal/noise ratio. p-m5C sites
with a signal/noise ratio <0.9 were removed due to the
high proportion of poorly converted reads mapped to those
sites (Supplementary Table S3, Supplementary Figure S9A
and B).

To delineate the filter effect on methylation calling, 100%
was used as the initial number of p-m5C sites for each li-
brary. Combining the ‘standard filter’ with the C-cutoff fil-
ter resulted in the removal of more than 98% of p-m5C
sites in all RNA BS-seq libraries (Figure 4E). All p-m5C
sites identified in unmethylated ERCC reference transcripts
were not able to pass the thresholds of these two filters
(Supplementary Figure S10). Therefore, the combination
of ‘standard filter’ with a C-cutoff filter was sufficient to
minimize the chance of false-positive methylation callings.
Furthermore, RNA secondary structure was predicted us-
ing the ViennaRNA package as previously reported (41)
with hundreds of p-m5C sites found in regions predicted to
be resistant to bisulfite conversion. Finally, the Benjamin-
Hochberg procedure of false discovery rate (FDR) cor-
rection removed 43–95% of the remaining p-m5C sites in
the MT-B/C/D libraries but did not remove any in li-
braries with bisulfite conversion rates higher than 99.9%.
For datasets generated in this study, the p-m5C sites were
retained for downstream analysis if they passed all filters in
another technical replicate.

RNA bisulfite sequencing analysis of mitochondrial mRNAs

A previous study reported high methylation levels of
mitochondria-related genes in heart and muscle tissues
(22). The methylation of mitochondrial tRNAs and rRNAs
has also been identified (11,28–33). However, the methyla-
tion of mitochondrial mRNAs remains largely unexplored.
Sequencing reads mapped to the mitochondrial genome
were visualized on the University of California Santa Cruz
(UCSC) genome browser using Huang RNA BS-seq repli-
cate 2 and MT-A as representatives (Figure 5C). Abundant
aggregation of mapped reads centered on the coding regions
of the mitochondrial chromosome were observed for both
kinds of libraries. Successful enrichment of mitochondrial
mRNA was demonstrated by the RNA-seq that was per-
formed. Using the meRanT mapping tool, 45.9% of reads
were mapped to the mitochondrial transcriptome and the
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remaining reads were mapped to nuclear transcriptomes or
spike-in controls (Figure 5D). Such an enrichment for mi-
tochondrial transcripts was more prominent in MT-A li-
braries than MT-B/C/D. This is likely due to performing
RNA fragmentation after bisulfite conversion, resulting in
a larger proportion of short RNA fragments and a greater
loss of RNA template. In particularly, the median length
of mt-mRNAs is much shorter than that of mRNAs de-
rived from nuclear genome. However, despite higher pro-
portions of mitochondrial mapped reads in MT-A, only
32.4% of those reads passed the C-cutoff filter, compared
to 65.8% in MT-B and 81.1% of reads in MT-C (Figure
5E). Thus, the procedure used for bisulfite library construc-
tion can lead to a distorted proportion of mitochondrial
mRNAs in the entire RNA population. Compared to reg-
ular RNA-seq libraries, the mapping rate of the mitochon-
drial genome was reduced approximately six to ten times in
bisulfite sequencing libraries. Thus, an enrichment proce-

dure is recommended for mitochondrial epitranscriptome
studies.

Libraries constructed with enriched mitochondrial tran-
scripts allowed us to compare epitranscriptomes derived
from mitochondria and nuclear genomes. More than 95%
of reads mapped to non-mitochondrial reads contained no
p-m5C sites, while the proportion of mitochondrial mapped
reads without any p-m5C varied from 28% (MT-A) to 79%
(MT-C) (Figure 5F). While the number of p-m5C was low
in the majority of reads mapped to the nuclear genome, a
substantial portion of reads mapped to the mitochondrial
genome carried >20 p-m5C. The non-converted reads bear-
ing >20 p-m5C were found to be enriched in mitochon-
drial coding regions (Supplementary Figure S11). This sug-
gests that those reads did not result from mitochondria ge-
nomic DNA contamination but rather were derived from
transcripts resistant to bisulfite conversion, presumably due
to intramolecular RNA secondary structure. The percent-
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age of non-converted reads was lowest in libraries generated
with the MT-C condition (Figure 5F). This suggests that
RNA fragmentation after bisulfite conversion in combina-
tion with a high temperature bisulfite conversion step may
be the most suitable for generation of RNA BS-seq data.

Libraries generated in this study were constructed with
an equal aliquot from the same pool of RNAs, which al-
lowed us to examine the influence of the four experimen-
tal procedures on methylation data generation. For pair-
wise comparisons, we identified the p-m5C sites shared in
libraries generated with two different conditions (Supple-
mentary Figure S12A). The methylation level correlations
were found to have a Spearman coefficient above 0.75 (Sup-
plementary Figure S12B). We further performed differen-
tial methylation analysis and identified 7, 1, and 0 differ-
entially methylated sites (DMSs) in the pair-wise compar-
isons of MT-A vs MT-B, MT-B versus MT-C, and MT-C vs
MT-D, respectively. All DMSs were removed from the list of
high-confidence sites. The use of random primers during 1st
strand cDNA synthesis has commonly been used in RNA-
bisulfite studies, while ACT primers have been suggested to
avoid reverse transcription of inefficiently deaminated RNA
templates (16,46). In this study, we did not observe a signif-
icant advantage of using ACT primers.

We further compared the methylation profiles of RNAs
obtained with four different conditions (Supplementary
Table S4). Highly confident m5C sites were defined as
Ensembl-annotated p-m5C sites which passed all filtering
criteria in at least one replicate and contained at least one
m5C count and 10x read coverage after the C-cutoff in an-
other replicate. Using the above criteria, 77 and 684 sites
were identified to be m5C sites with high confidence in this
study and the Huang dataset respectively (Supplementary
Table S5). Library MT-C reported a m5C site per mapped
read rate comparable to Huang and MT-A libraries despite
containing ∼40 million fewer reads (83.2% fewer) (Figure
6A and B). Replicates from the Huang study reported 61.0%
of high-quality sites present in at least two replicates, and
37.7% of sites were present in all four replicates (Supple-
mentary Figure S13A and B). Of high-confidence sites iden-
tified in this study’s libraries, 59.7% were also identified in
Huang libraries, suggesting some m5C sites may be unique
to NSCs (Figure 6C).

As reported previously (20,22,47), a ‘GGG’ motif was
identified downstream of the m5C sites of high confidence
(Figure 6D). Interestingly, we found that the m-bias filter
was able to remove a strong 5′GGG motif upstream of
p-m5C sites (Supplementary Figure S14), which was sug-
gested to be an indication of false positive sites (47). The
difference in methylation levels of high-confidence m5C sites
was insignificant (Wilcoxon rank-sum, P > 0.05) (Figure
6E). Analysis of m5C distribution on mRNA transcripts
was calculated as previously reported (14,20,22). Analysis
revealed sites biased to the 5′UTR of mRNAs, with the low-
est density in the 3′UTR (Figure 6E). Our characterization
of high-confidence m5C sites in this study reveals features
consistent with previously established reports (20,22,47),
namely the down-stream ‘GGG’ motif and the enrichment
near the transcription starting sites of mRNA transcripts.
In mitochondria 12S ribosomal RNA (MT 911, mt-Rnr1),
one heavily methylated p-m5C site was found to have a

methylation level above 80% in all four conditions and in the
published Huang dataset (22). However, we were not able to
consistently identify any p-m5C sites with high confidence
on mitochondrial mRNAs (Supplementary Table S6).

DISCUSSION

Substantial differences in the prevalence and magnitude of
mRNA methylation reported call into question whether the
best practice of RNA BS-seq data generation and analysis
has been achieved (22,47). In this study, we examined the
impact of key parameters in both experimental and com-
putational procedures on the detection of RNA cytosine
methylation.

Using the established RNA bisulfite analysis pipeline,
RNA BS-seq data was analyzed in a systematic fashion. We
observed that the procedure for bisulfite library construc-
tion reduced the proportion of sequence reads mapped to
the mitochondrial genome. Compared with transcripts de-
rived from the nuclear genome, the overall bisulfite con-
version rate of mitochondrial transcripts was poor. More
specifically, after bisulfite conversion, a substantial per-
centage of mitochondrial transcripts had over twenty cy-
tosines. This may be due to the intramolecular secondary
RNA structure within mitochondrial transcripts. Although
no m5C sites on mitochondrial mRNAs could be deter-
mined with high confidence for mouse neural stem cells, we
confirmed a highly methylated cytosine on mitochondrial
rRNA as previously reported (22,30). However, we enriched
for poly-A selected mitochondrial transcripts which are
likely to be mature or to-be-degraded mRNAs. In partic-
ularly, polyadenylated truncated mitochondrial transcripts
has been associated with polyadenylation-dependent RNA
degradation in human mitochondria (48). Thus, we could
not rule out the possibility that some cytosines in primary
mitochondrial transcripts are methylated.

Previous studies have conflicting viewpoints regarding
performing RNA fragmentation before or after bisulfite
conversion (16,22). We found that RNA fragmentation per-
formed after bisulfite conversion (condition MT-A) sig-
nificantly improved the yield of the cDNA library, com-
pared with MT-B/C/D conditions. Utilizing UMIs, we ob-
served that the PCR error rate positively correlates with the
number of PCR cycles and PCR favors unmethylated tem-
plates. Such a bias in PCR amplification of sequences car-
rying thymidine vs cytosine may lead to an underestima-
tion of the methylation level. In addition, the inclusion of a
high-temperature treatment helps to reduce the proportion
of unconverted reads originating from the mitochondrial
genome. Altogether, our study recommends the following
procedures for RNA bisulfite sequencing study: (i) perform
RNA fragmentation after bisulfite conversion; (ii) include
a high-temperature denaturation step in bisulfite treatment
cycling and (iii) include a UMI-deduplication strategy for
low-input RNA samples or amplify the library with a low
number (<16) of PCR cycling.

One important characteristic of RNA BS-seq data is the
low Phred scores of p-m5C sites. The stringent filters em-
ployed to remove low quality reads and/or bases in the pre-
processing steps help but cannot fully compensate the dif-
ference in sequencing quality between the p-m5C sites and
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the other three kinds of nucleotides. A previous study indi-
cated that an upstream ‘GGG’ motif was frequently associ-
ated with false positive sites (47). We found that the m-bias
filter was able to remove sites with such a motif. In addi-
tion, all false positive p-m5C sites in the ERCC reference
controls were removed when the C-cutoff filter was applied
together with the ‘Standard filter’. Therefore, our study sup-
ports the following parameters/steps in methylation call-
ing: (i) an additional quality filter with Q30 as a cutoff for
all p-m5C sites; (ii) a stringent m-bias correction and (iii)
a combination of a ‘Standard filter’ with the C-cutoff fil-
ter. In summary, our study conducted a systematic evalu-
ation of parameters used in RNA bisulfite sequencing and
may shed new light on RNA methylation data generation
and analysis. Further improvement may be achieved with
improved characterization of false-positive sites (47), alter-
native deamination techniques (49), and advance computa-
tional modeling for m5C calling (50).
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