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Tendons bridge muscle and bone, translating forces to the skeleton and increasing the safety and efficiency of locomotion. When
tendons fail or degenerate, there are no effective pharmacological interventions. The lack of available options to treat damaged
tendons has created a need to better understand and improve the repair process, particularly when suitable autologous donor tissue
is unavailable for transplantation. Cells within tendon dynamically react to loading conditions and undergo phenotypic changes in
response tomechanobiological stimuli. Tenocytes respond to ultrastructural topography andmechanical deformation via a complex
set of behaviors involving force-sensitive membrane receptor activity, changes in cytoskeletal contractility, and transcriptional
regulation. Effective ex vivo model systems are needed to emulate the native environment of a tissue and to translate cell-matrix
forces with high fidelity. While early bioreactor designs have greatly expanded our knowledge of mechanotransduction, traditional
scaffolds do not fully model the topography, composition, and mechanical properties of native tendon. Decellularized tendon is an
ideal scaffold for cultivating replacement tissue and modeling tendon regeneration. Decellularized tendon scaffolds (DTS) possess
high clinical relevance, faithfully translate forces to the cellular scale, and have bulk material properties that match natural tissue.
This review summarizes progress in tendon tissue engineering, with a focus on DTS and bioreactor systems.

1. Introduction

Tendons connect muscle to bone, functioning in force trans-
lation and energy storage during movement [1]. Up to 80% of
the dry mass of tendon is fibrillar collagen, and the specific
mechanical properties of tendon are largely the result of
type-I collagen organization within the extracellular matrix
(ECM) [2]. Three 𝛼-helical molecular [Gly-x-y]

𝑛
collagen

strands form the triple helical foundation of tendon structure:
these are quarter-staggered into banded microfibrils that are
hierarchically arranged into secondary and tertiary bundles
[3, 4]. Collagen expression within tendon is regulated by a
number of molecules including the transcription factor scle-
raxis [5, 6]. Procollagen molecules undergo posttranslational
modifications and their assembly is regulated by molecular
chaperones [7, 8]. Type-III collagen is an important minority
component of tendon ECM, and its elevated presence is
associated with decreased fiber diameter [9] and postinjury

repair [10]. Type-V collagen is also present in the core of fibrils
and contributes to the structural arrangement of ECM more
than its mechanical properties [11].

Partially a result of its characteristically low cellularity
relative to other tissues, tendonmatrixwas once thought to be
inert ofmetabolic activity [12]. However,much like the classic
frameworks of bone and soft tissue remodeling (Wolff ’s Law
and Davis’ Law, resp.) [13], tendons dynamically respond to
loading events [14], with different tendons exhibiting varia-
tions by function [15]. Tenocytes are the terminally differen-
tiated cells resident to tendon and are generally responsible
for maintaining ECM homeostasis. Tenocytes align along
the proximal-distal axis parallel to fiber direction, extending
projections deep into their extracellular environment and
maintaining cell-cell connectivity through cadherin-11 junc-
tions [16]. Matrix metalloproteinases (MMPs) degrade ECM
and include secreted gelatinases (MMP-2 and MMP-9), col-
lagenases (MMP-1, MMP-8, and MMP-13), and stromelysins
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(MMP-3, MMP-10, andMMP-11) among others [17, 18]. Dys-
regulation of these enzymes is a trait of degeneration: MMP-
2, MMP-3, MMP-14, and MMP-19 are significantly upregu-
lated in human tendinopathy [19]. Healthy tenocytes deposit
collagen to counteract this degradation [20]. The metabolic
activities of tendon cells differ from tendon to tendon, and
it is uncertain if this is a developmental trait or the result of
adaptation to a specific mechanical environment [21].

Glycosaminoglycans (GAGs) are linear polysaccharide
chains covalently bonded to proteoglycan cores within the
ECM [3]. GAGs are important extracellular regulators, assist-
ing in the lateral aggregation of type-I collagen [22] and
water homeostasis [23], altering tissue biomechanics, and
resisting compression [24, 25]. GAGs also nonspecifically
bind growth factors, giving the ECM additional regulatory
properties [26]. GAG content must be carefully maintained,
as over- or underproduction has negative effects. In addition
to remodeling collagen, tenocytes are responsible for man-
aging proteoglycan turnover. In bovine deep flexor tendon
explants, large proteoglycans have half-lives of approximately
two days [27]. This is comparatively rapid for ECM proteins,
particularly as carbon turnover virtually ceases in humans
after adolescence [28]. Changes in proteoglycan turnover
likely come before detectable structural alterations [29].
Increased GAG content has been found in diseased tendons
[30], whileGAGdigestion lowers viscoelasticity [31, 32]. GAG
exposure in damaged tendon may also be an irritant related
to the pain of tendinopathy [33]. Thus GAGs are inexorably
tied to tendon health.

The mechanical behavior of tendon and other materials
is frequently represented in a stress/strain curve, which plots
elongation versus force per cross-sectional area [34]. The
classical response demonstrates an initial toe region, a linear-
elastic region, a plastic deformation region, and a point of
failure.Thismodel fits the deformation properties of ligament
and tendon, and parameters of this relationship change
during injury and aging [35, 36], ultimately altering cellular
behavior [37]. As a complex viscoelastic biomaterial, tendons
also exhibit force-relaxation, creep, and hysteresis [38].While
several natural and synthetic scaffolds are available as alterna-
tives, the easiest way to replicate the totality of the properties
of native tendon is to use decellularized tendon as a substrate.
The scientific and clinical value of decellularized tendon
scaffolds (DTS) may be further enhanced using cultivation
tools such as bioreactors.

In the context of tissue engineering, the term “bioreactor”
describes any (typically in vitro) culture system that not
only sustains the life of cells/tissues outside the body but
also enriches the cellular environment with dynamic stimuli
designed to promote a particular phenotype. Soft tissue
bioreactors are still in their infancy, with few biomimetic
scaffold systems available. Even rarer are systems incorpo-
rating naturally derived scaffolds, despite the long history
of tendon allografts in clinical practice. DTS remains the
only option possessing the (1) structure, (2) composition, and
(3) biomechanical properties of native tendon. This review
will outline historical and current developments in the area
of decellularized tendon scaffolds and their application in
bioreactor systems.

2. Tendon Decellularization

Tendon autotransplantation developed as a discipline in
response to unprecedented numbers of combat casualties in
the wake of World War I [39], but it was not until the mid-
1950s that allografts [40] and artificial tendons [41] first
entered trials. Tendon healing after trauma is ordinarily
accomplished by a combination of cells both intrinsic and
extrinsic to the tendon mid-substance [42], but it was uncer-
tain how tendon grafts integrated with the host, and in turn
how that process might be improved. Tendon scaffold was
first used for the purpose of basic cell biological research
in 1986, when rabbit quadriceps patellar tendon autografts
were flash-frozen in liquid nitrogen and used for anterior
cruciate ligament (ACL) reconstruction in order to demon-
strate the donor origin of repopulating cells [43]. While not
“decellularized,” these constructs were devoid of live donor
cells, allowing the first observations into the active role of
cells in tendon homeostasis. Infiltration by peripheral cells
was found to be insufficient to restore full biomechanical
functionality.The failure strain of freeze-killed medial collat-
eral ligaments (MCLs) orthotopically transplanted in a rabbit
model decreased by 25% versus their fresh cell-containing
counterparts nearly one year after the operation [44]. Cells
quickly became the focus of tendon reconstructive research
after this discovery [45]. Achilles tendon prostheses con-
taining autologous MSCs dramatically enhanced gap defect
healing in rabbits [46]. Since that time, a tissue engineering
approach combining cells and scaffolds has been widely
explored in effort to enhance tendon regeneration [47].

Decellularization protocols were invented in order to
prevent the immunogenicity seen following anterior cruciate
ligament repairs with freeze-dried allograft of xenograft [48].
Though some aspects of collagen structure are not conserved,
the primary agents responsible for inciting tendon graft
rejection are donor cells [49]. Decellularization is necessary
to promote an M2 decision in the “fight or fix [50]” host
macrophage response [51]. The predominance of type-I col-
lagen in tendon ECM poses a particularly low immunolog-
ical risk once cells are removed [52]. Chloroform-methanol
extraction was the first chemical decellularization technique
to achievewidespread use [53, 54]. Since that time, techniques
for cell removal have been incrementally improved, with
increasing emphasis on tissue engineering.

Modern decellularization protocols most commonly
apply detergents to solubilize cell debris. Detergents can
disrupt collagen banding andmechanical properties [55], so a
balancemust be found in removing cells but preserving ECM.
A limited number of systematic detergent decellularization
protocols exist in the literature, and all use surfactants
such as sodium dodecyl sulfate (SDS) and 4-octylphenol
polyethoxylate (Triton X-100) or the organophosphorus
solvent tri(𝑛-butyl)phosphate (TnBP). Cartmell and Dunn
compared the effects of Triton X-100, TnBP, and SDS at 0.5–
2.0% concentration on rat tail tendons for 12–48 hours and
found that 1% SDS for 24 hours or 1% TnBP for 48 hours
most effectively removed cells and maintained histological
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and biomechanical features of normal tendon [56]. Woods
and Gratzer observed that, of two-step detergent protocols
involving 48-hour incubation in 1% Triton X-100 followed by
another 48 hours in 1% solutions of SDS, Triton X-100, or
TnBP, the Triton-SDS combination worked best for 300 𝜇m
thick canine Achilles tendon ribbons [57]. Interestingly, the
same group discovered that a different combination (Triton-
TnBP) was more effective at porcine ACL decellularization
[58]. Xing and colleagues compared 24-hour incubations of
1% Triton X-100, 0.5% SDS, 1% TnBP, 1% Triton X-100 with
0.5% SDS, 1%TnBPwith 0.5% SDS, and 1%TnBPwith 1% SDS
to decellularize rabbit semitendinosus and flexor digitorum
tendons and found 1%Triton X-100 with 0.5% SDS to bemost
effective in removing cells without damaging mechanical
strength [59]. Deeken et al. compared 1% Triton X-100 and
1% Triton X-100 with 1% TnBP, 2% TnBP, 1% TnBP, 1% SDS,
and 2% SDS and found 1% TnBP to be most effective at
decellularizing porcine diaphragm tendon [60].

Our group was the first to use an equine tendon
scaffold for tissue engineering applications. This model is
advantageous due to the size, availability, low vascularity,
and high mechanical strength of equine tendons relative to
other species. Briefly, we compared the effect of 1% TnBP,
1% SDS, 2% SDS, and 0.5% Triton X-100 with 0.5% SDS
with a detergent-free group on 400 𝜇m thick equine flexor
digitorum superficialis tendon (FDST) ribbons, finding that
2% SDS in combination with other methods provided a
nearly cell-free, biomechanically robust, and biocompatible
scaffold material [61, 62]. Flexor tendon allografts needed
for hand reconstruction typically fall within the range of
2–7 cm [63], and decellularized equine FDST ribbons may
prove to be ideally suited for this application. Burk et al. later
decellularized full-thickness equine FDST samples using 48
hours of 1% Triton X-100 incubation in combination with
freeze/thaw cycles [64]. On the human side, Pridgen et al.
compared 1% Triton X-100, 1% TnBP, 1% SDS, and 0.1% SDS,
and 0.1% SDS was sufficient to decellularize FDST and flexor
digitorum profundus tendon (FDPT) [65]. Hammer et al.
decellularized human iliotibial tract using 1% SDS, noting
incomplete DNA removal (44.7% residual) and native tensile
properties, and incorrectly stating that theirs was the first
study to compare matched native and decellularized tendon
samples [66]. Other techniques such as freeze/thaw cycles
[67], hypotonic solutions [68], nucleases [69], oxidizing
agents [70], and irradiation [71] have also been used on
tendon, alone or in combinations with detergents.

Human FDPTs, decellularized in SDS and implanted into
outbred rats, had decreased immunogenicity and improved
mechanical properties versus nondecellularized counterparts
[72]. A similar result was seen in 2% SDS-decellularized rat
Achilles tendons [73]. Of the commercial tissue augmen-
tation materials surgically used for tendon reconstruction,
those that are based on natural collagenmatrices are stronger
and better retain sutures [74, 75]. However, themost common
products, such as Graftjacket RTM (Kinetic Concepts, Inc.),
AllopatchHD (Musculoskeletal Transplant Foundation), and
TissueMend Soft Tissue Repair Matrix (Stryker), are (human
and human and bovine, resp.) dermal allografts and lack the
standalone biomechanical properties of tendon. Full coverage

of nontendinous ECM scaffolds is beyond the scope of this
review, but some groups have experimented with surface
modification or reinforcement techniques to add mechanical
strength to ECM sheets [76–78], while others embrace the
sacrificial nature of weak but rapidly remodeled scaffolds
as encouraging de novo tissue growth. As previously stated,
tendon grafts lacking live cells are in widespread use for
ACL replacement but do not fully restore native function
[79]. It can take three years or longer for allografts to reach
peak integration, which nevertheless remains incomplete and
weak compared to healthy tissue [80]. While some groups
are experimenting with functionalization or composite tech-
niques [81], another potential solution to this problem is to
provide a cell population that remodels and strengthens the
scaffold over time.

Reseeded decellularized tendon scaffolds have demon-
strated strong potential as graft materials [82], but animal
testing is required [83]. Multilayer composites of decellu-
larized canine infraspinatus tendons laden with rabbit bone
marrow-derived MSCs remained vital, began to express
tenomodulin, and altered collagen and matrix metallopro-
teinase activity [84]. Rabbit rotator cuffs repaired with
matrix performed better after 8 weeks when seeded with
tendon cells [85]. Human FDPT decellularized in 0.1% SDS
and peracetic acid then seeded with adipose-derived MSCs
implanted subcutaneously in nude mice remained healthy
and viable for onemonth [86]. ReseededTritonX-100-treated
rat Achilles tendons were stronger and better organized after
24 hours in a surgical replacement model [87]. However, cell-
laden tendon constructs cultured ex vivowithout mechanical
manipulation actively degrade their scaffolds, necessitating
culture techniques that fulfill the need for cells to experience
stimulation [88].

3. Tendon Bioreactors

In vitro cell culture was pioneered by Carrel at the turn
of the 20th century. By nourishing tissue explants in
plasma enrichedwith various animal-derived extracts, Carrel
extended the life expectancy and proliferative capacity of
cells in culture from weeks to months [89, 90]. Realizing
that diffusion-limited nutrient flow hindered not only the
size of tissue explants but also the vitality of transplant
organs, Carrel, in collaboration with Lingbergh, coinvented
“an apparatus for the culture of whole organs” [91], the first
perfusion bioreactor.

Musculoskeletal loading plays an important role in tis-
sue homeostasis, a fact that gained increasing attention
as humans established technologies facilitating spaceflight.
Astronauts experience reversible bone demineralization [92],
which is attributed to attenuated bone formation but retained
bone resorption while in orbit [93]. It was recognized that rat
bone marrow cells lose osteogenic potential when unloaded
in vivo [94] but have improved osteogenic potential when
cultured on flexible-bottom culture dishes subject to 1Hz
deformation cycles [95]. As gravitational and locomotive
forces have been essential evolutionary conditions, many
tissues experience similar phenomena. ECM forces and cell
shape result in fate decisions including differentiation and
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apoptosis [96], and transplanting cells can induce progenitor
cell differentiation into tissues other than their source of
origin [97]. Modern musculoskeletal bioreactors are direct
decedents of these discoveries and attempt to manipulate
these effects. Deformation protocols are most efficacious
when they resemble the in vivo environment [98], as cells
respond differently to deformations induced by compression
versus tension [99].

Elastic deformation of tendon occurs at the 100 𝜇m
level by straightening of fibrillar crimp and then at the 10–
15 nm level by molecular elongation of collagen helices [100].
Sensation of these cell-scale forces, such as through integrin-
activated MAP kinase and NF-𝜅B signaling or by stress-
responsive gene enhancers, is essential to proper tenocyte
phenotype [101]. Stretch also alters the availability and rate of
ECMbinding domains involved in assembly and degradation
[102]. Tendons deprived of mechanical stimulation in vitro
experience profound negative alterations including changes
in anatomical size, a near complete loss of biomechanical
function, hypercellularity, and decreased ECM alignment
[103]. This occurs even in tendons frozen in situ [104]: a
treatment which may in fact exacerbate ECM catabolism
through proteolytic enzyme release. Cells exhibit sensitivity
to subtle changes in their mechanical environment, with
small deformations frequently leading to an anabolic and
anti-inflammatory response and large deformations leading
to inflammation and ECM damage [105]. Selectivity to static
versus dynamic forces of the same magnitude is also pro-
vided by differences in resistance to conformational change
among components of intracellular focal adhesion complexes
[106]. While other types of bioreactors such as microcarriers
[107, 108], flow perfusion, and shear systems [109–112] and
hydrostatic bioreactors [113] exist, this review focuses on
systems involving stretching or mechanical load that attempt
to model natural deformation.

Banes made pioneering advances in the musculoskeletal
mechanobiology field with his invention of the Flexcell
bioreactor platform in 1985 [114]. This system uses flexible-
bottom circular culture wells deformed via vacuum to deliver
controlled mechanical signals to cells, allowing mechanistic
in vitro studies of tendon and ligament signaling [115].
For example, ligaments undergo atrophy when unloaded,
as sensed via fibronectin-specific integrin 𝛼
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and other

mechanisms [116]. Cell stretching not only encourages tissue
anabolism but also results in cell-mediated ECM recomposi-
tion. Primary humanMCL cells increasingly express type-III
collagen under 7.5% but not 5% strain in a Flexcell bioreactor
at 1Hz for 16–25 hours [117]. This effect is not observed in
cells derived from synovium [118]. Human tendon fibroblasts
secrete the growth factors TGF-𝛽, bFGF, and PDGF in
response to stretch on the timescale of hours [119]. Flexcell
bioreactors can be programmed to conform to virtually any
waveform desired, but the resulting deformation is only
precise in the center of each well [120], even after careful
calibration [121]. A slightly more uniform approach is to use
a uniaxial stretch system to deform rectangular silicon dishes
using a stepper motor, the use of which demonstrated TGF-
𝛽1-mediated expression of type-I and type-III collagen in
human ACL fibroblasts [122].

Scaffold-free flexible plastic may be considered the first
generation of tendon/ligament bioreactors.While they repre-
sent a tremendous increase in complexity versus traditional
monolayer culture, they are far from modeling the in vivo
environment. Second-generation bioreactors are based on
three-dimensional scaffolds but do not mimic the alignment
or function of native tendon. As the principle component of
tendons and ligaments, type-I collagen is the most common
base, but the lack of hierarchical organization in collagen
hydrogels makes them structurally inferior for translational
use [123]. Tendon cells do, however, interact with collagen
gels, resulting in changes in phenotype [124]. Butler’s group
has developed functionalized type-I collagen-based sponge
constructs for tendon repair that can withstand forces expe-
rienced in rabbits [125–127]. Rabbit bone marrow-derived
MSCs embedded in these sponges established maximum
stiffness when cultured at 2.4% strain at 1Hz for 50 minutes
per day [128]. Human tenocytes cultured in reconstituted
rat tail collagen stretched at 5% strain at 1Hz for 48 hours
resulted in differential expression of several proteases and
matrix proteins, as well as TGF𝛽 activation [129]. Many
natural but isotropicmaterials used for surgical augmentation
have been used in bioreactors with varying results, including
porcine small intestine submucosa [130] and human umbili-
cal veins [131], as well as designer scaffolds such as the woven
hyaluronic acid-based Hyalonect [132]. Biaxial deformation
is possible in these bioreactors [133], but multiaxial strain is
not typically applicable to tendon physiology.

Synthetic hydrogels are also commonly implemented,
and their properties are tunable [134]. A commercial human
MSC line encapsulated in poly(ethylene glycol)- (PEG-)
based scaffolds under 10% strain at 1Hz for alternative 3-
hour on/off periods for 21 days resulted in upregulation of
tenocytic genes including collagens and tenascin-C [135].
Rabbit Achilles tendon cells in porous poly(L-lactide-co-𝜀-
caprolactone) (PLCL) scaffolds under 10% strain at 0.25Hz
for 400 minutes per day for 4 weeks demonstrated enhanced
proliferation and type-I collagen deposition [136]. 3D culture
is critical for proper morphology, but disordered hydrogels
do not deform via the same mechanisms of native ECM.
Hydrogels contract and remodel and may begin to establish
alignment but do not resemble tendon [137, 138]. Cultured
MSC sheets deposit ECM on plastic, which can also be
used as a simple matrix. One study using such a system
discovered that both mechanical forces and scleraxis can
independently induce tenogenesis, but their influences are
synergistic and most effective when combined [139]. This
strategy falls into the same technical class as hydrogels: useful
but not biomimetic. Nevertheless, fundamental signaling
information, such as the nature of the refractory period
following periods of mechanical stimulation [140], is likely
conserved. However, heterogeneity in the structural prop-
erties of different systems complicates comparisons, such as
cell-scale felt strain.

Third-generation bioreactors implement aligned scaf-
folds, natural or synthetic, and more faithfully recapitulate
tendon structure and alignment but are not biomechanically
functional as standalone replacement tendons. RatMCL cells
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aligned on collagen-coated polydimethylsiloxane (PDMS)
scaffolds demonstrated increased cell-cell calcium signaling
sensitivity versus nonaligned controls [141]. Another option
is to use synthetic nano/microfibers. These have better
structural similarity to tendon, induce spindle morphology,
and when sized correctly provide structural cues that aid in
tenogenesis [142]. Human ligament fibroblasts cultured on
electrospun polyurethane nanofibers increased ECMproduc-
tion in response to 5% strain at 0.2Hz in a modified Flexcell
bioreactor [143]. Cardwell et al. cultured C3H10T1/2 MSCs
on electrospun poly(ester urethane) urea fibers, loaded daily
by 4% strain at 0.5Hz for 30 minutes, witnessing alignment
and a tenocytic gene expression profile [144]. Silk scaffolds are
widely used byMoreau and his collaborators as a platform for
MSC differentiation toward ligament [145]. Aligned, cross-
linked collagen fibersmost closely approximate the structural
and mechanical properties of native tendon. In a recent
study by Qiu et al., human bone marrow-derived MSCs
cultured under 10% strain at 1Hz for alternating 3-hour on/off
cycles for 14 days proliferated more and expressed greater
amounts of scleraxis, tenascin-C, and collagens than their
static counterparts [146].

The most holistic tendon bioreactors use decellularized
tendon matrix as a scaffold subject to cyclic strain. These are
the fourth-generation tendon bioreactors, which replicate not
only the mechanical environment of native tendon but also
the complex ultrastructure, composition, and biomechanical
properties. There are currently only four principle investi-
gators using this technique: Chang of Stanford University,
Van Dyke ofWake Forest University, Barrett at Virginia Tech,
and Zhao at Mayo Clinic. Chang’s group released back-to-
back “Tissue Engineering: Part A” papers in 2010, charac-
terizing the response of rabbit and human flexor tendon
constructs cultured in Ligagen L30-series axial bioreactors. P1
rabbit FDPT-derived cells cultured on decellularized FDPT
increased construct elastic modulus and ultimate tensile
strength in response to cyclic 1.25N strains at 0.0167Hz
for alternating one-hour periods over 5 days [147]. In a
similar study withmatched human FDST and EDST sets (P4)
with 0.625N–2.5N strains over 3–8 days, the investigators
observed time-dependent improvements in biomechanical
properties but no differences between groups of different
load magnitudes [148]. Constructs then degraded after two
days of disuse. Van Dyke’s group released a 2013 paper using
allogeneic chicken FDPT constructs (P4) exposed to 5%
strain at 1Hz for one hour per day for 7 days in the same
Ligagen system. Cells preserved construct mechanical prop-
erties versus unseeded controls, but no significant changes
in mRNA profiles were seen resulting from strain [149]. Our
group used a custom bioreactor to characterize amplitude-
dependent gene expression profiles of P2 horse bone marrow
MSCs, finding that 3% strain at 0.33Hz for one hour per
day increased ultimate tensile strength and induced high
expression of scleraxis, type-I collagen, and proteoglycans
[62]. Qin et al. released the results of a similar study after our
2015 Journal of Orthopaedic Research article was published,
reaching analogous conclusions in a canine Achilles tendon
model [150].

4. Applications

Bioreactors are used for (1) basic pathway studies, (2) growing
replacement tissues, (3) maintenance of organ vitality ex vivo,
and (4) priming therapeutic cells prior to cell transplantation.
The first tendon tissue bioreactor study was conducted by
Arnoczky’s group, when Hannafin et al. found that canine
FDPT maintained its mechanical properties ex vivo for 4
weeks while unloaded controls degraded [151]. Lavagnino et
al. later performed multiple sets of experiments to determine
that frequency and amplitude resulted in dose-dependent
increases in MMP-1 expression in rat tail tendons [152]. This
technique is still being used to elucidate pathways involved
in tendon adaptation to exercise, such as collagen and IL-6
expression [153], as well as damage resulting from repetitive
loading [154] and cellular maintenance of biomechanical
properties [155].

Living animals also provide valuable information for in
vitro bioreactors. For example, following a single loading
episode in rat Achilles tendons, gene expression returns to
baseline after one day [156], but as little as 5 minutes of
loading over 4 days is enough to improve mechanical prop-
erties [157]. While the use of animals cannot be eliminated,
bioreactors reduce the necessity of laboratory animal exper-
iments consistent with the 3Rs [158], namely, by reducing
the numbers needed (by harvesting tissues at necropsy from
unrelated studies for bioreactor use) and replacing them
with comparable methods (synthetic scaffolds). In addition
to tendon/ligament, cyclic-strain bioreactors are excellent
platforms for cultivating muscle material, such as for the
repair of critical-size volumetric defects [159, 160] or even
artificial meat [161].

The practice of cell therapy in human and animal med-
icine has witnessed a recent surge in popularity and com-
mercial viability [162]. Bioreactors will assist in gathering
necessary efficacy data for these procedures. Furthermore,
the decision of cell source, which influences differentiation
capacity [163], is one such application of these systems.
Indeed, one aim of our current work is to use our bioreactor
to provide standardized in vitro comparisons on different
commonly used stem cell sources for tendon cell ther-
apy.

Uncertainty concerning the long-term vitality of trans-
planted cells and their relationship to the host is a challenge
and opportunity for future development within the field.
As graft size increases, so does its need for a relationship
with the surrounding vasculature. Perhaps, depending on
the state of niche factors in tendon and the surrounding
environment, neovascularization and/or infiltration of host
cells extrinsic to the graft may result in deterioration rather
than strengthening of the tissue [164]. Designing grafts that
avoid inflammatory damage [165] and promote a healthy
graft-host relationship is essential. The identities of cells par-
ticipating in tendon regeneration and themolecular pathways
coordinating this behavior remain undefined [166]. Moving
forward, improved in vitro models will likely help answer
these unanswered questions.
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5. Summary

Tendons are dynamic tissues, and tendon pathologies signifi-
cantly reduce quality of life.There are no effective pharmaco-
logical therapies currently available to treat tendinopathies,
and should tissue replacement be necessary, donor-matched
prostheses are frequently unavailable. Recent developments
in ex vivo modeling techniques have allowed us to dis-
sect structure/function relationships and elucidate cell-ECM
interactions with unprecedented accuracy and environmen-
tal control. Bioreactors are the best available tools for
developing novel regenerative treatments and cultivating
functional replacement tissue. Future iterations of bioreactor
technology may be even better suited to these aims and will
likely be capable of replicating multitissue or transitional
structures by becoming increasingly complex.
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