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Obesity is a growing worldwide problem, especially in developed countries. This disease
adversely affects the quality of life and notably contributes to the development of type 2
diabetes, metabolic syndrome, and cardiovascular disorders. It is characterised by
excessive lipids accumulation in the subcutaneous and visceral adipose tissue.
Considering the secretory function of adipose tissue, this leads to impaired adipokines
and cytokines release. Changes in adipose tissue metabolism result in chronic
inflammation, pancreatic islets dysfunction and peripheral insulin resistance. In addition
to saturating various adipocytes, excess lipids are deposited into non-adipose peripheral
tissues, which disturbs cell metabolism and causes a harmful effect known as lipotoxicity.
Fatty acids are metabolised into bioactive lipids such as ceramides, from which
sphingolipids are formed. Ceramides and sphingosine-1-phosphate (S1P) are involved
in intracellular signalling, cell proliferation, migration, and apoptosis. Studies demonstrate
that bioactive lipids have a crucial role in regulating insulin signalling pathways, glucose
homeostasis and b cell death. Data suggests that ceramides may have an opposite
cellular effect than S1P; however, the role of S1P remains controversial. This review
summarises the available data on ceramide and sphingolipid metabolism and their role
in obesity.
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INTRODUCTION

Obesity is an increasingly common phenomenon. The global prevalence of obesity has almost
tripled in the last 40 years (1). Obesity is a risk factor for several serious chronic diseases. It
contributes to developing certain types of cancer, cardiovascular complications, insulin resistance,
metabolic syndrome, type 2 diabetes, asthma, hepatic and renal dysfunction, infertility and sleep
disturbances (2).

There are no doubts about the harmfulness of obesity, but, at the same time, the power of adipose
tissue is becoming clear. Adipose tissue is the largest endocrine organ built from diverse types of
cells. The primary cells are adipocytes. In addition to adipocytes, there are pre-adipocytes,
mesenchymal cells, fibroblasts, endothelial cells and immune cells (3). There are two basic types
of adipose tissue. The dominant is white adipose tissue (WAT). Due to the richness of the cells from
which it is produced, WAT performs many different functions. First, it serves as a vast energy store
that regulates fatty acid homeostasis. During excessive food intake, free fatty acids (FFA) accumulate
in WAT as triacylglycerols (TAG). Another function of WAT is the secretion of adipokines,
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including adiponectin, leptin, resistin, apelin visfatin and
cytokines like tumour necrosis factor a (TNFa), interleukin-6
(IL-6) and plasminogen activator inhibitor-1 (PAI-1) (4, 5).
There are two types of WAT. The subcutaneous adipose tissue
(SAT) is located under the dermal layer. Visceral adipose tissue
(VAT) is located around the internal organs. The two classes
have similar morphological structures, but the most important
aspect is their metabolic diversity (5).

In obesity, the phenomena of hypertrophy (increased
adipocyte size) and hyperplasia (increased adipocyte number)
are present. Hypertrophy is harmful and associated with the
reduced release of adiponectin, increased release of pro-
inflammatory cytokine and fatty acid, impaired insulin
sensitivity, hypoxia, and immune cell activation. In contrast,
hyperplasia has the opposite effect (6). Adipocytes are overloaded
and lose their lipid storage capacity. They can store an excessive
amount of fat and energy. Still, in the case of unnecessarily high
food intake, a release of FFA from the adipocytes occurs which
then is being stored in non-adipose tissue. This release has an
adverse effect on the human body, called lipotoxicity (7).

Brown adipose tissue (BAT) is located supraclavicularly and
paravertebrally. BAT controls the body’s temperature by
activating an uncoupling protein 1 (UCP1) located in the
mitochondrial membrane. The UCP1 is stimulated by exposure
to cold and immediately uses energy and conducts heat (6, 8). A
meal rich in carbohydrates and essential macronutrients is also a
stimulus to UCP1 for thermogenesis (9).

Additionally, a tissue that is a combination of both is
described as a beige, so-called browning adipose tissue. It could
emerge de novo from the progenitor cells or SAT under the
influence of stimuli such as cold or by the activation of the b3-
adrenergic receptor, for example, by catecholamines. Beige
adipocytes contain UCP1 in ten-fold lower concentration than
brown tissue. Thanks to brown and beige adipocytes’ unique
ability to generate energy and thus consume glucose and
triglycerides, their protective effect against obesity is recognised
(8, 10). The beneficial influence of browning WAT and energy
expenditure may be considered one of the therapeutic goals in
obesity treatment.

This paper aims to review the current state of knowledge on
ceramides and S1P and their link to obesity. Considering the
rapid development in this field of science, a summary of the
available data could prove valuable.
CERAMIDES

Ceramides generally contain the sphingoid 18 carbon chain base
with a 14 to 30 carbon length fatty acyl chain. They can be
modified to produce more complex sphingolipids like
sphingomyelin, galactosylceramide, glucosylceramide,
ganglioside and globoside (11). As the primary components of
the plasmatic membrane, ceramides have an impact on cell
membrane properties. The potential for their redistribution
within the membrane leads to a change in its activity and
response to enzymes (12). When substrates for synthesis are
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provided in excess, ceramides may accumulate in tissues. There
are three biosynthesis pathways leading to sphingolipid
formation that have ceramides as their metabolic hub.
SPHINGOLIPIDS SYNTHESIS

Sphingolipids are a diverse lipid class built of an amino alcohol,
sphingosine or dihydrosfingosine (sphinganine) as an N-acylated
backbone. Due to the modification of this basic structure, the
identification of a family of numerous sphingolipids such as
ceramides, sphingomyelins, glycolipids, and gangliosides is
possible. Structural variety is followed by a variety of multiple
biological functions (11, 13). The synthesis of sphingolipids
depends on many metabolic compounds exogenously delivered
or transferred from sphingolipid turnover. There are three
biosynthesis pathways (Figure 1).

1. The de novo pathway is placed in the endoplasmic reticulum
(ER) and begins with the condensation of palmitoyl
coenzyme A (CoA) and L-serine. Although palmitoyl-CoA
and serine are preferred in this reaction, stearate or myristate
and alanine or glycine can also be used. An enzyme mutation
could cause the substrate shift (13). For example, alanine is
used as a substrate in the serine palmitoyltransferase (SPT)
mutation. As a result of the reaction, neurotoxic
deoxysphingolipids are formed (14). Under normal
conditions, the reaction generates 3-ketosphinganine by
SPT. Subsequently, 3-ketosphinganine reductase is
responsible for reducing 3-ketosphinganine to sphinganine,
which is acetylated to dihydroceramide by ceramide synthase
(CerS1-6). Dihydroceramide is oxidised by desaturase, which
results in the formation of the ceramide. Ceramide synthase
occurs in six isoforms in mammals, each of which creates a
ceramide with a particular acyl chain length (C14:0-C30:0)
(15). The specific location of those enzymes remained
unclear. However, data indicates the ER as the primary site
of CerS occurrence. Other localisations of CerS are
mitochondria and the nucleus (16).

2. The salvage pathway is part of the second biosynthesis route.
The ceramide is deacylated by ceramidases to produce
sphingosine, which is phosphorylated by sphingosine
kinases (SphK) to sphingosine-1-phosphate (S1P). As a
result of further changes catalysed by S1P lyase, S1P is
transformed into fatty aldehydes and ethanolamine
phosphate, which become substrates for the cascade of
enzymatic reactions from which fatty acyl-CoA is obtained.
Another possible transformation of S1P is dephosphorylation
by S1P phosphatase leading back to sphingosine and then by
ceramide synthase to ceramide (17).

3. The Sphingomyelin pathway takes place in the Golgi
apparatus. Through the action of sphingomyelin synthase
out of a ceramide the sphingomyelin (SM) is formed.
Afterwards SM is transported to the plasma membrane. In
the plasma membrane, the reaction is reversible, with SM
transforming back to ceramide using sphingomyelinase.
Then, ceramides can be deacylated by ceramidase to
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sphingosine, which can be phosphorylated by SphK to S1P.
SM can be transported to the lysosome from the plasma
membrane, where the cascade of reactions is the same; it
progresses from SM through ceramide to sphingosine (18).
CERAMIDES IN SKELETAL MUSCLES

In skeletal muscles, which play an important role in glucose uptake,
the accumulation of the ceramides is strongly related with insulin
resistance and diabetes (19). Elevated total ceramides content
disturbs the insulin pathway mainly at the level of kinase B (Akt)
through the activation of protein phosphatase 2A (PPA2) which
keepsAkt unphosphorylated, thereby inhibiting further steps of the
pathway. Consequently, the glucose transporter type 4 (GLUT4)
translocation to the plasmamembrane is impaired and themuscles
are not efficient in glucose uptake (20).

Data demonstrated that decreasing ceramide concentration in
skeletal muscles eliminates the deleterious effect and improves
glucose tolerance. Inhibition of SPT by myriocin treatment
prevents ceramide-induced glucose intolerance and insulin
resistance by enabling Akt phosphorylation (21). Moreover,
research focused on the ceramide transport from the ER to the
Golgi apparatus through the ceramide transporter (CERT)
showed that CERT overexpression decreased ceramide
accumulation in muscles thus improving insulin signalling (22).
CERAMIDES IN ADIPOSE TISSUE

The content of ceramides in obesity is different in every type of
investigated adipose tissue. VAT shows a strong positive
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correlation with metabolic diseases and cardiovascular
complications (23). Studies have shown that VAT shows a
greater ability to change tissue metabolism than SAT. The
proximity of internal organs enables VAT to modulate their
metabolism easily. Data showed elevated levels of C14-Cer, C16-
Cer and C18:1-Cer in the obese non-diabetic group compared to
the lean non-diabetic group. Interestingly, further growth of
C18-Cer and C24:1Cer was proven in the third obese diabetic
group. This may indicate the direct participation of those
components in the development of diabetes (24). The
accumulation of ceramides in VAT was also observed in the
metabolic syndrome (25). In both experiments, total ceramide
concentration was increased in the VAT of obese subjects
compared to lean non-diabetic patients. The enhanced ability
to gather ceramides in VAT adipocytes may cause a weak insulin
response, reduced lipogenesis and fewer lipid droplets than SAT.
Visceral obesity positively correlates with glucose level, insulin
resistance, TAG and cholesterol concentration (26).

However, the total ceramide content was also measured in the
SAT. It proved to be elevated in lean patients compared to obese
patients (27) and obese with metabolic syndrome (25). Another
study reports a decreased total ceramide level in lean, healthy
patients compared to obese patients (24). The ambiguity of the
results is due to the difference in the location of the collected
tissues. The SAT was taken from the abdomen (25, 27) and the
sternum (24). Researchers suggest that excessive food intake
leads to hyperplasia in lower body SAT and hypertrophy in
upper body SAT (26). Such a high variability within one tissue
prompts further research to deepen the understanding of the
pathomechanisms occurring in it and the factors that may
modulate its glucose and lipid metabolism.

It is considered that accumulation of ceramides in the adipose
tissue negatively affects the inhibitory effect of insulin on
FIGURE 1 | Overview of sphingolipid metabolism; SPT, serine palmitoyltransferase; CerS, ceramide synthase; dhCer desaturase, dihydroceramide desaturase;
S1PP, sphingosine-1-phosphate phosphatase; SPHK, sphingosine kinase; SPL, sphingosine-1-phosphate lyase; CDase, ceramidase; SMase, sphingomyelinase;
SM synthase, sphingomyelinase synthase; GCS, glucosyl-ceramide synthase.
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hormone-sensitive lipase (HSL) activity. Under physiological
conditions HSL stimulates lipolysis but postprandial insulin
release has a known HSL inhibitory effect. It has been
demonstrated that in obesity accompanied by insulin resistance
the accumulated ceramides influence insulin causing a decreased
HSL inhibition. Consequently, resulting in an increased FFA
concentration in the plasma (28, 29).

In the WAT isolated from obese humans and rodents, the
CerS6 was significantly increased, and the correlation between
BMI, hyperglycaemia and body fat content was favourable
compared to lean subjects. An experiment with knockdown
CerS6 mice was performed, demonstrating a reduced
concentration of C16:0 in WAT, BAT and liver compared to
control mice. The concentration in skeletal muscles was at the
same level. However, most relevant was that in mice with a
deletion of CerS6 despite being HFD-fed, a reduced body mass
and body fat content, improved glucose metabolism, reduced
adipocyte size and decreased leptin concentration were observed.
Research revealed that deletion of CerS6 in BAT appears to be
crucial in improving glucose homeostasis by increasing
mitochondrial b-oxidation (30, 31). These data are strong
evidence that C16:0, a product of CerS6, is a significant factor
in the development of obesity and its related complications.

Data demonstrated that sensitising tissues to insulin is
possible by inhibiting de novo ceramides synthesis using
myriocin, which blocks SPT activity. A study was conducted
on mice in which insulin resistance was induced by HFD. After
in vivo myriocin treatment, a decreased Cer and diacylglycerol
(DAG) concentrations in VAT and SAT were measured.
Furthermore, a strong correlation between total ceramide
content in AT and adiponectin secretion (negative) and TNFa
levels (positive) was observed (28).
LIPOTOXICITY IN OBESITY

Lipotoxicity is caused by excessive nutrient intake and increased
lipid levels in the bloodstream. This process leads to defective
lipid oxidation, increased ceramide formation and accumulation
of bioactive lipids in organs and tissues. Lipotoxicity has a
substantial impact on pancreatic b-cells by impairing glucose-
stimulated insulin secretion (32). Most significant is that
ceramides contribute to b-cell apoptosis by releasing
cytochrome c from the mitochondria and activating the
apoptotic cascade in the lipotoxicity process (33). It has been
shown that palmitate harms the insulin promoter and blocks
insulin gene expression in rat pancreatic islets. The entire process
is accompanied by de novo production of ceramides (34).
However, fumonisin B1, a ceramide synthetase inhibitor, may
be able to stop the harmful effects of palmitic acid and ceramides
(32). Inhibition of ceramide synthesis prevents the harmful
effects of palmitate on insulin gene expression (34).

Recently the promotion of lipotoxicity was indicated by
activation of SphK2 in b-cells. The excess of palmitic acid
present in obesity predisposes to redistribution of SphK2 from
the nucleus to the cytoplasm; this signal to relocate is responsible
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for b-cell lipotoxicity. The lack of SphK2 ameliorates insulin
secretion by protecting b-cells against apoptosis (35).

Lipotoxicity impairs the proper functioning of the liver,
kidneys, and muscles, including cardiomyocytes. High levels of
saturated fatty acids result in mitochondrial membrane
superoxide and reactive oxygen species (ROS) production,
causing oxidative stress with a reduced antioxidant response
(36). Lipotoxicity leads to ER stress, which plays an essential role
in insulin resistance and cell death. Interestingly, increased ER
stress in the hypothalamus modulates the sympathetic response
of BAT, leading to reduced thermogenesis and weight gain (37).
Lipotoxicity is a destructive process that can contribute to the
development of metabolic disorders.
SPHINGOLIPIDS AND ADIPONECTIN

Adiponectin controls lipidmetabolism and glucose homeostasis by
increasing glucose consumption in skeletal muscles. Adiponectin
works with two receptors, AdipoR1 and AdipoR2. AdipoR1/2 have
ceramidase activity by binding and hydrolysing the ceramide to
FFAand sphingosine, substrates in S1Pproduction (38).As a result,
ceramide levels are reduced, and glucose utilisation and tissue
insulin sensitivity are improved. Data confirms that this binding
leads to lipid oxidation, mitochondrial biogenesis, and anti-
apoptotic modifications. Lack of those receptors may be the
reason for metabolic dysfunction (38, 39). It proves that
adiponectin receptors may be crucial in bioactive lipid balance.

A study conducted on mice showed that increased
concentrations of circulating adiponectin negatively correlates
with ceramide levels. Moreover, it enhances insulin sensitivity
caused by the fibroblast growth factor (FGF21), which stimulates
adiponectin secretion. FGF21 treatment in mice showed an
increased adiponectin secretion, reducing the accumulation of
ceramides in tissues prevents lipotoxicity. In obese and diabetic
mice, the FGF21 reduced blood glucose concentration and
improved insulin sensitivity. However, adiponectin knockout
mice showed no positive changes after FGF21 stimulation (40).
Noteworthy is that the ablation of SPT also increased the release
of FGF21 and improved metabolism (41).
SPHINGOSINE-1-PHOSPHATE

Ceramides are the primary source of de novo S1P synthesis
through a process of sphingosine diacylation. Diacylation is
catalysed by two isoenzymes, SphK1 (located in the cytoplasm)
and SphK2 (located in the nucleus, mitochondria, and ER), both
widely expressed in human tissues. S1P is a bioactive lipid that
takes part in numerous cellular processes such as angiogenesis, cell
growth, apoptosis and inflammation by binding to S1P1-5

receptors (42, 43). S1P has anti-apoptotic properties, enhances
insulin sensitivity and reduces immune response (44) (Figure 2).
The study conducted on HFD mice demonstrated a positive
influence of the S1P analogue on insulin signalling and reduced
leukocyte accumulation in adipose tissue (50). On the other hand,
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an increased level of S1P is observed in the SAT of obese diabetic
patients, and a negative effect on insulin signalling is confirmed
(24, 51, 52). The difference may depend on a non-specific affinity
of S1P to the S1P receptor. It was surprising that in-vitro S1P
interacts with CerS2 by a motif located in CerS2, which is similar
to the S1P receptor causing the inhibition of CerS2. This could
explain the antagonistic effect of S1P on ceramides (53).

Another critical point is the tissue of action, the type of SphK
isoenzymes and their expression. In muscles, S1P leads to Akt
activation, responsible for improved insulin response by increasing
glucose uptake and glycogen synthesis (54). By contrast, in adipose
tissue, S1P inhibits Akt activation after insulin stimulation (49). In
both tissues, the increased expression of SphK1 was observed. No
data indicate the participation of SphK2 in the impaired insulin
response of the described tissues. The SphK1 and SphK2 effect on
pancreatic b cell activity is believed to be antagonistic. Saturated
fatty acids stimulate the SphK1/S1P axis by inhibiting lipotoxicity-
induced b cell apoptosis (55).

In contrast, the SphK2 under the lipotoxic condition passes to
the cytoplasm, promoting the apoptosis of b-cells and leading to
impaired glucose homeostasis (35, 56). Surprisingly, the positive
role of SphK1 and SphK2 was observed after exposure to high
glucose levels. This resulted in increased S1P production and
elevated insulin synthesis and secretion, leading to reduced serum
glucose level (57).

Another controversy is the influence of S1P on inflammatory
processes. In obesity a chronic inflammation state is present. As an
endocrine organ, adipose tissue secretes adipokines and
chemokines such as pro-inflammatory cytokines. HFD results in
an accumulation of DAG and ceramides in the adipose tissue and,
simultaneously, leads to an increased SphK1 expression and
conversion of ceramide to S1P. S1P promotes pro-inflammatory
Frontiers in Endocrinology | www.frontiersin.org 5
cytokine expression (TNFa, Il-6) and secretion in adipose tissue
Studies have shown that the SphK1 deficiency inDIOmice resulted
in enhanced adipogenesis and anti-inflammatory cytokine
expression (Il-10). Further, glucose tolerance and insulin
sensitivity in muscle and adipose tissue were improved (49).

In contrast, endogenous S1P has a protective impact on b-cells
against cytokine-induced apoptosis in rat islets (58). The difference
in the S1P action is determined by the protein with which S1P is
combined. In the bloodstream, S1P is transported by albumin
(~35%) or apolipoprotein M (apoM) combined with HDL
cholesterol (~65%) (42). Albumin is a protein which binds many
hydrophobic compounds in the bloodstream whereas apoM/HDL
remains specific and probably is critical in biological response. The
S1P/apoM/HDL complex reveals an anti-inflammatory effect on
endothelial cells and helps to maintain vascular integrity, which is
the aim of vascular disease treatment (59).
CONCLUSIONS

Obesity is increasingly a global problem. The basis of
complications related to obesity is adipose tissue overgrowth
and accumulation of bioactive lipids. Their role seems to be
crucial in insulin resistance, diabetes, hypertension and
dyslipidaemia development (60).

Treatment that reduces sphingolipid levels in the bloodstream
is a promising method in fighting obesity and other related
diseases (61, 62). Nevertheless, continuous identification of the
mechanisms controlled by bioactive lipids is essential. The
cognition of modulation of immune response, thermogenesis,
glucose, and lipid homeostasis by sphingolipids will be crucial in
the upcoming years.
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FIGURE 2 | Metabolic effect of S1P in adipocyte. (A) S1P inhibits adipogenesis by affecting the expression of transcriptional factor PPARg (45); (B) S1P reduces the
anti-inflammatory response (IL-10) and adiponectin synthesis which is accompanied by (E) an increased proinflammatory cytokine levels (IL-6, TNFa) lead to the
activation of PP2A leaving Akt dephosphorylated and inactive (46); (C) In cAMP/PKA dependent pathway S1P stimulates lipolysis and inhibits insulin-mediated leptin
synthesis (47); (D) S1P intensifies TLR4 activation cause impaired insulin signalling via IKK- NF-kB axis (48); (F) S1P stimulates secretion of chemokine MCP-1 leads
to increased macrophage migration (49); (+) activation, (-) inhibition, TNFa -tumor necrosis factor, IL-6, interleukin 6; IL-10, interleukin 10; Act, protein kinase 3;
TLR4, Toll like receptor 4; IKK, inhibitor kappa kinase; NF-kB, nuclear factor kB; PKA, protein kinase A; PPARg, peroxisome proliferator-activated receptor gamma;
MCP-1, monocyte chemoattractant protein-1.
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22. Bandet CL, Mahfouz R, Véret J, Sotiropoulos A, Poirier M, Giussani P, et al.
Ceramide Transporter Cert Is Involved in Muscle Insulin Signaling Defects
Under Lipotoxic Conditions. Diabetes (2018) 67:1258–71. doi: 10.2337/db17-
0901

23. He P, Hou B, Li Y, Xu C, Ma P, Lam SM, et al. Lipid Profiling Reveals
Browning Heterogeneity of White Adipose Tissue by b3-Adrenergic
Stimulation. Biomolecules (2019) 9:444. doi: 10.3390/biom9090444

24. Błachnio-Zabielska AU, Baranowski M, Hirnle T, Zabielski P, Lewczuk A,
Dmitruk I, et al. Increased Bioactive Lipids Content in Human Subcutaneous
and Epicardial Fat Tissue Correlates With Insulin Resistance. Lipids (2012)
47:1131–41. doi: 10.1007/s11745-012-3722-x
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