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ABSTRACT Citrobacter braakii AN-PRR1 is a potential salt-tolerant, plant growth-promoting
rice rhizobacterium isolated from Pakistani soil. The 4.9-Mb draft genome sequence con-
tributes to its taxonomic classification and will reveal the genes putatively responsible for
its osmoprotectant and plant growth-promoting activity.

Rice, an important cereal worldwide, is under major threat from growing issues like
salinity and drought due to the ongoing climate change (1–4). To combat the adverse

effects of salinity on the production of rice and other crops, the use of salt-tolerant plant
growth-promoting rhizobacteria (PGPR) is a promising approach (4–7). Therefore, we iso-
lated and characterized salt-tolerant PGPR strains from rhizospheric soil of rice plants
grown in salt-affected areas of Pindi Bhattiyan (31°53952.120N, 73°16922.870E), Hafizabad
District, Punjab, Pakistan. Based on the screening process, isolate AN-PRR1 was prioritized,
and its sequencing was initiated to clarify its taxonomic position, to reveal the genetic
background of its characteristics, and finally to shed more light on the complete biosyn-
thetic capacity for secondary metabolism.

Genomic DNA (gDNA) of AN-PRR1 was harvested from an overnight culture grown
at 37°C in lysogeny broth (8) on a rotary shaker (220 rpm) and isolated as previously
described (9). The gDNA (20 mg) was sheared using a Covaris g-TUBE device; libraries
were constructed using the SMRTbell template preparation v1.0, Sequel binding v2.0,
and MagBead v2 kits, followed by size selection using the BluePippin size selection sys-
tem (Sage Science, Inc.). The 6-kb multiplex library was sequenced on a PacBio Sequel
instrument and one SMRT cell. No quality filtering was conducted; however, subreads
shorter than 50 bp were discarded. The remaining PacBio long reads were assembled
using SMRT Link v7.0.1 and HGAP4 (10, 11). Default settings were used for all software,
except for the HGAP4 genome size estimate parameter, which was set to 5 Mbp. Overall,
the reads were assembled into one contig to construct a draft genome sequence. Since this
genome resulted in a high number of pseudogenes (1,850 out of 4,592 coding DNA sequen-
ces [CDS]), mainly due to frame shifts and short indels, the gDNA extraction procedure was
repeated, and upon library preparation (10mg gDNA; Nextera XT paired-end library), the ge-
nome was resequenced using the Illumina NovaSeq 6000 platform. The initial quality assess-
ment was based on data passing the Illumina Chastity filter. Subsequently, reads containing
a PhiX control signal were removed. In addition, reads containing adapters were clipped. The
second quality assessment was based on the remaining reads using the FASTQC tool v0.11.8
(12). Upon filtering, high-quality Illumina reads were assembled into contigs using ABySS v2.0.2
(13). The results of both sequencing platforms were subsequently used to perform a de novo
hybrid assembly. The contigs were linked based on the alignment of the PacBio long reads.
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Alignment was performed using BLASR v1.3.1 (14). From the alignment, the orientation, order,
and distance were determined using SSPACE-LongRead v1.0 (15). Using the Illumina reads,
gapped regions within the contigs were closed using GapFiller v1.10 (16). Finally, assembly errors
and the nucleotide disagreements between the Illumina reads and the PacBio-based sequences
were corrected using Pilon v1.21 (17). The final genome sequence consists of two contigs and
comprises 4.9 Mb. Genome annotation was conducted using the Prokaryotic Genome
Annotation Pipeline (PGAP) v5.1 (18, 19). The genome features are summarized in Table 1.

A genome-based taxonomic analysis of strain AN-PRR1, employing the Type Strain
Genome Server (TYGS) (20), revealed that Citrobacter braakii ATCC 51113 represents the clos-
est related type strain. In pairwise comparisons, independent of the applied Genome BLAST
Distance Phylogeny formula, the digital DNA-DNA hybridization (dDDH) values d0, d4, and d6
ranged from 74.5 to 91.3% and were therefore within the species threshold of 70%. Thus,
AN-PRR1 represents a Citrobacter braakii strain. Automated secondary metabolism analysis
using antiSMASH v6.0.0 (21) predicted three biosynthetic gene clusters encoding a thiopep-
tide, a turnerbactin-like siderophore (22), and an arylpolyene (23).

Data availability. This whole-genome sequencing (WGS) project has been depos-
ited at DDBJ/ENA/GenBank under the accession number JAGMWL000000000. The cor-
responding raw sequencing data set has been registered in the NCBI SRA database
under the accession numbers SRX10639629 (PacBio) and SRX10639630 (Illumina).
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