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A B S T R A C T

Neurological diseases, such as MS, AD, PD and HD, are a major health concern of the elderly population, but still
therapeutic options are limited. Recent advances in genomic sequencing and bioinformatics, present an oppor-
tunity to understand mechanisms of these diseases for identification of therapeutic targets. Several studies have
shown association of immune dysfunction with immune system mediated neurological disease, MS, as well as
neurodegenerative diseases (AD, PD and HD). However, similarities and differences in role of the immune system,
immune pathways and immune cell types in these diseases remains unknown. In this study, immune cell type
signature genes in gene networks associated with neurological diseases, MS, AD, PD and HD was investigated
using meta-analysis and bioinformatics methods. Application of Weighted Gene Co-expression Network Analysis
(WGCNA) on publicly available gene expression datasets (microarray and RNA-seq) revealed a ModArray_04
module (microarray) or ModRNAseq_06 module (RNA-seq), significantly associated with MS, AD, PD and HD.
Hypergeometric enrichment test revealed significant enrichment of immune cell type genes in these neurological
disease modules. This study demonstrates that immune system mediated neurological disease, MS and neuro-
degenerative diseases (AD, PD and HD), share a common gene network characterized by immune cell type
signature genes (microglia, monocytes and macrophages) and are probable targets for therapeutic intervention. In
summary, this work shows a connection between MS, a disease where the role of the immune system and
inflammation is established, and neurodegenerative diseases (AD, PD and HD) where the role of inflammation is
still a hypothesis.
1. Introduction

It is estimated that number of adults above 65 years of age will
outnumber children in U.S. by 2035. This presents a significant
challenge to healthcare because age increases susceptibility to life
changing neurodegenerative diseases and cancers [1]. Alzheimer's
disease (AD) is characterized by appearance of extracellular
amyloid-beta plaques, intracellular neurofibrillary tangles and
neuronal cell death particularly in cortex, and hippocampus [2]. AD is
most common form of dementia occurring in elderly people and
overall prevalence of AD is expected to double in next 20 years [3].
Aging is risk factor for Parkinson's disease (PD) and its hallmarks are
neurodegeneration in substantia nigra and sever motor dysfunction
[4]. PD effects 1% of U.S. population above age 60 and increases to
any organization/university.
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5% in individuals above age 85 [4]. Huntington's disease (HD) is an
inherited neurodegenerative disease caused by unstable CAG trinu-
cleotide repeat expansion in huntingtin (HTT) gene and manifests as
cognitive, psychiatric and/or movement dysfunction [5, 6]. Adult
onset HD is most common form of this disease and can occur between
age 2 to 85 [7]. Therefore, aging is a major risk factor for neurode-
generative diseases, AD, PD and HD.

Several studies have sought to identify mechanistic links between
aging and neurodegenerative diseases. The goal of this introduction is
to provide readers with an overview of all known mechanisms of AD,
PD, HD and MS. Mitochondrial dysfunction, immune system and
inflammation are emerging as crucial mechanistic links between aging
and neurodegeneration. Mitochondria are cellular organelles that
produce cellular energy in form of ATP by oxidative phosphorylation
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of fats, and carbohydrates in mitochondria [8]. Reduced size and
number of mitochondria, altered mitochondrial oxidative phosphory-
lation, and altered mitochondria morphology occur in AD, PD and HD
[9, 10, 11]. ‘Neuroinflammation hypothesis’ suggests dysfunction of
immune system response and inflammation in central nervous system
as a driver of neurodegenerative diseases [12]. Microglia, the resident
immune cells of brain, are widely studied in context of neuro-
degeneration and aging. Several studies have shown that microglia
signature genes are altered in three neurodegenerative diseases, AD,
PD and HD, in context of aging [13, 14, 15, 16, 17, 18]. Due to
increased leakiness of blood brain barrier and systemic alterations in
immune system with aging, immune cells from peripheral blood enter
the brain and influence brain inflammation [19, 20]. However, the
role played by different immune cell types in neurodegenerative dis-
eases needs further investigation. Especially, it will be interesting to
tease out these regulatory immune mechanisms in context of neuro-
degeneration independent of aging.

Multiple Sclerosis (MS) is most common chronic inflammatory brain
disease mediated by immune system. MS is characterized by demyelin-
ation, and axonal degeneration [21]. MS typically occurs in adults be-
tween 20 to 40 years of age and is diagnosed based on demyelination
lesions [22]. Unlike neurodegenerative diseases, such as AD, PD and HD,
old age does not necessarily increase risk of MS. Though no driver gene(s)
is known to causeMS, studies have shown that genetic predisposition and
environmental factors increase risk of MS [23]. Consistent with immune
origin of MS, early life infection by Epstein-Barr virus (EBV) or human
herpesvirus 4 and genetic variants of immune genes increase risk of MS
[24, 25]. Chronic activation of immune pathway in neurodegenerative
diseases (AD, PD and HD) is well known. However, these studies were
done on one disease at a time, which makes it challenging to compare the
role of immune system across all neurodegenerative diseases (AD, PD and
HD) [26, 27, 28, 29]. Two studies Durrenberger et al andMukherjee et al,
compared multiple neurodegenerative diseases and found a neurode-
generative disease associated immune pathway, and immune cell type
(microglia), respectively [13, 30]. However, the role played by other
immune cells, such as innate immune cell types, monocytes and macro-
phages, in neurodegenerative diseases (AD, PD and HD) and how it
compares to classic immune system mediated disease, MS, remains
unknown.

In this work, a side-by-side comparison was made between neuro-
degenerative diseases (AD, PD and HD) and immune system disorder,
MS. Bioinformatics analysis revealed that three immune cell types,
microglia, monocytes and macrophages, underlie neurodegenerative
diseases (AD, PD and HD) and immune dysfunction mediated neurolog-
ical disease MS, independent of age.

2. Methods

2.1. Code availability

Computational pipeline used in this work is available on github https:
//github.com/smukher2/GithubSubmittedADPDHDMSimmun
eSept2021.

2.2. Source of RNA-seq and microarray samples

Publicly available datasets on NIH GEO https://www.ncbi.nlm.nih
.gov/geo/ were used in this study. Human microarray datasets were
obtained from cortex (control and AD), substantia nigra (control and PD)
and whole brain (control and MS). Human RNA-seq datasets were ob-
tained from prefrontal cortex (control, AD, HD, PD), optic chiasm (con-
trol and MS) and hippocampus (control and AD). Mouse RNA-seq
datasets were used to identify brain cell type genes (astrocytes, neurons,
oligodendrocytes, microglia) and blood immune cell type genes (mono-
cytes and macrophages). The series numbers for these datasets are pro-
vided at the end of this manuscripts under acknowledgements.
2

2.3. RNA-seq raw reads processing

RNA-seq analysis pipeline was adapted and developed from previ-
ously published standard methodologies [13, 31]. Briefly, RNA-seq raw
reads were aligned to GRCh38 and GRCm38 genomes with TopHat using
gene annotation information from Homo_sapiens.GRCh38.92.gtf and
Mus_musculus.GRCm38.92.gtf files, for human datasets (AD, PD, HD and
MS), and mouse datasets (brain cell types and immune cell types),
respectively, on cyverse high-performance computational cluster [32].
Mapped output bam files were used as input for HTSeq-Count to count
reads overlapping genes for estimation of gene abundance [33]. All
further analyses, including graphical visualizations were done in R
environment with R packages and custom R functions. Raw gene counts
were converted to TPM values (filtered to keep values > 1 in at least 2
samples) to normalized for variations in library size and mRNA abun-
dance. TPM values were further scaled to log2TPMþ1 scale and used as
input for rest of the bioinformatics pipeline. The log2TPMþ1 values were
visualized with volcano plots, barplots and density plots using
ggplot2_3.1.1 R package [34]. Built-in R functions, prcomp stats4_3.5.0
and corrplot_0.84, were used to perform PCA analyses and correlation
analysis, respectively, to visualize variability of replicate samples before
and after TPM normalization [34, 35].
2.4. Microarray data processing

Previously published microarray analysis pipeline was used here
[13]. GEOquery R package was used to obtain microarray datasets and
GPL annotation files [36]. Expression values from all datasets were
quantile normalized using limma R package and converted to log2þ1
scale [37]. Probe IDs were converted to gene symbols and in case of
duplicates, the first probe ID gene expression value was kept for all
datasets. The log2þ1 expression values were used as input for estimation
of DEGs (Differentially Expressed Genes) and construction of gene
co-expression networks (WGCNA network). The log2þ1 expression
values were visualized with volcano plots, barplots and density plots
using ggplot2_3.1.1 R package [34].
2.5. Consensus differential gene expression detection from limma, edgeR
and simple comparison of means

Differentially expressed genes (DEGs) between a given cell type and
all other cell types, were identified using limma_3.38.3, edgeR_3.24.3
and simple comparison expression means [37, 38, 39]. In limma and
edgeR, model design included condition, study or batch, gender, age and
tissue. For calculation of DEGs in limma and edgeR, contrasts were made
for the two conditions being compared holding all other variables in
design model constant. Limma and edgeR methods included correction
for false discovery and multiple testing using Benjamini and Hochberf
(BH) to correct for the presence of >30K transcripts (genes, pseudogenes
and antisense) in the analysis [40]. Though DEG analysis outputs both
upregulated and downregulated genes, here only upregulated genes were
selected as cell type specific signature genes. Signature or marker genes
were defined by significant presence of genes (upregulation) and not
significant absence of genes (downregulation) because generally cells are
identified by presence of marker genes for techniques such as,
Fluorescence-activated cell sorting and immunohistochemistry. BH cor-
rected adjP-values <0.05 and a fold changes >5 were cut-offs used for
significantly upregulated genes. Gene expression of DEGs were visualized
with volcano plots, barplots and density plots using ggplot2_3.1.1 R
package [34]. Consensus DEGs were those genes that were present in
DEG lists of at least two of the three methods, limma, edgeR and simple
comparison of means. Significance of overlap between DEG lists were
calculated using GeneOverlap_1.18.0 R package and number of genes
overlapping were visualized as Venn-diagrams using VennDia-
gram_1.6.20 R package [41, 42]. UserListEnrichment R function was
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Figure 1. Effect of SVA þ LM adjustment on AD, PD, HD, MS and control brain microarray datasets (GSE33000, GSE20333, GSE26927, GSE20164, GSE20292,
GSE108000 and GSE43490). A: Density plot representation of gene expression per study before and after SVA þ LM adjustment B: Box and whisker plot representation
of gene expression per study before and after SVA þ LM adjustment. C: Principal component (PC) projection of datasets before and after SVA þ LM adjustment. D:
Pearson correlation plot of studies before and after SVA þ LM adjustment. For this figure the following R packages were used: prcomp built-in R function in
stats4_3.5.0, corrplot_0.84, ggplot2_3.1.1, sva_3.30.1 and limma_3.38.3 [13,34,35,37,45, 46, 47].
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Figure 2. Effect of SVA þ LM adjustment on AD, PD, HD, MS and control brain RNA-seq datasets (GSE53697, GSE64810, GSE68719, GSE100297 and GSE67333). A:
Density plot representation of gene expression per study before and after SVA þ LM adjustment B: Box and whisker plot representation of gene expression per study
before and after SVA þ LM adjustment. C: Principal component (PC) projection of datasets before and after SVA þ LM adjustment. D: Pearson correlation plot of
studies before and after SVA þ LM adjustment. For this figure the following R packages were used: prcomp built-in R function in stats4_3.5.0, corrplot_0.84,
ggplot2_3.1.1, sva_3.30.1 and limma_3.38.3 [13,34,35,37,45, 46, 47].
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Table 1. Number of genes in microarray and RNA-seq WGCNA modules.

WGCNA_microarray _module_names Number_of_genes WGCNA_RNA-seq _module_names Number_of_genes

1 ModArray_01 2141 1 ModRNAseq_01 3240

2 ModArray_02 1486 2 ModRNAseq_02 1850

3 ModArray_03 783 3 ModRNAseq_03 1690

4 ModArray_04 335 4 ModRNAseq_04 1668

5 ModArray_05 297 5 ModRNAseq_05 1638

6 ModArray_06 245 6 ModRNAseq_06 1586

7 ModArray_07 194 7 ModRNAseq_07 1177

8 ModArray_08 186 8 ModRNAseq_08 1115

9 ModArray_09 172 9 ModRNAseq_09 1112

10 ModArray_10 139 10 ModRNAseq_10 956

11 ModArray_11 134 11 ModRNAseq_11 875

12 ModArray_12 108 12 ModRNAseq_12 812

13 ModArray_13 107 13 ModRNAseq_13 714

14 ModArray_14 99 14 ModRNAseq_14 669

15 ModArray_15 99 15 ModRNAseq_15 581

16 ModArray_16 80 16 ModRNAseq_16 424

17 ModArray_17 80 17 ModRNAseq_17 384

18 ModArray_18 66 18 ModRNAseq_18 314

19 ModArray_19 53 19 ModRNAseq_19 298

20 ModArray_20 52 20 ModRNAseq_20 294

21 ModArray_21 37 21 ModRNAseq_21 276

22 ModArray_22 29 22 ModRNAseq_22 247

23 ModArray_00 2 23 ModRNAseq_23 229

24 ModRNAseq_24 224

25 ModRNAseq_25 224

26 ModRNAseq_26 200

27 ModRNAseq_27 186

28 ModRNAseq_28 105

29 ModRNAseq_00 2
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used to uncover any significant overlap of cell type genes between cell
types [29].

2.6. Consensus gene co-expression network detection from RNA-seq and
microarray datasets with WGCNA

To build gene co-expression networks or modules of highly co-
expressed genes significantly associated with traits of interest
WGCNA_1.66 R package was used [43, 44]. To model and remove gene
expression effects of covariants, such as study or batch, gender, age,
tissue and surrogate variables (hidden variables), and retain only disease
condition effects, surrogate variable adjustment and linear model (SVAþ
LM) methods were applied with sva_3.30.1 and limma_3.38.3 R packages
[13, 37, 45, 46, 47]. SVA þ LM adjustment and WGCNA analysis were
done in parallel on both RNA-seq and microarray datasets. SVA þ LM
adjusted values were converted to log2þ1 normalized gene expression
and used as input for WGCNA to construct gene networks or modules
based on gene co-expression. In WGCNA, gene expression correlations
were determined to calculate a topology overlap matrix (TOM) and hi-
erarchical clustering method was applied to build weighted gene
co-expression networks or modules with default parameters and mini-
mum module size 100 [43,44]. WGCNA moduleEigengenes R function
was used to represent each module with its own eigengene [43, 44].
While Pearson correlation is good for linear relations between contin-
uous variables, Spearman correlation also works for monotonic relations
and ordinal (categorical) variables. As biological interactions are com-
plex, often monotonic and the disease state trait is categorical, here
Spearman correlation was used to determine module disease association.
To determine module trait association, Spearman correlation was
5

calculated for pairs of module eigengenes and traits. Module eigengenes
are computed by the WGCNA package and represent the gene expression
pattern for all genes in a givenmodule. Disease covariant or trait was split
into pairs of AD-control, PD-control, HD-control and MS-control, to
identify modules associated with a given disease independent of other
diseases. Consensus modules between RNA-seq and microarray datasets
were identified using module preservation and useListEnrichment R
functions from WGCNA [29, 43, 44]. Preservation analysis was used to
determine if connectivity of genes in microarray modules held true in
RNA-seq and significance was reported as a Z-summary score. Z-sum-
mary scores higher than 5 are recommended to be significant as per
creators of WGCNA package. Only disease associated modules that were
preserved between the two platforms (microarray and RNA-seq)
(Figure 3E) and had significantly overlapping genes (Figure 3F) were
selected. We used this method of selection as irrespective of platform the
modules showed disease association. The gene overlap also helps identify
the name of the equivalent module in RNA-seq platform given that
preservation analysis only takes the input of the reference microarray
network module names.

2.7. Characterization of gene co-expression disease associated modules

UserListEnrichment R function was used to determine enrichment of
cell type signature genes in WGCNA modules [29]. EnrichR_1.0 a R
package was used to determine biological process gene ontology (GO)
characterization of the modules [48]. Cell type signature genes under-
lying only significantly preserved disease associated modules, as deter-
mined by preservation analysis in the previous step, were reported in
Table 2.
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Figure 3. Identification of AD, PD, HD and MS associated WGCNA modules in microarray and RNA-seq datasets. A: Bar-plot showing number of genes in AD, PD, HD
and MS associated microarray WGCNA modules. B: Spearman correlation coefficients and p-values for significant AD, PD, HD, and/or MS associated microarray
WGCNA modules. C: Bar-plot showing number of genes in AD, PD, HD and MS associated RNA-seq WGCNA modules. D: Spearman correlation coefficients and p-values
for significant AD, PD, HD and MS associated RNA-seq WGCNA modules. E: Preservation analysis between all microarray and RNA-seq WGCNA modules using
microarray WGCNA module labels. F: Table showing microarray WGCNA modules associated with AD, PD, HD and MS that significantly overlapped with RNA-seq
WGCNA modules. For this figure the following R packages were used: WGCNA_1.66 and ggplot2_3.1.1 [34,43,44].
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3. Results

3.1. SVA þ LM approach reduces batch effects across AD, PD, HD and MS
microarray and RNA-seq studies

To identify neurodegenerative disease specific transcriptome,
publicly available control and neurological disease (AD, PD, HD and
MS) brain gene expression datasets (microarray and RNA-seq) were
normalized in preparation for meta-analysis. SVA þ LM model's ability
to effectively reduce batch effects or cross study variability in
microarray and RNA-seq, was visualized by comparing pre-SVA þ LM
normalized (before) and SVA þ LM normalized (after) expression data
plots. Density plot comparison of expression data colored by study,
shows a greater overlap, indicating lower variability between studies
after SVA þ LM normalization (Figure 1A for microarray, Figure 2A
for RNA-seq). In Box-Whiskers plot, slightly skewed mean expression
in GSE33000 and GSE108000 microarray studies, and GSE67333
RNA-seq study, were fixed by SVA þ LM normalization (Figure 1B for
microarray, Figure 2B for RNA-seq). Wide dispersion of samples from
same study (same color) in PCA plot was reduced by SVA þ LM
normalization (Figure 1C for microarray, Figure 2C for RNA-seq).
Correlation plots used to evaluate correlation of gene expression
values between studies, showed increased positive correlation after
SVA þ LM normalization (Figure 1D for microarray, Figure 2D for
RNA-seq). Thus, SVA þ LM normalization reduced variability unre-
lated to disease in AD, PD, HD, MS and control gene expression
datasets (microarray and RNA-seq), making the data suitable for meta-
analysis.

3.2. WGCNA network analysis reveals a common neurodegenerative
disease (AD, PD and HD) and MS specific gene co-expression module

Gene co-expression networks were constructed with WGCNA to
uncover molecular mechanisms in neurodegenerative diseases (AD, PD
and HD) and MS. WGCNA network analysis of microarray data
revealed 23 modules, where ModArray_01 was largest module of size
2141 genes and ModArray_22 was smallest module of size 29 genes
(Table1). WGCNA network analysis of RNA-seq data revealed 29
modules, where ModRNAseq_01 was largest module of size 3240
genes and ModRNAseq_28 was smallest module of size 105 genes
(Table1). Spearman correlations between module eigengenes and
disease trait (AD, PD, HD and MS) in microarray dataset, showed 22
WGCNA modules significantly associated with disease trait
(Figure 3A,B). Spearman correlation between module eigengenes and
disease trait (AD, PD, HD and MS) in RNA-seq dataset, showed 27
WGCNA modules significantly associated with disease trait
(Figure 3C,D). Few WGCNA modules were distinctly associated with
only one of four diseases, such as PD only module ModArray_17
(microarray), MS only modules ModRNAseq_04/13/16/23/25/28
(RNA-seq), HD only module ModRNAseq_19 (RNA-seq), AD only
module ModRNAseq_20 (RNA-seq) (Figure 3B,D). Widespread 100%
preservation of microarray and RNA-seq WGCNA modules was
observed (Figure 3E). Hypergeometric enrichment test showed sig-
nificant overlap of disease specific (AD, PD, HD and MS) WGCNA
modules from microarray and RNA-seq datasets (Figure 3F). Thus,
microarray and RNA-seq WGCNA gene network analyses com-
plemented each other in identifying AD, PD, HD and MS disease
specific modules, that were largely preserved.
7

3.3. Differential gene expression analysis reveals brain cell type and
immune cell type specific marker genes

To identify brain cell type (neuron, astrocyte, oligodendrocyte and
endothelial) and immune cell type (microglia, monocyte and macro-
phage) specific signature genes, differential gene expression meta-
analysis was performed with three DEG analysis methods (edgeR,
limma and simple comparison of means). Comparison of astrocytes with
other cell types revealed 1509 DEGs (fold change >1.25, p-value <0.05)
in at least two of the three DEG methods (Figure 4A). Endothelial cells
compared to other cell types showed 477 DEGs (fold change >1.25, p-
value <0.05) in at least two of the three DEG methods (Figure 4B). Each
immune cell type, when compared with other cell types showed 592
DEGs for macrophages, 344 DEGs for microglia and 863 DEGs for
monocytes, with fold change >1.25 and p-value <0.05, in at least two of
the three DEG methods (Figure 4C, D, 4E). Oligodendrocytes, when
compared with other cell types showed 124 DEGs for mature oligoden-
drocytes, 128 DEGs for precursor oligodendrocytes and 157 DEGs for
new oligodendrocytes, with fold change >1.25 and p-value <0.05, in at
least two of the three DEG methods (Figure 4F-H). Comparison of neu-
rons with other cell types revealed 889 DEGs (fold change>1.25, p-value
<0.05) in at least two of the three DEG methods (Figure 4I). UserLis-
tEnrichment R function showed that only a) new oligodendrocyte and
precursor oligodendrocyte b) myelinated oligodendrocytes and precursor
oligodendrocyte c) macrophages and monocytes, shared significant
number of common signature genes.

3.4. Immune cell type (microglia, macrophage and monocyte) marker
genes were enriched in AD, PD, HD and MS associated WGCNA module

Brain cell type (neuron, astrocyte, oligodendrocyte and endothelial)
and immune cell type (microglia, monocyte and macrophage) specific
marker genes identified by differential gene expression analysis were
used to estimate relative enrichment of these cells in AD, PD, HD and MS
WGCNA modules. Hypergeometric enrichment analysis revealed cell
type enrichment in AD, PD, HD and MS associated WGCNA modules
(Figure 5A,B, Table2). ModArray_03 microarray WGCNA module and
ModRNAseq_14 RNA-seq WGCNA module, were most significantly
enriched with neuron cell type markers (Table2). Interestingly, Mod-
Array_04 microarray WGCNA module and ModRNAseq_06 RNA-seq
WGCNA module, were the only modules that were significantly
enriched with all three-immune cell type (macrophage, microglia and
monocyte) markers (Table2, Figure 5A,B). ModArray_06 microarray
WGCNA module and ModRNAseq_08 RNA-seq WGCNA module, were
significantly enrichedwith myelinated oligodendrocyte cell type markers
(Table2). ModArray_10 and ModArray_20 microarray WGCNA modules,
and ModRNAseq_07 WGCNA module, were significantly enriched with
astrocyte cell type markers (Table2). ModArray_14 microarray WGCNA
module and ModRNAseq_18 RNA-seq WGCNA module, were signifi-
cantly enriched with endothelial cell type markers (Table2). Though
microarray WGCNAmodule ModArray_15 was enriched with neuron cell
type signature genes, its equivalent ModRNAseq_02 RNA-seq WGCNA
module was not significantly enriched with any cell type genes (Table2).
Thus, each brain cell type occupies separate WGCNA modules, while all
three immune cell types (macrophage, microglia and monocyte) occupy
the same WGCNA module. This suggests that mechanistically each brain
cell type utilizes a separate gene network or module, while all immune
cell types utilize the same gene network or module.



Figure 4. A–I: Venn Diagram gene overlap and heat-map of overlap significance for differential gene expression calculation methods (limma, edgeR and simple
comparison of means). Upregulated DEGs for contrasts Astrocytes by others (A), Endothelial cells by others (B), Macrophages by others (C), Microglia by others (D),
Monocytes by others (E), Myelinated oligodendrocytes by others (F), Precursor oligodendrocytes by others (G), new oligodendrocytes by others (H) and Neuron by
others (I). (J) Only significant overlap of cell type genes identified (A–I) with another cell type are shown. For this figure the following R packages were used:
GeneOverlap_1.18.0, VennDiagram_1.6.20, limma_3.38.3, edgeR_3.24.3 and simple comparison expression means [37, 38, 39, 41, 42].
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Figure 5. Immune cell type (macrophage, microglia and monocyte) marker genes were enriched in WGCNA modules associated with AD, PD, HD and MS. A: Gene
overlap between AD, PD, HD and MS associated WGCNA modules from microarray (ModArray_04) and RNA-seq (ModRNAseq_06 RNA-seq). B: Table showing most
significant overlap of cell type signature genes in ModArray_04 microarray WGCNA module and ModRNAseq_06 RNA-seq WGCNA module. C, D: Gene Ontology (GO)
Biological Process analysis of ModArray_04 microarray WGCNA module (C) and ModRNAseq_06 RNA-seq WGCNA module (D). For this figure the following R
packages were used: EnrichR_1.0, WGCNA_1.66 and ggplot2_3.1.1 [34,43,44,48].
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Table 2. Significant cell types enriched in microarray and RNA-seq WGCNA modules associated with AD, PD, HD and MS.

WGCNA_Array_
module_names

DiseaseAD DiseaseHD DiseasePD DiseaseMS p-value_ Cell_Type_
Enrichment_ in_Array_
WGCNA_ Modules

Cell_Type_
Marker_Genes

WGCNA_RNA-seq_
module_names

p-value_ Cell_Type_
Enrichment_ in_RNA-
seq_ WGCNA_ Modules

p-value p-value p-value p-value

ModArray_03 9.47E-09 2.89E-13 1.86E-102 3.16E-08 3.26E-16 neuronBYothers ModRNAseq_14 3.78E-80

ModArray_04 1.92E-36 6.27E-47 0.0005408 4.04E-103 7.77E-08 macrophagesBYothers ModRNAseq_06 0.00389653

ModArray_04 1.92E-36 6.27E-47 0.0005408 4.04E-103 2.91E-21 microgliaBYothers ModRNAseq_06 8.32E-39

ModArray_04 1.92E-36 6.27E-47 0.0005408 4.04E-103 7.38E-06 monocytesBYothers ModRNAseq_06 5.30E-02

ModArray_06 5.23E-05 5.95E-08 9.88E-52 3.21E-81 3.30E-09 myeoligoBYothers ModRNAseq_08 1.92E-26

ModArray_10 2.17E-42 4.70E-61 0.0216352 9.59E-53 3.85E-17 astroBYothers ModRNAseq_07 1.50E-142

ModArray_14 1.66E-10 6.97E-10 3.05E-70 2.09E-43 5.43E-30 endoBYothers ModRNAseq_18 8.54E-85

ModArray_15 1.09E-64 1.50E-84 2.85E-17 1.36E-25 0.00020016 neuronBYothers ModRNAseq_02 NA

ModArray_20 1.61E-09 9.87E-11 2.28E-12 1.24E-11 1.49E-19 astroBYothers ModRNAseq_07 1.50E-142
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3.5. Gene ontology (GO) annotation of immune cell type enriched AD, PD,
HD and MS associated WGCNA modules

Immune system was the most significant biological process gene
ontology (GO) in both ModArray_04 microarray WGCNA module and
ModRNAseq_06 RNA-seq WGCNA module (Figure 5C,D). Immune pro-
cess, GO “neutrophil activation involved in immune response”
(GO:0002283) was largest in bothModArray_04 (overlap 71/484 p-value
1.43E-42) microarray WGCNA module and ModRNAseq_06 (overlap 83/
484 p-value 7.66E-08) RNA-seq WGCNA module (Figure 5C,D). Other
large GOs in ModArray_04 microarray WGCNA module were related to
cell signaling, such as “cytokine-mediated signaling pathway
(GO:0019221) overlap 70/634 p-value 3.46E-34” and “positive regula-
tion of intracellular signal transduction (GO:1902533) overlap 36/480 p-
value 5.58E-14” (Figure 5C). Large GOs related to cell signaling were also
present in ModRNAseq_06 RNA-seq WGCNA module, such as “protein
phosphorylation (GO:0006468) overlap 57/471 p-value 0.000911972”
and “toll-like receptor signaling pathway (GO:0002224) overlap 25/87
p-value 8.78E-09” (Figure 5D). These results are consistent with immune
cell type enrichment in ModArray_04 microarray WGCNA module and
ModRNAseq_06 RNA-seq WGCNA module.

4. Discussion

In MS patients, immune system attacks myelin surrounding neurons
and is the most studied central nervous system immune dysfunction [49].
Several recent studies now indicate that a dysfunctional immune system
also underlies pathology of other central nervous system diseases, such as
neurodegenerative diseases AD, PD and HD [13, 16, 17, 29, 50, 51].
Recently, Mukherjee et al showed that resident brain immune cells called
microglia, are a major cell type enriched in gene networks associated
with aging and neurodegenerative diseases, AD, PD and HD [52].
Growing evidence suggests that with aging there is an increase in sys-
temic inflammation and collapse of blood brain barrier [19, 20]. How-
ever, how immune dysfunction in neurodegenerative diseases compares
to MS, a disease known to be caused by immune dysfunction, is not well
understood. To address this question, regulatory molecular networks
underlying neurodegenerative diseases (AD, PD and HD) and MS were
constructed, and immune system characteristics of these networks were
evaluated.

To enable comparison of disease effects on gene expression, tran-
scriptome gene expression data were normalized with SVA þ LM
adjustment to remove effects of age and other covariants on gene
expression. A caveat of this work is that association of RNA-seq WGCNA
modules with PD was not always significant compared to microarray
WGCNA modules. This is probably because RNA-seq PD samples were
from cortex while microarray samples were form substantia nigra.
However, in spite of this limitation cell type enrichment results were
same for significant PD associated microarray WGCNA modules and
RNA-seq WGCNA modules (Table2).
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Different disease (AD, PD, HD and MS) associated WGCNA modules
were enriched by each of the major brain cell type signature genes
(neurons, astrocytes, oligodendrocytes and endothelial cells) (Table2).
This suggests that all major brain cell type occupy separate AD, PD, HD
and MS disease modules and gene networks. Interestingly, all immune
cells type signature genes (microglia, monocyte and macrophage) were
enriched in the same ModArray_04 microarray WGCNA module and
ModRNAseq_06 RNA-seq WGCNA module, associated with AD, PD, HD
and MS diseases (Table2, Figure 5A,B). Though macrophages and
monocytes shared significant number of common signature genes,
microglia signature genes did not significantly overlap with either of
them (Figure 4J). This rules out that the three innate immune cell types
occur in the samemodule simply because they have significant number of
common signature genes. Taken together, these results suggest that all
immune cells underlie a common shared network, which is distinctly
different from networks occupied by other brain cell types in AD, PD, HD
and MS. One caveat here is that the cell type signature genes and disease
modules were obtained from different species, mice and human,
respectively.

The AD, PD, HD and MS associated ModArray_04 microarrayWGCNA
module and ModRNAseq_06 RNA-seq WGCNA module, enriched by all
three immune cells (macrophages, microglia and monocytes) was char-
acterized by several immune system related GO terms, “neutrophil acti-
vation involved in immune response”, “cytokine-mediated signaling
pathway”, “positive regulation of intracellular signal transduction”,
“protein phosphorylation” and “toll-like receptor signaling pathway”.
Taken together, these results suggest a significant role of immune system
in the context of neurodegenerative diseases (AD, PD, HD) andMS. In this
study, the module or network where immune system is significantly
involved in these diseases has been identified. Though more research is
required to understand the interaction between immune system and
neurodegenerative diseases (AD, PD and HD), one study suggests that
microglia are activated by monocytes andmacrophages through systemic
chronic inflammation in neurodegenerative diseases [53].

Drug targeting strategies involve systemic targeting (specific target-
ing of organs, tissue and cells) and intracellular targeting (specific tar-
geting of genes and pathways). The basis of network medicine is that
diseases occur due to perturbation of entire gene networks and not due to
a few individual genes [54]. Several clinical trials targeting the immune
system have been undertaken in AD, PD, HD and MS patients. In these
trials, anti-inflammatory drugs were found to be ineffective in AD pa-
tients, while inhibitors targeting specific inflammatory signaling proteins
were found beneficial [55, 56]. A recent study showed that
immune-suppressor drugs, inosine monophosphate dehydrogenase in-
hibitors and corticosteroids, lowered the risk of PD [57]. In this work,
several immune pathways were identified in immune cell type enriched
in AD, PD, HD and MS associated ModArray_04 microarray WGCNA
module and ModRNAseq_06 RNA-seq module. These pathways and
WGCNA modules can potentially serve as excellent candidate for intra-
cellular drug targeting in AD, PD, HD and MS treatment. Additionally,
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identification of a common underlying immune response in AD, PD, HD
and MS diseases in this study, presents a great opportunity to repurpose
drugs developed for one of the diseases for another disease. An example
of successful drug repurposing, is the approval of a MS treatment drug for
immunomodulator targeting macrophages called fumaric acid ester
dimethylfumarate (DMF) for HD treatment [58].

In 2015, Durrenberger et al found common immune pathways asso-
ciated with multiple neurological diseases (AD, PD, HD, ALS, MS and
schizophrenia) using microarray datasets [30]. Though this work re-
quires validation with RNA-seq datasets, it raises the exciting possibility
that immune cell types (microglia, monocytes and macrophages) asso-
ciated with neurodegenerative diseases (AD, PD and HD), may also be
associated with non-neurodegenerative psychiatric diseases, such as
schizophrenia. More research is required to understand the role of innate
and adaptive immune system in neurodegenerative diseases, and
non-neurodegenerative diseases to identify a safe and effective thera-
peutic window for immune system drug targeting.
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