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Kuźniarski, A.; Gąsiorowski, K.
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Abstract: In developing and developed countries, an increasing elderly population is observed. This
affects the growing percentage of people struggling with neurodegenerative diseases, including
Alzheimer’s disease. Nevertheless, the pathomechanism of this disease is still unknown. This
contributes to problems with early diagnosis of the disease as well as with treatment. One of the most
popular hypotheses of Alzheimer’s disease is related to the pathological deposition of amyloid-β
(Aβ) in the brain of ill people. In this paper, we discuss issues related to Aβ and its relationship in the
development of Alzheimer’s disease. The structure of Aβ and its interaction with the cell membrane
are discussed. Not only do the extracellular plaques affect nerve cells, but other forms of this peptide
as well.
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1. β-Amyloid in the Development of Alzheimer’s Disease

β-amyloid is a peptide composed of 39–43 pairs of amino acids [1]. The 28 amino
acid residues of Aβ are N-terminal ending, and C-terminal segments terminate another
12–14 residues. The amine terminals are placed extracellularly and anchored in the trans-
membrane space. The carboxyl ends show hydrophobic and fibrillogenic properties [2].

In patients with Alzheimer’s disease (AD), the soluble form, which appears in the
secondary beta-sheet conformation, is deposited in the form of 3–4-kDa-long vascular
plaques and deposits [3,4]. As a result of these deposits, calcium channel activity in the
synapses is disturbed, disrupting nerve signal transmission. The deposition of an excess of
this protein can damage the mitochondria, thereby increasing free radicals and cell death.
Simultaneously, the inflammatory process is exacerbated by the presence of microglia and
astrocytes [5].

The peptide effect depends on the concentration: in the range of 10−10–10−8 M, it
shows neurotrophic properties, and above 10-7 M it is neurotoxic [3]. In vitro studies have
demonstrated that dimers are three times more toxic than monomers [6]. Soluble oligomers
(usually 10–100 kDa) are considered more cytotoxic than amyloid fibril aggregates [3,7,8].
Oligomers easily diffuse into neurons by endocytosis. They inhibit many neuronal activities,
influence the classical synaptic plasticity model, and participate in amyloid fibers [8,9].
The “amyloid hypothesis” has been formulated and suggests that β-amyloid deposition
initiates neurodegeneration in AD [10]. However, according to some recent statements the
development of neurodegeneration in this particular disease should be redefined since it
may originate in combined pathophysiological mechanisms [11,12].

2. Structure and Cascade of β-Amyloid Transformations

Aβ arises from the processing of one or more isoforms of the APP precursor protein
formed depending on the APP gene located on the 21st pair of chromosomes [3]. APP
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protein is a transmembrane glycoprotein that influences the development of the nervous
system and neuron growth. It is involved in cell adhesion and synaptic connections [13];
its basic isoforms are APP695, APP751 and APP770 [3,14]. The APP protein participates
in neuroprotective and neurotrophic processes (growth and differentiation of neurites),
affects cell adhesion, and interacts with the intercellular substance components, including
collagen I, laminin, fibronectin, heparin sulfate and glycosaminoglycans; it also participates
in the modulation of synaptic plasticity. This protein plays an important role in maintaining
a constant intracellular calcium Ca2+ [3,15].

There are two main APP processing pathways. Many extra- and intracellular factors
can influence the way of processing. Furthermore, the mechanisms can be cell-, tissue-
or species-specific. The APP protein is sequentially cleaved by the activity of proteolytic
enzymes—secretases [16]. β- and γ-secretases participate in the amyloidogenic pathway,
and α- and γ-secretases in the non-amyloidogenic pathway (Scheme 1) [16,17].

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 2 of 14 
 

 

2. Structure and Cascade of β-Amyloid Transformations 
Aβ arises from the processing of one or more isoforms of the APP precursor protein 

formed depending on the APP gene located on the 21st pair of chromosomes [3]. APP 
protein is a transmembrane glycoprotein that influences the development of the nervous 
system and neuron growth. It is involved in cell adhesion and synaptic connections [13]; 
its basic isoforms are APP695, APP751 and APP770 [3,14]. The APP protein participates 
in neuroprotective and neurotrophic processes (growth and differentiation of neurites), 
affects cell adhesion, and interacts with the intercellular substance components, including 
collagen I, laminin, fibronectin, heparin sulfate and glycosaminoglycans; it also 
participates in the modulation of synaptic plasticity. This protein plays an important role 
in maintaining a constant intracellular calcium Ca2+ [3,15]. 

There are two main APP processing pathways. Many extra- and intracellular factors 
can influence the way of processing. Furthermore, the mechanisms can be cell-, tissue- or 
species-specific. The APP protein is sequentially cleaved by the activity of proteolytic 
enzymes—secretases [16]. β- and γ-secretases participate in the amyloidogenic pathway, 
and α- and γ-secretases in the non-amyloidogenic pathway (Scheme 1) [16,17]. 

 
Scheme 1. APP protein processing pathways. 

α-secretase, the activity of which increases after the activation of protein kinase C, 
reduces the proteolysis by β-secretase (amyloidogenic pathway) [16]. There are two main 
forms of the β-secretase enzyme—BACE1 and BACE2. The form responsible for the 
production of Aβ in the brain is primarily BACE1 [15]. γ-secretase is a protein complex 
composed of four components: presenilin (PSEN1 or PSEN2), nicastrin, and Aph1 and 
Pen2 proteins. The γ-secretase enzyme can only process substrates formed after the action 
of α- or β-secretase [16,18]. 

In the non-amyloidogenic pathway, cleavage of APP by α-secretases between Lys687 
and Leu688 produces the soluble protein sAPPα and membrane-bound C83 peptide, 
which is then cleaved by γ-secretase into p3 and AICD fragments (APP intracellular 
domain) [19,20]. As a result of the stimulation of NMDA receptors with glutamate, the 
production of sAPPα (induction of the non-amyloidogenic pathway) increases. 

Scheme 1. APP protein processing pathways.

α-secretase, the activity of which increases after the activation of protein kinase C,
reduces the proteolysis by β-secretase (amyloidogenic pathway) [16]. There are two main
forms of the β-secretase enzyme—BACE1 and BACE2. The form responsible for the
production of Aβ in the brain is primarily BACE1 [15]. γ-secretase is a protein complex
composed of four components: presenilin (PSEN1 or PSEN2), nicastrin, and Aph1 and
Pen2 proteins. The γ-secretase enzyme can only process substrates formed after the action
of α- or β-secretase [16,18].

In the non-amyloidogenic pathway, cleavage of APP by α-secretases between Lys687
and Leu688 produces the soluble protein sAPPα and membrane-bound C83 peptide,
which is then cleaved by γ-secretase into p3 and AICD fragments (APP intracellular
domain) [19,20]. As a result of the stimulation of NMDA receptors with glutamate, the
production of sAPPα (induction of the non-amyloidogenic pathway) increases.

In the amyloidogenic pathway, β-secretase cleaves APP between Met671 and Asp672,
releasing soluble sAPPβ and the membrane-anchored peptide C99 [19]. The resulting
amino acid is cleaved by γ-secretase to β-amyloid with a mass of approx. 4 kDa and
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AICD [21]. The action of γ-secretase can occur in different C terminal regions, resulting in
several types of Aβ [16]. In a non-pathological process, mainly shorter Aβ40 is produced,
which is usually about 80–90%. The longer form of Aβ1–42 is more hydrophobic and
fibrillogenic [22,23].

Moreover, there is a less common path in which it is assumed that after APP cleavage,
some Aβ remains in the cell membrane, forming Aβ oligomers, which affect the integrity
of the cell membrane [24].

AD patients have increased production of Aβ1–42, which has a stronger tendency to ac-
cumulate as insoluble deposits compared to Aβ1–40. Furthermore, it has been observed that
the carboxyl terminus (COO) of the APP protein may also be neurotoxic. APP processing
is recognized as one of the key factors in the pathogenesis of Alzheimer’s disease [25].

Senile plaques are mainly composed of Aβ1–40 and Aβ1–42. However, due to the
proteolytic environment, shorter fragments are also formed (including Aβ31–35, Aβ25–35
and Aβ27–42), which are also present in smaller amounts in patients with AD [26]. Scheme 2
shows the process of the formation of senile plaques.
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Aβ25–35, which shares many features with Aβ1–40 and Aβ1–42, is frequently used in
in vitro experiments. In spectroscopic and physicochemical studies, the L and D stereoiso-
mers of Aβ25–35 and Aβ1–42 proteins are similar. Immunohistochemical studies have shown
Aβ25–35 in AD patients, while it was absent in the control group (healthy patients). Syn-
thetic Aβ25–35 also displayed toxic activity in cell culture and ability to form aggregates
with properties similar to deposits found in AD patients’ brains. It is often assumed that
Aβ25–35 is a highly neurotoxic fragment of Aβ [26–29].

β-amyloid formed in the amyloidogenic pathway through β- and γ-secretases is also
present in picomolar concentrations in people without cognitive impairment [30]. Soluble
Aβ monomers are responsible for the growth of neurons and protection against oxidative
stress and synaptic conduction modulation. They increase the expression of membrane
potassium channels, resulting in significantly reducing apoptosis and excitability of neu-
rons. Aβ binds to L-type calcium channels, increasing the level of Ca2+ inside the cell. Aβ

monomers also improve Ca2+-dependent neuron conductivity [22,27,31]. Ion channels in
the plasma membrane can influence the overall toxicity of Aβ by influencing its aggrega-
tion. The channels are believed to affect the aggregation of Aβ1–42 with no significant effect
on Aβ25–35 [22,28].

3. Fragment of Aβ25–35 in the Pathomechanism of Alzheimer’s Disease

The formation of Aβ25–35 in the brains of elderly people and AD may be associated
with the post-translational modification of senile amyloid proteins in the aging process of
these long-lived proteins [28,32]. The aging of amyloid deposit proteins is accompanied by
gradual racemization, mainly Ser and Asp, with D enantiomer appearance—this process
takes about 20–30 years [32,33]. It has been shown that amyloid peptide racemization can



Int. J. Mol. Sci. 2021, 22, 6075 4 of 14

also be caused by free radicals [34] and increased exposure to free radicals and chronic
oxidative stress are important factors accelerating the development of neurodegeneration.
The presence of D-enantiomers of the amino acid residues of serine and asparagine in the
amount of approx. 5–10% of the total number of amino acids building Aβ in senile plaques
was confirmed in AD patients [28]. The racemization of Aβ1–40 in the D residue of Ser26 is
assumed to play an important role in AD pathogenesis [28,32,35]. Racemization of Ser26

leads to the formation of non-fibrillar, soluble [D-Ser26]Aβ1–40 from fibrillary, insoluble
Aβ of amyloid deposits. Released from senile plaques, soluble [D-Ser26]Aβ1–40 has no
neurotoxic properties. It is susceptible to protease attack with the formation of neuro-
toxic fragments, mainly [D-Ser26]Aβ25–35/40 [28,32]. Fragments of this peptide containing
D-Ser26 show a high tendency to aggregate and are resistant to protease action, unlike other
fragments generated in the degradation of Aβ [28,36]. Immunohistochemical studies of
AD patients’ brains has confirmed the presence of [D-Ser26]Aβ25-35, while in the control
group of healthy people of similar age, these fragments were not present [32].

It is likely that as a result of racemization, the [D-Ser26]Aβ25–35 fragment changes its
conformation to the extent that hinders further proteolytic degradation and removal of this
peptide. This could explain the higher content of this peptide in AD brains. The proteolytic
degradation-resistant peptide [D-Ser26]Aβ25–35 may be considered an important source of
the neurotoxic Aβ25-35 peptide in AD brains [28,32].

4. The Interaction of Aβ with the Cell Membrane Proteins

Extracellular Aβ, on its way to the cytosol of neurons, encounters the lipid bilayer
barrier of cell membranes [37]. It is assumed that Aβ binds directly to membrane lipids,
damages the lipid bilayer structure, penetrates cells, binds to receptors on cell membranes,
and the receptor stimulation effect is transmitted in the cell through signal transduction
pathways [37,38].

As a result of interactions with lipids of cell membranes, the conformation of amyloid
peptides changes significantly—the share of the β structure increases and the formation
of oligomers and their aggregates begins [37]. It is assumed that cell membranes lipid
composition is of key importance for forming changes in the conformation of amyloid
peptides, their biophysical features, including stiffness/elasticity and polarity, result-
ing from the specific composition of membrane lipids in the regions of interaction with
Aβ [39,40]. The set of membrane lipids that Aβ encounters on its intracellular pathway
forms the basis (matrix) for the formation of amyloid aggregates and fibers, and the bind-
ing of Aβ with cell membrane lipids induces its folding disorders (β-sheet structure) and
oligomerization [22,38,41].

Electrostatic and hydrophobic interactions influence the attachment of Aβ to the cell
membrane. Aβ is an amphiphilic peptide, the hydrophobic part is located at the C-terminus,
and the hydrophilic part, at the N-terminus, contains 6 negatively charged amino acid
residues (asparagine, glutamine) and 6 positively charged amino acids (lysine, arginine, his-
tidine) [24,42]. In contact with cell membrane lipids, the conformation of amyloid peptides
changes. The positively charged amino acids are exposed on the Aβ surface, which binds
to the phospholipids of negatively charged cell membranes (sphingomyelin, containing
phosphorus, and phosphoethanolamine in the hydrophilic head). It should be emphasized
that the cell membranes show heterogeneity in the proportion of lipid components in
different regions in the membrane plane; microdomains can be distinguished, differing in
the proportion of various lipids and their physicochemical properties. A random event is
whether Aβ particles encounter non-electrically charged lipid domains—electrostatically
non-binding Aβ or negatively charged microdomains with which amyloid peptides can be
electrostatically bound [43].

The electrostatic interactions of Aβ and cell membrane lipids are shown in Scheme 3.
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In interactions with membrane lipids showing a negative charge, the exposure of Aβ

regions containing positively charged amino acid residues leads to changes in the peptide
conformation, an increase in the proportion of the β-sheet structure and the formation of
amyloid aggregates (Scheme 3a) [10,44]. In a segment of the membrane with a neutral
potential, only a short part of the hydrophobic segment of Aβ becomes nested in the
lipid bilayer, while when the negative charge increases (in a given region/microdomain
of the membrane), the proportion of negatively charged phospholipids increases and the
positively charged segments of Aβ are more attracted, leading to a stronger sinking segment
of the hydrophobic amyloid peptide that adopts an α-helix conformation (Scheme 3b) [44].

Sphingomyelin-rich and cholesterol-rich regions/microdomains of lipid membranes
play an important role in interactions with amyloid peptides. Sphingomyelin binds amyloid
peptides on the cell membrane surface. It generates the initiation of the fibrilization process.
At the same time, cholesterol present in the lipid bilayer’s deeper regions interacts with
the amyloid peptide’s hydrophobic regions. It drags Aβ deeper into the lipid bilayer,
enhancing conformational changes and amyloid peptide aggregation [45]. The optimal
cholesterol content for Aβ binding and aggregation was determined to be about 35%
in the sphingomyelin-rich cell membrane regions; then, the amyloid peptide binding
capacity increases more than 2.5-fold compared to cholesterol-poor membranes [45]. Since
the lipid bilayer enriched in sphingomyelin and cholesterol is present in the regions of
microdomains, i.e., lipid rafts, it is assumed that the oligomerization and fibrilization of
Aβ occur in rafts of cell membranes [45]. It has been shown that exogenously administered
Aβ is concentrated in the lipid rafts of cell membranes and penetrates the cell’s interior
through the rafts. Peptide integration in rafts may influence membrane damage and the
progression of Alzheimer’s disease [46]. It has been shown that the aggregation of amyloid
peptides on the membrane surface occurs only after saturation of the penetration path [47].

In vitro, Aβ may bind to sphingolipid derivatives (sphingomyelin or ganglioside GM1)
and cholesterol [47]. However, considering the physiological proportions of the cell mem-
brane’s lipid composition, sphingomyelin and cholesterol, not GM1 ganglioside, binds Aβ

and induces changes in its conformation and aggregate formation [1]. Numerous previous
works have highlighted the key role of GM1 in Aβ aggregation [48–50]. However, they were
carried out in vitro at high, non-physiological concentrations of ganglioside times exceeding
the average concentration of GM1 in gray matter and white brain tissue [51]. It is currently
assumed that GM1 at physiological concentrations inhibits amyloid peptides’ binding to
sphingomyelin and the oligomerization of Aβ and has neuroprotective properties—its effect
on improving memory in the rat AD model has been shown [52]. Its beneficial effect is
probably due to its neuroprotective and neuroregenerative properties [53].

According to Penke et al. [7], mature long amyloid fibrils may not be responsible
for the toxic effects and damage to neurons’ key functions but the intermediate forms,
oligomers and protofibrils, occurring during amyloid aggregation, may be responsible.
In a model proposed by Bharadwaj et al. [41], transformations of native Aβ (monomers),
i.e., changes in conformation, nucleation and elongation into oligomers, and then into
protofibrils (including protofibril rings), are two-way processes (Scheme 4). Therefore,
amyloid oligomers may be released during the protofibril fragmentation. Further fibrilliza-
tion processes, i.e., the formation of amyloid aggregates from protofibrils, is an irreversible
stage [54,55].
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Oligomers and protofibrils interact with cell membranes in various ways, causing
synaptic and neurotoxic effects [37]. After reaching the cutoff level, protofibrils may bind
to the membrane, causing its thickness to decrease, e.g., by “carpet” deformation of the
membrane or detergent effect (extraction of lipids from the membrane and incorporation
into the amyloid fiber). In turn, protofibril rings can become embedded in the membrane,
which leads to the formation of transmembrane channels that facilitate the migration of ions
and water through the membrane; then the intracellular influx of Ca2+ increases, which
leads to excitotoxicity and neuronal death due to the activation of calcium-dependent
proteolytic enzymes [38,41].

In the case of the strongly neurotoxic fragment of the amyloid peptide, Aβ25–35, the
neuronal membrane’s lipid composition is less important for aggregation, probably due
to the high fibrilization rate of this amyloid fragment [27,56]. In studies on a model of
a lipid membrane composed of phospholipids and cholesterol using nuclear magnetic
resonance (NMR) spectroscopy, Aβ25–35 retained the same β-sheet structure regardless of
the proportion of model lipids and formed transmembrane channels faster and in greater
number compared to the full Aβ1–42 peptide [22,56]. An important ion channel in the cell
membrane is the system of pumps and channels ensuring cellular homeostasis of Ca2+

ions. Ion transport to cells is mediated by voltage-gated Ca2+ channels (VGCC), including
L-type, P-type and N-type channels. In Alzheimer’s disease, the important channel is the L
type, which is stimulated by Aβ [57].

It has been shown that exogenous Aβ accumulates in large amounts in synaptic
spaces, which suggests the involvement of membrane receptors, especially densely packed
at synapses, in the binding of Aβ. Binding of Aβ with receptors present in synaptic mem-



Int. J. Mol. Sci. 2021, 22, 6075 7 of 14

branes causes the activation effect of a given receptor (opening ion channels or activation
of specific signal transduction pathways in ionotropic and metabotropic receptors, respec-
tively), but also, in the case of some receptors, leads to endocytosis of the receptor–Aβ

complex and increases intra-neuronal content of amyloid peptides [47]. Synaptic receptors
for which Aβ receptor endocytosis has been demonstrated include: NMDA and AMPA glu-
tamatergic receptors, α7nChR cholinergic receptor, LDLR and LRP1 lipoprotein receptors,
and RAGE advanced glycation endproducts receptor [47]. The mechanism of Aβ binding
to the ionotropic glutamatergic receptor NMDA and AMPA is relatively well known [39,47].
It has been shown that NMDA receptor endocytosis increases after the binding of extracel-
lular Aβ, and the use of an antagonist of this receptor prevents the accumulation of amyloid
in cells [47]. However, it has not been definitively confirmed whether Aβ binds directly to
the NMDA receptor or whether another Aβ binding receptor mediates Aβ penetration. For
example, Aβ binds to integrins of neuronal membranes, and an amyloid–integrin–NMDAR
complex may be formed, which is endocytosed. Studies on the human neuroblastoma
cell line have shown that integrin α5β1 participates in the penetration of soluble Aβ into
cells, which intensifies its degradation and reduces neuronal apoptosis (there are fewer
amyloid peptides in neurons and their surroundings) [58]. NMDA receptors and integrins
have been suggested to cooperate to transport Aβ to the synapses of nerve cells [47]. The
AMPA receptor, also found in lipid rafts, may be more effective than the NMDA receptor.
After binding/activation by Aβ oligomers, the AMPA–Aβ receptor complex is rapidly
endocytosed, and receptor inhibition stops amyloid entry into cells [47]. The Aβ also
exhibits affinity for the insulin receptor [59].

In cases of Aβ receptor endocytosis, the complex is transported to endolysosomes
where it undergoes proteolytic degradation. A necessary condition for the lysosomal
proteolysis of endosomal cargo is the lysosomal matrix acidity (pH = 4.5–5.0). However,
with age, the proton pump (V ATPase) function in the membranes of lysosomes and
endosomes decreases, causing an increase in pH. The activity of lysosomal hydrolases
decreases or even disappears [60]. In this case, the endosomal cargo is not digested in the
lysosomes, and the Aβ oligomers may be released into the cytosol [60].

Binding of Aβ to the RAGE receptor (advanced glycation product receptor) also
leads to the RAGE–Aβ complex’s endosomal internalization. However, the intracellular
pathways of these endosomes lead to mitochondria, not lysosomes. Aβ penetrates from
the endo-lysosomal compartment into the cytosol, from where a specific protein, the
translocase, imports it into the mitochondria [47].

The receptors that bind Aβ oligomers with high affinity include the membrane lipopro-
tein receptors: LDLR, LRP1 and heparan sulfate (HSPG) proteoglycans anchored in cell
membranes. β-amyloid (and especially oligomers) binds directly to these membrane recep-
tors and is internalized by receptor endocytosis [61]. Many different coreceptors interact
in endocytosis of the Aβ–LRP1 complex, including the membrane prion protein PrPC,
HSPG9 [54], the cholinergic nicotinic receptor α7nAChR [61] and the cholinergic nicotinic
receptor α7nAChR [47]. HSPG has been shown to bind Aβ with high affinity and then
interacts with the LRP1 receptor to transmit the amyloid peptide to it. In this case, the
LRP1–Aβ complex or the large HSPG–LRP1–Aβ complex is endocytosed [61]. Apolipopro-
tein E (ApoE) plays an important role in endocytosis involving the LRP1 receptor, which
has high-affinity binding domains for Aβ (mainly oligomers), HSPG and LRP1 [61]. The
fibrillogenesis pathways of Aβ oligomers depend on the ApoE isoform to which the amy-
loid peptide has bound. It was found that ApoE4 forms less stable complexes with Aβ

(which may be due to the lower lipid content of the apolipoprotein E4 complex), shows
a lower affinity for the LRP1 receptor and a lower rate of receptor endocytosis than in
the case of the Aβ–ApoE3 complex [61]. As a result, receptor endocytosis and lysosomal
degradation of Aβ oligomers in complex with ApoE4 are lower. At the same time, ApoE4
stabilizes extracellular amyloid oligomers, increases their aggregation and enhances senile
plaque growth more strongly than ApoE3 [61]. The participation of ApoE in the binding
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of Aβ to LDLR receptors, LRP1 and HSPG proteoglycan, and the subsequent receptor
endocytosis, is shown in Scheme 5.
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After entering the cell by endocytosis, Aβ, as well as ApoE and LRP1, dissociated
in the early endosome, are transported in the late endosomes to lysosomes, where they
are degraded or are excreted from the cell in the exosomes via an alternative transport
pathway (Scheme 5). For Aβ, the lysosomal transport pathway and proteolytic degradation
prevail, although a small amount of Aβ is recycled and exocytosed outside the cell [61].
At a high concentration of Aβ in lysosomes, aggregation of Aβ can be initiated in the
acidic lysosomal matrix (pH = 5.0), which may damage the lysosomes and release toxic
aggregates, oligomers and protofibrils, into the cytosol of cells [61]. It should also be
emphasized that with age, the efficiency of lysosomal proton pumps decreases and the
lysosomal matrix’s pH is higher than optimal for the functions of lysosomal hydrolases [60].
Thus, it can be assumed that in the elderly, the share of the transport pathway for non-
lysosomal degradable endosomes is much greater. For example, aggregation of amyloid
oligomers was observed in early endosomes at pH ≈ 6–7 [62]. If the lysosomal pH is
higher than optimal (pH > 5.0), the content of such vesicles is not degraded in lysosomes.
The endosomes then form recycling vesicles and then exosomes, releasing the amyloid
aggregates they contain to the outside of the cells, which leads to the growth of senile
plaques. Some in silico models postulate defective autophagy of Aβ as an important
pathological factor in the formation of amyloid deposits [63].

The normal cellular prion protein PrPC is a membrane receptor showing a particularly
high binding capacity for Aβ oligomers [64], which occurs physiologically in the mem-
branes of most types of cells, including synapses of neurons. After binding Aβ, the PrPC

protein does not cross the cell membrane; the activation effects by amyloid oligomers result
from the activation of intracellular signal transduction pathways, as shown in Scheme 6.
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The intracellular pathway of prion activation after binding to Aβ oligomers involves
the activation of the non-receptor tyrosine kinase Fyn, mediated by the mGLUR5 transmem-
brane metabotropic glutamatergic receptor [64]. Fyn kinase regulates the phosphorylation
and functions of the NMDA receptor and the tau protein [65]. Histological analysis of
brains from AD patients confirmed the relationship between elevated levels of Fyn in neu-
rons and hyperphosphorylated tau protein [64]. It has been shown that the physiological
regulation of NMDA receptors by Fyn requires the presence of a functional tau protein,
which is also a prerequisite for the Aβ-induced excitotoxicity of neurons [66]. NMDA
receptor activation leads to increased Ca2+ influx into the cells and associated excitotoxicity.
After the administration of exogenous Aβ, the increase in Fyn kinase activity is short-lived.

In contrast, the activation of Pyk2 (protein tyrosine kinase 2) and CAMK III (Ca2+/
calmodulin dependent kinase III) kinases occur simultaneously, which participate in the
mechanisms of synaptotoxicity and neurotoxicity [64]. Since PrPC protein has a high
affinity and the ability to bind Aβ oligomers, this pathway likely plays an important
role, especially in the early stages of neurodegeneration when amyloid peptide levels
are slightly elevated. Activation of Fyn kinase and Pyk2 and CAMK III kinases leads
to increased phosphorylation of tau and the NMDA receptor, which destabilizes the
receptor’s anchoring in the structures of postsynaptic densities [64]. The weakening of
NMDA interactions with PSD-95, the main protein scaffolding postsynaptic densities,
significantly impacts lowering LTP [64]. Scheme 6 illustrates the early, synaptic toxic
effects of Aβ oligomers. On the other hand, higher concentrations of oligomers lead to
increased binding to PrPC, increased NMDAR phosphorylation, the greater opening of the
ion channel of this receptor, and increased excitotoxicity due to increased excitotoxicity to
a significant influx of Ca2+ to neurons. Aβ–pTau–Fyn interactions are viewed as a toxic
synaptic triad in the pathomechanism of AD [67]. Synaptic dysfunction can be induced by
Aβ binding to receptors located in synapses, such as NMDAR, AChR and mGluR5 [47,67].

An important aspect is also the interaction with the membrane and receptors within
the synapses. Apart from Aβ, other products of APP protein metabolism also participate
in the interaction with receptors at synapses. Interaction of dissolved APP (sAPP) frag-
ments with GABABR1a was demonstrated at synaptic terminals. GABABR1a receptors
form heterodimers with GABABR2. The specific combination with GABABR1 results in
inhibition of the release of synaptic vesicles, which consequently affects the suppression
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of synaptic transmission [68]. This interaction may lead to hyperphosphorylation of the
tau protein. LilrB2 receptors also have high affinity (already in nanomolar concentrations)
for Aβ oligomers in the brain, which can activate microglia. Its mouse counterpart (PirB)
has been shown to affect synaptic plasticity. Another surface receptor that influences
microglia activation is TREM2 [68]. ApoE binds to the TREM2 receptor and the Aβ binds
them. Activated microglia may affect the persistent neuroinflammation in the brain, which
deepens the progress of neurodegenerative processes.

Moreover, if there are redox-active metal ions in the intercellular space, Aβ can bind
directly to metal ions, which can increase the level of free oxygen radicals and indirectly
damage the cell membrane of neurons [69].

In conclusion, Aβ has been considered a cause of Alzheimer’s disease for many years.
However, Aβ is a protein that is physiologically present also in healthy people. Due to
lack of solid evidence it cannot be pointed out precisely which modifications of Aβ cause
its toxicity. In this paper, we present an analysis of the interaction of various forms of Aβ

with the proteins of cell membrane. As a result of this action, neurodegenerative processes
deepen, both damaging the cell membrane as well as affecting the intracellular processes
of neurons.

5. Research Methods Used to Analyze Interactions with Cell Membrane

When describing the interactions of amyloid with proteins of cell membranes, it is
impossible not to mention the methods of studying their kinetics and spatial patterns.
Interaction research methods can be divided into computational and experimental [70].

Computational models are an important tool in the study of neurodegenerative dis-
eases since they are capable of simulating selected functions of nervous system cells and
their reactions in different conditions and states [71]. Due to the development of computing
power, the possibilities of conducting advanced analyses have increased, e.g., dynamic
simulations of lipid environment influence, arrangement of lipid rafts and signalling
pathways. Using computer modeling, it is possible to create 3D models of Aβ structures
(monomers, oligomers, tetramers or octamers) and simulate their interactions with the cell
membrane [24]. An important aspect in in silico studies is also the evaluation of membrane
disruption mechanisms due to the interactions of Aβ and the cell membrane based on
electrophysiology [24]. However, considering the complexity of neural processes in living
organisms, these revelations should be treated with reserve as these models can often
oversimplify actual mechanisms [71].

Commonly used experimental methods to study membrane interactions are nuclear
magnetic resonance spectroscopy, mass spectrometry, fluorescence correlation spectroscopy
and cross-correlation spectroscopy, super-resolution microscopy, Förster resonance en-
ergy transfer, membrane two-hybrid assays and photoactivatable or DNA-based lipid
probes [70]. Nuclear magnetic resonance spectroscopy allows the analysis of the structure,
dynamics, binding site and affinity of the protein–cell membrane complexes [72]. Mass
spectrometry also provides the opportunity to study the dynamic interactions between a
protein and the cell membrane [73]. However, unlike NMR, it only measures the mass and
stoichiometry of the complex without being able to analyze the conformation shift. The
disadvantage of this method is also the time-consuming analysis of the results—the larger
the protein, the longer the analysis, which can take up to several days. Moreover, the need
to use detergents in this method may also lead to misinterpretation of the obtained results,
and interaction studies cannot be performed on living cells, contrary to NMR [70].

The method of fluorescence correlation spectroscopy, which allows the real-time study
of cell membrane–ligand interactions, uses fluorescently labeled compounds that interact
with the membrane [74]. The greatest disadvantage of this method is that it requires at least
eight times the difference in molecular weight between the bound and unbound states [70].
A solution to this difficulty may be the use of fluorescence cross-correlation spectroscopy,
which measures the correlation of two fluorescently labeled compounds [74]. However,
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both of these fluorescence spectroscopy methods are not suitable for monitoring slowly
moving membrane proteins [70].

Super-resolution microscopy, in turn, allows the observation at the molecular level
of cholesterol-assisted diffusion dependent on the distribution of sphingolipids and gly-
cosylphosphatidylinositol and the formation of cholesterol-mediated complexes. This
technique also enables the analysis of short-term transient interactions of compounds with
the cell membrane [75].

The analysis of energy transfer between the donor and acceptor is possible using
the Förster resonance energy transfer technique, and by combining with fluorescence
microscopy this technique allows the analysis of transient interactions of the cell mem-
brane [70].

In in vitro studies, colorimetric tests are commonly used methods that allow for multi-
ple repetitions and are relatively cheap. In studies on the interaction of proteins/ligands
with the membrane, they are used to assess the formation of bonds with the membrane,
i.e., to which part of the membrane the protein binds, e.g., GM1 or cholesterol [49].

Membrane two-hybrid assays developed in yeast and mammals are a less popular
but also used technique to analyze the interaction of proteins with cell membranes. Their
advantage is the ease of use in high-throughput screening tests [76,77]. Photoactivatable
or DNA-based lipid probes are also of great importance in screening. In the first case,
photoactivatable probes are introduced into the cell membrane. Then, the cells prepared
in this way are illuminated with light. Photoactive lipids bind to a ligand, including
amyloid, which allows for interaction analysis. The advantage of this method is that it can
be used in both living and artificial cell membranes [78]. In contrast, DNA-based probes
can covalently modify membrane target lipids without affecting membrane integrity or
integration into the membrane [78,79]. To analyze and interpret these interactions, among
others, the techniques of spectroscopy and fluorescence microscopy are then used.

An interesting solution for analyzing the interaction of proteins with the cell membrane
is also the use of techniques based on atomic force microscopy (AFM), e.g., high-speed AFM
and nanoInfrared AFM. They allow spatial and temporal analysis of protein interactions,
e.g., amyloid, with the cell membrane in real-time. Moreover, nanoInfrared AFM provides
information on the chemical structure at the nanoscale without the labeling used in super-
resolution microscopy [80].
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