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Abstract: Rice seedling blight is a globally occurring seedling disease caused by multiple pathogens.
It is currently the most common disease affecting rice production in northeast China; hence, de-
termining the causal agents, including its biological characteristics, host range, and fungicide effi-
cacy is vital for its effective management. The present study obtained 45 pathogenic isolates from
diseased rice seedlings in Suihua, Heilongjiang Province, China. Of these, five pathogens were
identified based on their morphology and molecular identification, while 10 oomycete isolates were
identified as Pythium aristosporum—the first to be reported in rice seedling blight. Its optimum
growth conditions include a temperature of 25 ◦C, pH 6, and photoperiod of 24 h. Except for soy-
bean (Glycine max (L.) Merr.), black soybean (Glycine max var.), and cucumber (Cucumis sativus L.),
P. aristosporum can potentially infect and cause seedling blight on other hosts, such as wheat
(Triticum aestivum L.), maize (Zea mays L.), sorghum (Sorghum bicolor (L.) Moench), alfalfa
(Medicago sativa L.), oats (Avena sativa L.), and white clover (Trifolium repens L.). Its isolates were
found to be highly sensitive to metalaxyl + propamocarb (EC50 = 0.0138 µg/mL) with 84.1% efficacy
at 313 µg/mL. These results can serve as the basis for controlling P. aristosporum.

Keywords: Pythium aristosporum; identification; biological characteristics; host range;
fungicide efficacy

1. Introduction

Rice, wheat, and maize are three of the major crop staples worldwide [1,2]. Among
them, rice is the most important cereal crop cultivated in China as it is critical for the
country’s agricultural economy [3,4]. Heilongjiang Province is the northernmost rice-
growing region and one of the largest commercial Japonica rice production areas [5].
Therefore, ensuring the sustainability of rice production systems in these areas is vital for
ensuring global food security and protecting livelihoods [6]. Rice seedling blight, which
is a seedling disease caused by diverse pathogenic microorganisms, is the most common
disease affecting rice production in northeast China, as low temperatures of 3–7 ◦C provide
favorable conditions for its prevalence [7,8]. Rice seedling blight causes growth inhibition
in rice seedlings, which in turn, reduces grain quality and rice yield. Recently, its incidence
has increased in northeast China [9], in which stand loss ranges from 10 to 20%, and in
severe cases, up to 60–80% [10].

Breeding disease-resistant varieties is considered an effective way to control rice dis-
eases, yet, these have been limited to date [11]. Hence, fungicides have largely remained
the most commonly used method to control rice seedling blight [8]. However, these
methods vary depending on the complexity and variability of pathogens across different
rice-planting areas [12,13]. As rice seedling blight is caused by several pathogenic mi-
croorganisms, including Fusarium spp. [8,14], Pythium spp. [15,16], Burkholderia spp. [17,18],
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Rhizoctonia solani [19,20], Marasmius graminum [21], and Curvularia coatesiae [8], identify-
ing the specific pathogenic species and their occurrence is essential for selecting effective
chemical fungicides for appropriate disease prevention and control [7].

Crop rotation is another method to control rice seedling blight, which involves en-
hancing the disease suppression property of soils against soil-borne plant pathogens [22].
Globally, crops rotated along with rice include alfalfa [23], wheat [24], and maize [25], and
the occurrence of pathogens in these hosts has not been systematically analysed for rice
seedling blight. Potentially, such analysis can provide a theoretical basis for using this
method to reduce rice seedling blight in Heilongjiang Province, China.

In a study of the population structure of pathogens causing rice seedling blight in
the same location, a novel pathogenic oomycete was found, having been recovered from
diseased seedlings. Hence, this study aims to identify the pathogenic species causing
rice seedling blight and analyse its biological characteristics, host range, and sensitivity
to fungicides. The results can potentially help farmers and researchers to develop and
formulate improved control strategies for preventing and controlling rice seedling blight in
the future.

2. Materials and Methods
2.1. Isolation and Pathogenicity of Pathogens

In May 2019, diseased rice seedlings (cv. Suijing 18) with withered tips, chlorosis,
stunting, yellow leaves, leaf drop, crown rot, and inhibited root growth were observed in
Suihua City, Heilongjiang Province, China (46.63◦ N 126.98◦ E). The soil is mainly black,
with a sandy clay texture and an organic matter content of 4–5%. Rice seedlings (n = 45)
with symptoms of rice seedling blight were randomly collected from three fields with a
total area of ~3 ha. The disease incidence ranged from 10–15%, which allowed for pathogen
isolation and identification. The symptomatic stem base tissues were surface-disinfected
with 0.5% NaOCl for 2 min, rinsed three times in sterile distilled water, cultured on potato
dextrose agar (PDA) at 25 ◦C for three days, then subcultured by transferring hyphal tips
onto a V8 agar medium [26]. Thereafter, four diseased stem base tissues were selected from
each diseased seedling for pathogen isolation. This was followed by the calculation of the
number of pathogens recovered, including the percentage of each genus.

The submerged root technique [27] was used to assess the pathogenicity of the re-
covered isolates. All isolates were re-isolated from diseased rice plants and observed and
assessed based on Koch’s postulates. The roots of 15-day-old rice seedlings (cv. Longdao 18)
were submerged for 10 min in a suspension containing 106 zoospores (or conidia)/mL [26]
of each isolate. Meanwhile, isolates without zoospores or conidia were purified by selecting
a single hyphal tip [28], and a mycelium suspension was prepared using sterile water.
The inoculated seedlings were then transplanted into pots containing sterile soil, with
ten seedlings each. For each isolate, three pots were used, in which seedlings soaked in
sterilised distilled water were used as the control samples. Subsequently after 20 days,
symptoms on the inoculated seedlings were observed to determine whether they were
consistent with those of the diseased samples in the field. The experiment was repeated
thrice under the same conditions.

Disease severity was visually scored based on an assessment of the growth status of the
rice seedlings. A scale from 0 to 4 was used [8]: 0 = no symptoms; 1 = small lesions covering
less than 1/4 of the stem surface area; 2 = moderate-sized lesions covering approximately
1/4 to 1/2 of the stem surface area; 3 = large lesions covering approximately 1/2 to 3/4 of
the stem surface area; and 4 = dead plants with lesions covering the whole stem surface
area. The disease index was calculated as Σ (number of diseased rice seedlings at each
scale × relative grade) / (total number of surveyed plants × highest disease rate) × 100.
The pathogenicity of the strains was then described based on the average disease index of
the three experiments, categorised as: weakly pathogenic, disease index < 50; moderately
pathogenic, 50 ≤ disease index < 60; and highly pathogenic, disease index ≥ 60.
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2.2. Identification of the Pathogens Recovered from Diseased Rice Seedlings

Isolates causing rice seedling blight were identified based on their morphological [29]
and molecular characteristics. For the latter, the genomic DNA was extracted from
the mycelia of representative isolates using a Tiangen Genome Extraction Kit (Tiangen
Biotech, Beijing, China). The internal transcribed spacer (ITS) region and cytochrome
oxidase subunit II (CoxII) genes were amplified using primer pairs ITS1/ITS4 [30,31] and
COX2f/COX2r [32], respectively. A polymerase chain reaction (PCR) was performed in
a final volume of 50 µL with 10 µM of each primer, 2 × Taq Master Mix, and 10 ng of
template DNA. The PCR conditions were as follows: initial denaturation for 5 min at 94 ◦C,
followed by 35 cycles for 1 min at 94 ◦C and 55 ◦C, 1.5 min at 72 ◦C, and final extension for
10 min at 72 ◦C. The PCR products were purified and sequenced by Shanghai Biological
Engineering Co. Ltd. (Shanghai, China). Phylogenetic trees of representative isolates
were constructed using PhyML 3.0 (LIRMM, Montpellier, France), based on the maximum
likelihood principle [33].

2.3. Biological Characteristics of P. aristosporum Isolates

To determine the pH level, temperature, and photoperiod at various mycelial growth
rates, the growth rate of each isolate (n = 10) was measured on V8 agar at different pH
levels (4.0, 6.0, 7.0, 8.0, and 10.0), temperatures (10 ◦C, 20 ◦C, 25 ◦C, 28 ◦C, 30 ◦C, and
35 ◦C), and photoperiods (light 24 h, light/dark = 12 h/12 h, and dark 24 h). A mycelial
plug (0.7 cm diameter) of an isolate grown on V8 agar for 96 h was then transferred to a
treatment plate with V8 medium and incubated under similar conditions. Each treatment
was performed in triplicates, and the entire experiment was repeated twice. The colony
diameters of P. aristosporum isolates were measured after 72 h.

2.4. Host Range Determination of P. aristosporum Isolates

Ten P. aristosporum isolates recovered from seedlings with disease symptoms were inoc-
ulated on the seedlings of other crops grown in Heilongjiang such as wheat (cv. Longfumai
10), maize (cv. Suiyu 7), sorghum (cv. Suiza 7), alfalfa (cv. Xinjiangdaye), oats (cv. Baiyan 6),
white clover (cv. Mini-BL), soybeans (cv. Suinong 26), black soybean (cv. Heizhenzhu), and
cucumber (cv. Changchunmici). Seedlings, with ten plants per treatment, were inoculated
with a zoospore suspension (1 × 106 zoospores/mL) of the isolate using the soaked root
method [34]. Ten seedlings from each crop were soaked in sterile distilled water as control
seedlings. Each treatment was replicated thrice. Approximately seven days following
inoculation, disease severity was visually scored based on the abovementioned procedure.
Isolates of P. aristosporum were re-isolated and identified from the inoculated seedlings
based on Koch’s postulates. The experiments were conducted in triplicates.

2.5. Sensitivity of P. aristosporum Isolates to Fungicides

The mycelial growth rate method [35] was used to assess the sensitivity of P. aris-
tosporum against the following fungicides: metalaxyl + hymexazole (30% AS) (Sino-Agri
Leading Biosciences Co., Ltd., Tianjin, China), fosetyl-Al (80% WP) (Limin Chemical Co.,
Ltd., Xinyi, China), and metalaxyl + propamocarb (25% WP) (Jiangsu Baoling Chemical
Co., Ltd., Nantong, China).

Each fungicide was added to the V8 agar separately at final concentrations of
0.1 µg/mL, 0.3 µg/mL, 0.5, 1, and 2 µg/mL. A mycelial plug (0.7 cm-diameter) of each
isolate (n = 10) was placed at the center of a fungicide-amended V8 agar plate and in-
cubated in the dark at 25 ◦C for 72 h. Sterilised distilled water (1 mL) was added to
the V8 medium (500 mL) as a blank control. Each treatment was performed in triplicate
and the entire experiment was conducted twice. The colony diameter was measured to
evaluate the inhibition of isolate growth. Percent growth inhibition was calculated as
1 − [(diameter of treated colonies − 0.5) / (diameter of control colonies − 0.5) × 100] [36].
The EC50 values were estimated using GraphPad Prism 8 (GraphPad Software Inc., San
Diego, CA, USA).
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2.6. Efficacy of Metalaxyl + Propamocarb against Rice Seedling Blight Caused by P. aristosporum

All experiments were conducted twice under similar conditions. Analysis of variance
(ANOVA) was performed using SPSS Statistics 17.0 (IBM/SPSS, Armonk, NY, USA), and
treatment means were separated using Duncan’s multiple range test (p = 0.05).

Pot experiments were performed in 20 cm-diameter plastic pots situated in a green-
house under a temperature of 25 ± 3 ◦C, and a photoperiod of 12 h/12 h (light/dark). The
greenhouse was located at the experimental station of the Northeast Agricultural Univer-
sity, Harbin, China. Rice seedlings were treated with 10 mL of P. aristosporum zoospore
suspension (106 zoospores/mL) following the germination of rice seeds in each pot. The
treatments used were applied to the soil at the two-leaf stage, which were repeated after ten
days. Metalaxyl + propamocarb (200 mL) at concentrations of 313, 250, 208, and 0 µg/mL
was uniformly applied to the soil surface of pots containing rice seedlings. The seedlings
were watered uniformly daily using overhead irrigation to maintain soil moisture. Dis-
ease severity was visually scored 15 days following the second fungicide treatment, as
described above. The experiments were repeated twice. Seedling height and fresh weight
were measured [37]. The disease index and control efficacy were calculated using the
following formulas:

Disease index = Σ (number of diseased rice seedlings at each scale × relative grade) /
(total number of surveyed plants × highest disease rate) × 100.

% Control efficacy = [(disease index of control group − disease index of fungicide
treatment group) / disease index of control group] × 100.

2.7. Data Analysis

All experiments were conducted twice under the same conditions. ANOVA was
performed using SPSS Statistics 17.0 (IBM/SPSS, Armonk, NY, USA). The treatment means
were separated using the least significant difference test (p ≤ 0.05).

3. Results
3.1. Identification of Causal Organisms

A total of 45 isolates were obtained from 45 symptomatic seedlings, and their
pathogenicity was verified according to Koch’s postulates. Their morphological and molec-
ular identification indicated that they belonged to the following species: Fusarium oxysporum
(51.1% of isolates), P. aristosporum (22.2% of isolates), Fusarium redolens (13.3% of isolates),
Fusarium solani (6.7% of isolates), and Rhizoctonia solani (6.7% of isolates) (Table 1).

Table 1. Identification of seedling blight pathogens (n = 45) infecting rice in Heilongjiang
province, China.

Pathogens No of Isolates Frequency (%)

Fusarium oxysporum 23 51.1
Pythium aristosporum 10 22.2

F. redolens 6 13.3
F. solani 3 6.7

Rhizoctonia solani 3 6.7

3.2. Pathogenicity of P. aristosporum on Rice

Differences in pathogenicity were detected among the ten isolates of P. aristosporum,
however, all were found to be pathogenic to rice. Categorically, four isolates (JX8, JX18, JX22,
and SH1) were highly pathogenic, whereas the remaining were moderately pathogenic to
the evaluated rice cultivar (Table 2).
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Table 2. Pathogenicity of isolates of Pythium aristosporum isolated from rice seedlings in Heilongjiang
province, China.

No. Isolate Disease Index Pathogenicity a

1 JS8 80.00 H
2 JS17 58.33 M
3 JS18 80.00 H
4 JS22 86.67 H
5 SH1 85.00 H
6 SH2 56.67 M
7 SH5 51.67 M
8 SH7 58.33 M
9 SH11 58.33 M
10 SH16 58.33 M

a H = highly pathogenic, M = moderately pathogenic.

3.3. Identification of P. aristosporum

The ten Pythium isolates were observed to have aseptate hyphae with white cottony
growth on V8 agar plates (Figure 1A). The sporangia were finger- or lobe-like, which formed
germ tubes and zoospores at room temperature and 10–15 ◦C, respectively. The oogonium
was subglobose with an average diameter of 27.2 µm, and ranging from 19–35.5 µm. The
antheridia were clavate or had curved necks, which were approximately 15 µm × 6 µm,
and were in contact with the oogonium at the top. Each oogonium had 3–10 antheridia
and 1–2 oospores (Figure 1C–E). The oospores were spherical, smooth, and aplerotic, with
an average diameter of 19.9 µm, and ranging from 13.5 to 26.3 µm. These were also either
unfilled or filled with organelles. All ten isolates were identified as Pythium spp. based on
their cultural and micromorphological characteristics [37].
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Figure 1. Pythium aristosporum causing rice seedling blight. (A) colony morphology of P. aristospo-
rum isolates on V8 agar plates, (B) rice seedling blight caused by P. aristosporum, (C) sporangium,
(D) oogonium, antheridium, (E) Oospore.

As all ten isolates shared similar morphological characteristics. Their genomic DNA
was extracted, in which the internal transcribed spacer regions (ITS) and cytochrome ox-
idase subunit II (CoxII) genes were amplified using the primer pairs of ITS1/ITS4 and
COX2f/COX2r, respectively. The ITS and CoxII sequences were deposited in the GenBank
(accession numbers in Table A1). BLAST analysis showed that the sequences obtained
for the ITS and CoxII amplicons were highly similar to those of P. aristosporum and P. ar-
rhenomanes. Of the ten isolates, two (JS22 and SH1) were randomly selected to undergo
phylogenetic tree construction based on their ITS region genes. This showed that isolates
JS22 and SH1 belonged to a similar evolutionary branch as P. aristosporum and P. arrheno-
manes, with a similarity of up to 95% (Figure 2). As P. aristosporum has aplerotic oospores,



J. Fungi 2022, 8, 890 6 of 14

with fewer antheridia per oogonium than P. arrhenomanes, the ten isolates were identified
as P. aristosporum [38].
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Figure 2. Phylogenetic tree of Pythium aristosporum strains JS22 and SH1 of rice seedling blight based
on internal transcribed spacer regions (ITS) gene. The bootstrap values on the branching nodes were
calculated on 1000 replications. The scale bar indicated 0.08 substitutions per nucleotide position.

Figure 2. Phylogenetic tree of Pythium aristosporum strains JS22 and SH1 of rice seedling blight based
on internal transcribed spacer regions (ITS) gene. The bootstrap values on the branching nodes were
calculated on 1000 replications. The scale bar indicated 0.08 substitutions per nucleotide position.

3.4. Biological Characteristics of P. aristosporum

All ten P. aristosporum isolates developed normally within the pH range of 4.0–10.0.
However, significant differences in mycelial growth at different pH values (p < 0.05) were
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observed. Meanwhile, the optimum pH value was observed at pH 6.0 (Figure 3A). All iso-
lates also developed normally under a temperature range of 10–35 ◦C. Similarly, significant
differences in mycelial growth at different temperatures (p < 0.05) were observed. The opti-
mum temperature was observed to be 25 ◦C (Figure 3B), while the optimum photoperiod
was 24 h of light (Figure 3C).
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isolate according to the least significant difference test (p = 0.05).

3.5. Host Range Determination of P. aristosporum

The P. aristosporum isolates were categorised as follows: moderately pathogenic
to wheat seedlings, weakly pathogenic to maize and sorghum seedlings, and highly
pathogenic to alfalfa, oats, and white clover seedlings (Table 3). Withered tips, chloro-
sis, stunting, dried leaves, and crown rot were the common symptoms observed on
wheat seedlings; withered tips, chlorosis, stunting, and yellow leaves were observed
on maize and sorghum seedlings. Withered tips, chlorosis, stunting, yellow leaves, leaf
drop, crown rot, and even death were observed in alfalfa, oats, and white clover seedlings
(Figure 4A–I). Meanwhile, no symptoms were observed in soybean, black soybean, and
cucumber seedlings. All P. aristosporum isolates inoculated on the other crop seedlings
were successfully re-isolated from the inoculated wheat, maize, sorghum, alfalfa, oats, and
white clover seedlings, whereas they could not be isolated from soybean, black soybean, or
cucumber seedlings.
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Table 3. Pathogenicity of isolates of Pythium aristosporum obtained from rice seedlings in Heilongjiang
province, China.

Isolates Wheat Maize Sorghum Alfalfa Oats White Clover

JS8 a 56.67 (M) 41.67 (W) 21.67 (W) 95.00 (H) 88.33 (H) 78.33(H)
JS17 a 51.67 (M) 36.67 (W) 16.67 (W) 95.00 (H) 91.67 (H) 71.67 (H)
JS18 a 55.00 (M) 45.00 (W) 21.67 (W) 95.00 (H) 88.33 (H) 75.00 (H)
JS22 a 58.33 (M) 48.33 (W) 25.00 (W) 98.33 (H) 90.00 (H) 75.00 (H)
SH1 a 58.33 (M) 46.67 (W) 23.33 (W) 96.67 (H) 91.67 (H) 71.67 (H)
SH2 a 51.67 (M) 36.67 (W) 16.67 (W) 95.00 (H) 83.33 (H) 66.67 (H)
SH5 a 51.67 (M) 36.67 (W) 16.67 (W) 91.67 (H) 85.00 (H) 66.67 (H)
SH7 a 51.67 (M) 36.67 (W) 16.67 (W) 95.00 (H) 86.67 (H) 66.67 (H)

SH11 a 51.67 (M) 36.67 (W) 16.67 (W) 95.00 (H) 88.33 (H) 73.33 (H)
SH16 a 51.67 (M) 36.67 (W) 16.67 (W) 95.00 (H) 86.67 (H) 66.67 (H)

a Values in the column indicate the mean disease index of rice seedling blight caused by ten Pythium aristosporum
isolates. Capital letters in brackets in the column indicate pathogenicity to different crop seedlings (soybeans,
black soybeans, and cucumbers were also inoculated, but no symptoms were recorded).
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Figure 4. Pictures of various crop plant seedlings acting as either hosts or non-hosts of Pythium
aristosporum. (A) wheat (Triticum aestivum L.), (B) maize (Zea mays L.), (C) sorghum (Sorghum bicolor
(L.) Moench), (D) soybean (Glycine max (L.) Merr.), (E) black soybean (Glycine max var.), (F) cucumber
(Cucumis sativus L.), (G) alfalfa (Medicago sativa L.), (H) oats (Avena sativa L.), (I) white clover (Trifolium
repens L.), In each picture, the blue line indicates the control plant; the red line indicates the diseased
plants inoculated with P. aristosporum; the yellow line indicates the uninfected plants inoculated with
P. aristosporum.
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3.6. Efficacy of Chemical Fungicides

All ten P. aristosporum isolates showed consistent sensitivity to metalaxyl + hymexazol,
fosetyl-Al, and metalaxyl + propamocarb. Metalaxyl + propamocarb had the strongest
inhibitory effect on P. aristosporum growth in vitro, whereas metalaxyl + hymexazol had
the weakest (p < 0.05). The EC50 value of metalaxyl + propamocarb was the lowest at
0.0138 µg/mL, followed by that of fosetyl-Al, with an EC50 value of 0.5647 µg/mL. The
EC50 value of metalaxyl + hymexazole was the highest (0.5952 µg/mL) (Figure 5).
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3.7. Efficacy of Metalaxyl + Propamocarb on Rice Seedling Blight Caused by P. aristosporum

Metalaxyl + propamocarb at 313, 250, and 208 µg/mL exhibited excellent control of
seedling blight (p < 0.05), with control efficacies of 84.1%, 80.4%, and 75.9%, respectively. In
addition, the average plant height, root length, and fresh weight were significantly greater
in all treated plants than in the control (p < 0.05) (Table 4).

Table 4. Control effect of metalaxyl + propamocarb on rice seedling blight through pot experiment in
a greenhouse.

Fungicide Effective Dose
(µg/mL)

Control Efficacy
(%) a

Plant Height
(cm) a

Root Length
(cm) a

Fresh Weight
(g) a

Metalaxyl +
propamocarb

(25% WP)

313 84.1 ± 0.05 a 12.7 ± 0.05 a 4.6 ± 0.03 a 0.235 ± 0.001 a

250 80.4 ± 0.29 b 12.1 ± 0.06 b 4.5 ± 0.04 a 0.230 ± 0.000 a

208 75.9 ± 0.05 c 10.5 ± 0.03 c 4.2 ± 0.03 b 0.221 ± 0.001 b

Control b - - 8.9 ± 0.04 d 3.7 ± 0.07 c 0.176 ± 0.004 c

a Values in the column indicate mean ± standard error (SE) of two repeated experiments; values followed by
different letters are significantly different according to the least significant difference test (p ≤ 0.05). Control
b = not treated with fungicide.
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4. Discussion

Rice seedling blight is responsible for the severe decrease in rice yield and quality
in many countries [39,40], and various pathogens, including F. oxysporum, F. solani, R.
solani [41], and F. redolens are associated with this disease, having already been previously
isolated from diseased rice seedlings [27]. However, this is the first reported case where
P. aristosporum has been described as a direct causal agent of rice seedling blight. As
rice is the main cereal crop cultivated in this region, the occurrence of the disease is a
serious threat to rice production, hence, prevention and control are necessary to sustain the
economic contribution of rice production. Thus, characterising P. aristosporum is crucial for
understanding the causes of the disease, including its occurrence and epidemics, and for
formulating more scientific and appropriate prevention strategies.

In this study, morphological characteristics and molecular identification were simulta-
neously used to ensure the accuracy and reliability of the results, as only the former has
been used as the sole identifier of Pythium species in the past [38,42]. In addition, molecular
identification is a useful reinforcement when morphological characteristics are overlapping
and species determination becomes excessively time-consuming [43,44]. With the growing
deposition of sequence data in publicly accessible databases, the ITS region of the nuclear
DNA has become one of the most widely used loci to identify Pythium spp. [45,46], in
which ITS sequences have been specifically used to identify the Pythium genus and species
associated with soybean seedlings [47], wheat [31], and P. arrhenomanes isolated from rice
in China [16]. However, the molecular identification of P. arrhenomanes and P. aristosporum
is inconclusive with ITS, considering that morphological traits are key to distinguishing
the two species [16,46]. Therefore, identifying these characteristics is crucial for detecting
P. aristosporum. Results suggest that the isolates were identified to be P. aristosporum as
aplerotic oospores and fewer antheridia per oogonium than P. arrhenomanes were recovered
from the isolates [38].

The rice seedling blight disease commonly occurs during the seedling stage, partic-
ularly when seedlings are grown in greenhouses [48]. Based on the observed biological
characteristics of P. aristosporum causing rice seedling blight, its optimum growth conditions
were in temperatures ranging from 25–30 ◦C, pH levels from 6.0 to 7.0, and a photoperiod
of 24 h. These conditions were consistent with those previously used to produce rice
seedlings in northeastern China [49,50], in which it has been previously demonstrated that
Pythium activity is easily affected by environmental factors such as light, temperature, and
pH [51–53].

Pythium aristosporum is pathogenic to wheat, maize, sorghum, alfalfa, oats, and white
clover seedlings. Conversely, it is not pathogenic to soybean, black soybean, or cucumber
seedlings. Pythium spp. are known for having a broad host range and causing pre- and
post-emergence seedling damping-off, as well as root, seed, or fruit rot in almost all cereals,
including wheat, maize, and rice [38,54,55]. Similarly, a wide geographic distribution, host
range, and severe yield loss have been reported for P. aristosporum [56]. For example, the
pathogen causes root diseases of wheat, oats, barley, and rye in Canada [57], snow rot of
winter wheat (T. aestivum L.) in Washington [58], root rot of snap beans (Phaseolus vulgaris L.)
in Wisconsin [59], root rot of konnyaku (Amorphophallus konjac C. Koch) in Ibaraki [60], root
dysfunction of creeping bentgrass in Maryland [28], blight on turf grass in Italy [61], and
stalk rot in maize (Z. mays) in China [62]. The wide host range of P. aristosporum can be
potentially related to the crop production in northeast China, as the results from this study
suggest that rotating rice with soybean, black soybean, or cucumber helps avoid large-scale
outbreaks of diseases caused by P. aristosporum in rice seedling fields.

The management of this disease mainly involves the use of fungicides [28]. In
this study, three chemical fungicides, namely: metalaxyl + hymexazol, fosetyl-Al, and
metalaxyl + propamocarb, which are all widely used in rice production in northeast-
ern China, were selected. Results demonstrated that metalaxyl + propamocarb had the
strongest inhibitory effect on the growth of P. aristosporum, followed by metalaxyl + hymex-
azol, based on their sensitivities against the selected bacteria. In the pot experiment in
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the greenhouse, results showed that 313 µg/mL metalaxyl + propamocarb reduced dis-
ease occurrence by 84.1%. It also enhanced the quality of rice seedlings. Metalaxyl was
previously reported to inhibit the development of Pythium spp., control wheat root rot
caused by P. aristosporum, and promote wheat growth [63]. Propamocarb was also used to
protect turfgrass against Pythium spp. in Italy [64]; however, other Pythium strains with
low sensitivities to propamocarb have been reported in several golf courses [28]. In the
present study, P. aristosporum isolates recovered from diseased rice seedlings demonstrated
high sensitivities to metalaxyl and propamocarb, owing to the occurrence of P. aristosporum
as a novel pathogen causing rice seedling blight, in which the isolates did not develop
resistance to metalaxyl and hymexazol. Mixing the fungicides has also been shown to
improve the efficacy and delay the development of resistance in pathogens to a certain
extent [11]. Therefore, metalaxyl + propamocarb can potentially be used to control rice
seedling blight caused by P. aristosporum. However, it is recommended that further research
be conducted to further identify the appropriate method and period of application of
metalaxyl + propamocarb.

5. Conclusions

This is the first report that describes P. aristosporum as the main cause for the occurrence
of rice seedling blight in northeastern China. It is inferred that the environment within the
region is favorable for the development and prevalence of P. aristosporum, in which it poses
a potential risk to regional rice production and global food security. Thus, investigating
the occurrence of the novel disease caused by P. aristosporum must be considered in the
development of improved disease management strategies to ensure healthy growth and
development of rice seedlings.
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Appendix A

Table A1. Sequences used for concatenated alignment.

No. Isolates ITS Regions COX2 Gene

1 JS8 OP050386 OP103726
2 JS17 OP050387 OP103721
3 JS18 OP076892 OP103722
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Table A1. Cont.

No. Isolates ITS Regions COX2 Gene

4 JS22 MT337429 OP103727
5 SH1 MT337436 OP103728
6 SH2 OP077086 OP103723
7 SH5 OP076947 OP103729
8 SH7 OP050388 OP103720
9 SH11 OP076937 OP103724
10 SH16 OP050389 OP103725
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