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Abstract: Evaluating risks when driving is a valuable method by which to make people better
understand their driving behavior, and also provides the basis for improving driving performance.
In many existing risk evaluation studies, however, most of the time only the occurrence frequency of
risky driving events is considered in the time dimension and fixed weights allocation is adopted when
constructing a risk evaluation model. In this study, we develop a driving behavior-based relative
risk evaluation model using a nonparametric optimization method, in which both the frequency
and the severity level of different risky driving behaviors are taken into account, and the concept
of relative risk instead of absolute risk is proposed. In the case study, based on the data from a
naturalistic driving experiment, various risky driving behaviors are identified, and the proposed
model is applied to assess the overall risk related to the distance travelled by an individual driver
during a specific driving segment, relative to other drivers on other segments, and it is further
compared with an absolute risk evaluation. The results show that the proposed model is superior in
avoiding the absolute risk quantification of all kinds of risky driving behaviors, and meanwhile, a
prior knowledge on the contribution of different risky driving behaviors to the overall risk is not
required. Such a model has a wide range of application scenarios, and is valuable for feedback
research relating to safe driving, for a personalized insurance assessment based on drivers’ behavior,
and for the safety evaluation of professional drivers such as ride-hailing drivers.

Keywords: driving behavior; relative risk; data envelopment analysis; area method

1. Introduction

Every year, around 1.35 million people die as a consequence of road crashes world-
wide [1]. The huge costs in health services, and the added burden on public finances due to
road traffic injuries and fatalities, representing approximately 1–3% of GDP in most coun-
tries, have become increasingly socially unacceptable [2]. On the other hand, road crashes,
previously regarded as random, unavoidable ‘accidents’, have been increasingly identified
as a preventable public health problem due to the development of a better understanding
of the nature of crashes over the past decades [3–6]. It is widely understood that drivers’
risky or abnormal behaviors are highly related to road crashes. Studies have shown that
over 90% of all road crashes are caused fully or in part by human error [7]. It is therefore
of great importance to estimate each driver’s risk before his/her risky driving behaviors
lead to a crash. Once risk is evaluated, drivers can better understand their current driving
ability, and various interventions can be taken to improve their driving performance. For
instance, a dynamic adjustment of vehicle insurance premiums can be applied, and a
“reward system” can be introduced to encourage safer driving [8,9].

Over the last decades, many researchers have investigated drivers’ behaviors by
using naturalistic driving data [10–14]. For example, Jun, Ogle and Guensler tested in-
vehicle equipment that incorporates GPS (Global Positioning System) and OBD (On Board
Diagnostics) to gather drivers’ naturalistic driving data, related to speed, acceleration and
deceleration, and they were used to predict drivers’ crash risk. The study found that a
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relationship does not necessarily exist between driving behavior and driver personality
characteristics. However, in general, speed, acceleration and braking have been associated
with crash involvement [10]. Bagdadi and Varhelyi adopted accelerometers to collect
driver’s naturalistic driving data and proposed a new method to predict acceleration- and
braking- related crash risks [11]. Şimşek et al. highlighted the benefits of using GPS data to
construct a velocity-time model as the basis for studying driving behavior [12]. Castignani
et al. proposed the use of a mobile phone as a low-cost platform for monitoring daily
driving behavior [13]. Grimberg, Botzer and Musicant further presented a comparative
review of the advantages and disadvantages of using smartphone and in-vehicle data
acquisition systems in naturalistic driving studies [14]. Another commonly used method
for the collection of driving behavior data is to use driving simulators, which provide a
safe and cost-effective means of collecting field data and allow drivers to make decisions
and take actions that can have potentially dangerous consequences [15–21].

By collecting driving behavior data, risky and abnormal driving events can be iden-
tified, and research on risk evaluation and safety intervention can be conducted [22]. In
this respect, Toledo, Musicant and Lotan proposed a driving risk index based on drivers’
behavioral data, collected by an in-vehicle data recorder. Different risky driving behaviors
were taken into account, such as speeding, emergency braking, and sharp lane chang-
ing. Each of the behaviors was weighted according to the duration of the behavior [23].
Boquete et al. considered factors such as driving time and the occurrence frequency of
risky driving events, and proposed a model of drivers’ premium to facilitate the risk
evaluation of driving behaviors [24]. Şimşek et al. provided a conceptual framework for
an evaluation of safety intervention and operational performance through monitoring
quantitative driver performance measures, including speed violations and vehicle idle
duration [12]. Musicant, Bar-Gera and Schechtman utilized an onboard data recorder to
gather drivers’ risky behaviors during their three years’ natural driving, and the charac-
teristics of their risky driving behaviors over time as well as the influence of their trip
duration were explored [25]. Castignani et al. proposed a fuzzy system to identify risky
driving events such as speeding, sharp acceleration, emergency braking, and sharp turns.
Drivers were scored from 0 (worst) to 100 (best) by collecting the frequency of risky driving
events over a predefined distance [13]. Ellison, Bliemer and Greaves evaluated drivers’
risky behaviors based on the maximum, average, minimum, and standard deviations of
vehicle speed, acceleration, and deceleration for some unsafe driving events. A fixed value,
obtained from the literature was used to quantify the risk caused by speed, acceleration and
deceleration, respectively, and the individual risky behavior scores were further weighted
by the contribution of each behavior to crash risk, which was also fixed, so as to obtain
a total composite score [26]. Hong, Chen and Wu proposed a new approach for driver
risk assessments, by using a comparison with a “standard” driver, created based on the
frequency of risky driving behaviors of a large number of different drivers, including the
frequency of sharp acceleration, emergency braking and sharp turns [27].

Although a number of studies concerning driving behavior analyses have been con-
ducted over recent years, some concerns still need to be tackled. First, when estimating the
risk of drivers based on their various risky driving behaviors, considering the frequency of
these risky driving behaviors within a time dimension—as many of the aforementioned
studies have—is important, but not enough. The severity level of the risky driving be-
haviors should also be taken into account. However, they have frequently been neglected
in previous studies. Second, when developing a risk evaluation model based on drivers’
multiple risky driving behaviors, an absolute risk factor is often used to relate each behav-
ior to its corresponding risk, which is, however, unknown in reality and presents great
uncertainty with regard to estimations. In this study, we develop a driving behavior-based
relative risk evaluation model, in which both the frequency and severity level of risky
driving behaviors are considered, and the concept of relative risk instead of absolute risk is
proposed. To do so, a data envelopment analysis (DEA) [28] is employed, which is a non-
parametric optimization method for measuring the relative efficiency for a set of entities,
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referred to as decision making units (DMUs), such as drivers. Based on the identification
of various risky driving behaviors from the naturalistic driving data of multiple drivers
in their different trips, the proposed model is applied to assess the overall risk relative to
distance travelled of an individual driver during a specific driving segment in comparison
to other drivers on other segments. The results are further compared with those from the
absolute risk evaluation.

The rest of this paper is organized as follows: Section 2 introduces the driving behavior-
based relative risk evaluation model based on the mechanism of data envelopment analysis.
The results from the model are presented via a case study in Section 3 and further compared
with those from the absolute risk evaluation. Section 4 discusses the advantages and
limitations of the proposed model. Section 5 summarizes some important findings from
this study and also provides directions for future research.

2. Methodology

To assess the crash risk of a driver based on his/her driving behavior, in this study we
develop a driving behavior-based relative risk evaluation model, using a nonparametric
optimization method. In this model, both the frequency and the severity level of different
risky driving behaviors are considered, and the concept of relative risk instead of absolute
risk is proposed.

2.1. Data Envelopment Analysis

The DEA method was first proposed by Charnes, Cooper and Rhodes in 1978 [28].
Following its proposal, the DEA has been recognized as a powerful analytical research
tool for modeling operational processes in terms of performance evaluations and bench-
marking [29–32]. As a nonparametric method, DEA applies mathematical optimization
techniques to estimate the relationship between multiple inputs and multiple outputs
related to a set of DMUs. During these years, a number of different formulations were
proposed in the DEA context, the best-known of which is probably the Charnes–Cooper–
Rhodes (CCR) model. Specifically, suppose that there are n DMUs. Each DMU has m inputs
and s outputs as follows:

xk = (x1k, x2k, . . . , xik, . . . , xmk)
T > 0, k = 1, 2, . . . , n

yk = (y1k, y2k, . . . , yrk, . . . , ysk)
T > 0, k = 1, 2, . . . , n

where xk represents the set of inputs of the kth DMU, and xik is the value of the ith input
for the kth DMU. yk represents the set of outputs of the kth DMU, and yrk is the value of
the rth output for the kth DMU.

The relative efficiency of a DMU is defined as the ratio of its total weighted output to
its total weighted input, between zero and the unity. Mathematically, the efficiency score of
the k0th DMU is obtained by solving the following constrained optimization problem [28]:

maxhk0 =
∑s

r=1 uryrk0

∑m
i=1 vixik0

s.t.


∑s

r=1 uryrk
∑m

i=1 vixik
≤ 1, k = 1, 2, . . . , n

v = (v1, v2, . . . , vm)
T ≥ 0

u = (u1, u2, . . . , us)
T ≥ 0

(1)

where ur is the weight given to output r, and vi is the weight given to input i. This fractional
program is computed separately for each DMU to determine its optimal input and output
weights. In other words, the weights in the objective function are automatically selected
from the model with the purpose of maximizing the value of the k0th DMU’s efficiency
ratio and also respecting the less-than-or-equal-to-one constraint for all the DMUs.
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The model described above can be further simplified when inputs or outputs are
constant. It then becomes the following constrained optimization problem, which is known
as the CCR model with constant inputs [31].

maxhk0 =
s

∑
r=1

uryrk0

s.t.


s
∑

r=1
uryrk ≤ 1, k = 1, 2, . . . , n

u = (u1, u2, . . . , us)
T ≥ 0

(2)

The n DMUs are, in this problem, evaluated by combining s different outputs (or indi-
cators), with higher values indicating better performance, while the inputs of each DMU in
Model (1) are all assigned a value of unity. Based on Model (2), the best-performing DMUs
are found to be those with a relative index score of one, while the others underperform.

The attractive features of DEA, relative to the other methods are as follows:
(1) It provides a new way of combining multiple inputs and/or multiple outputs simul-
taneously, without resorting to a priori knowledge concerning the input and/or output
weights. (2) The inputs and outputs used in the model can be expressed in different units
of measurement. In other words, the preliminary normalization of raw data is not required.
(3) It assesses the relative performance of a particular unit by comparing it against all other
units, and its final score is measured relative to the best observed performance, which is
particularly suitable for this study.

2.2. A Driving Behavior-Based Relative Risk Evaluation Model

To evaluate the relative risk of a driver, risky driving behaviors should firstly be
distinguished from safe behaviors. Here, a driving behavior with data exceeding a certain
threshold value (e.g., the speed limit of a road section) is defined as a risky driving behavior.
Such a driving state will bring a certain degree of risk to the driver and other surrounding
road users as well. Furthermore, different severity levels of risk should be taken into
account when a specific risky driving behavior is identified. For instance, the risk of
speeding over the speed limit by 10 and 50% should be different. In addition, for those
behaviors not identified as risky driving behaviors, we should not regard them as risk-free,
so a constant risk value of 1 is set in this study.

Assuming that different drivers’ driving behavior data are collected based on their
naturalistic driving, the risk of various risky driving behaviors during a certain time period
is calculated as follows. First, a threshold value is set for each type of driving behavior
so as to identify risky driving behaviors. Taking speed as an example, the speeding
threshold is considered to be the speed limit value of the road section on which the driver
is driving. Moreover, the speeding magnitude changes dynamically. To consider different
severity levels of risky driving behaviors, it is theoretically possible to treat each magnitude
exceeding the threshold value as a separate evaluation category. A severity weight Wij
can then be set for each category, where i represents various risky driving behaviors
(i = 1, 2, . . . , p), and j represents the evaluation categories (j = 1, 2, . . . , q).

The severity weight Wij is used at time t to establish the relationship between the
driving behavior data exceeding the threshold and the corresponding risk Rt

ij. At a higher
severity rate, a higher severity weight will be assigned, resulting in a higher risk. After this,
the risk of each risky driving behavior for all unit times is calculated separately to obtain
the total risk of a specific risky driving behavior. Taking speeding as an example, suppose
that the speed data exceeding the speed limit has q evaluation categories during one trip.
Within unit time ∆t, the speed Vt (Vt indicates the speed at time t) remains unchanged, and
when the predefined speed limit value is exceeded, a severity weight W1j (i = 1 represents
speeding) is then used to establish the relationship between the area Vt∆t corresponding
to the speed exceeding the speed limit and the risk Rt

1j, that is, Rt
1j = W1j × Vt∆t. The

risk corresponding to a speed not exceeding the speed limit at time t is Rt
1j = 1. By
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accumulating the risk associated with speeding during the whole trip, the total risk for
speeding can be obtained, and the risk relative to distance travelled can be computed by
dividing it by the road section distance L. In the same way, the total driving risk and the
risk relative to distance travelled of all other risky driving behaviors can be calculated.

To evaluate the driver’s overall risk during a trip, the contribution of each risky
driving behavior to the final risk score should be taken into account. Therefore, another
weight, denoted by v1, v2, . . . , vp, should be assigned to the total risk of each risky driving
behavior during the trip.

Thus, we develop the driving behavior-based relative risk evaluation model as de-
scribed in the following section. The objective function of the model is to minimize the
overall risk score of the DMU under study, which is the weighted sum of the total risk
of various risky driving behaviors, as shown in (3). The constraints of the model are:
(1) The overall risk score of all DMUs given the weights for the DMU under study should
be no less than the benchmark value of 1. In other words, the DMU with an overall risk
score equal to 1 is the safest DMU among all DMUs. (2) The severity weights Wij, are
variables and should be arranged according to the extent to which the driving behavior
data exceeds the corresponding threshold. The more severely the behavior data scores
over the threshold value, the higher the risk of this behavior. Accordingly, the value of
the severity weight is greater. Since the risk of safe driving behavior is set to 1, the lowest
value of the severity weight should be greater than 1. (3) The values of all weight variables
should be greater than or equal to 0.

minrk0 =
p

∑
i=1

[vi ×
(

q

∑
j=1

Wij × xijk0

)
]

s.t.


p
∑

i=1

[
vi ×

(
q
∑

j=1
Wij × xijk

)]
≥ 1, k = 1, 2, 3, . . . , n

Wiq > . . . > Wi2 > Wi1 > 1, i = 1, 2, 3, . . . , p
v =

(
v1, v2, . . . , vp

)T ≥ 0

(3)

In the above-described model, a driver that drives on a certain road segment can be
treated as a decision-making unit DMUk, where xijk represents the summation of the area
corresponding to the jth class of the ith risky driving behavior relative to distance travelled
of the kth DMU. Wij represents the severity weight of the jth class of the ith risky driving be-
havior. vi denotes the behavior category weight, which is used to represent the relative con-
tribution of the ith risky driving behavior to the overall risk. ∑

p
i=1

[
vi ×

(
∑

q
j=1 wij × xijk

)]
is the overall risk score of the kth DMU. A higher score indicates a greater relative risk.
Thus, a DMU that obtains a score of 1 is the safest DMU under study.

Since both the severity weight and the behavior category weight are variables here,
Model (3) is nonlinear. Consequently, variable transformation is applied to convert this
model into a linear one. More specifically, a new variable, Uij, is introduced as the product
of these two weight variables, that is, Uij = vi × wij. Thus, a linear model is constructed
as follows:

minrk0 =
p

∑
i=1

q

∑
j=1

Uij × xijk0

s.t.


p
∑

i=1

q
∑

j=1
Uij × xijk ≥ 1, k = 1, 2, 3, . . . , n

Uiq > . . . > Ui2 > Ui1 > vi, i = 1, 2, 3, . . . , p
v =

(
v1, v2, . . . , vp

)T ≥ 0

(4)
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3. Application and Results
3.1. A Case Study

In the naturalistic driving experiments, the RACELOGIC’s third-generation GPS
data collector VBOX3i was used as the driving behavior data collection device, which
was installed in the vehicle of the drivers who participated in the experiments. In total,
14 voluntary drivers were enrolled, and they were asked to drive around Nanjing city
for the day as they usually would. Thereafter, basic data including time (s), longitude
(degree), latitude (degree), speed (km/h), acceleration (m/s2), and deceleration (m/s2)
were gathered after performing necessary data cleaning and coordinate transformation
procedures, and the API (Application Programming Interface) of the Gaode Map was used
to connect the collected data to location. To avoid the influence of certain external factors
(e.g., traffic signal control) on drivers’ instinctive behavior, 60 driving segments on straight
road sections with continuous positioning, a constant speed limit, and for a distance of no
less than 0.8 km were extracted and are treated as 60 DMUs in this study.

The risky driving behaviors considered in this study include speeding, sharp ac-
celeration and emergency braking, which are defined as characteristics of a vehicle that
demonstrates speed or acceleration exceeding a certain threshold value. With respect to
speeding, the speed limit of each road section is used as the threshold in this study. For
acceleration and deceleration, 3 m/s2 and 2 m/s2 are set as the threshold of sharp acceler-
ation and emergency braking, respectively, as many studies have found that drivers with
an acceleration exceeding 3 m/s2 or with a deceleration greater than 2 m/s2 demonstrated
a significantly higher crash incidence in crash statistics [33–35].

Furthermore, to take the different severity levels of each risky driving behavior into
account, we adopted the K-Means clustering method [36] to generate the number of
evaluation categories. That is, for each of these three risky driving behaviors, when the
value within the unit time of time t exceeds the corresponding threshold, the magnitude
exceeding the threshold (denoted as ∆V, ∆A, and ∆B for speeding, sharp acceleration, and
emergency braking, respectively) is recorded. Then, the K-Means clustering analysis is
performed to classify the listed magnitudes. To guarantee that the grouped samples are
generally uniformly distributed, in this case study, each of the three driving behaviors that
exceed the aforementioned threshold values are grouped into three clusters. The results
are shown in Table 1. Of course, other numbers of the clusters can also be considered.

Table 1. Clustering results of risky driving behaviors.

Clusters Speeding-∆V (km/h)
Sharp

Acceleration-∆A
(m/s2)

Emergency
Braking-∆B (m/s2)

1 0 < ∆V ≤ 8.0904 0 < ∆A ≤ 1.0298 0 < ∆B ≤ 1.6769
2 8.0904 < ∆V ≤ 17.7669 1.0298 < ∆A ≤ 2.4461 1.6769 < ∆B ≤ 3.8668
3 17.7669 < ∆V 2.4461 < ∆A 3.8668 < ∆B

Note: ∆V represents the amplitude exceeding the speed threshold, ∆A represents the amplitude exceeding the
acceleration threshold, and ∆B represents the amplitude exceeding the deceleration threshold.

Next, we propose the usage of the area method to calculate the risk of different driving
behaviors during one driving segment. Taking speed as an example, 20 s of naturalistic
driving data has been used to illustrate the method. As shown in Figure 1, each rectangle
in this figure represents the area formed by the speed exceeding the speed limit value per
unit time (i.e., 1 s here). In such a time unit, we assume that the speed remains unchanged,
and when the speed limit value is exceeded, the result is classified into one of the speeding
clusters presented in Table 1. Then, by multiplying it with a corresponding severity weight,
we are able to represent the speeding risk at the given time unit, and the total risk of
speeding during this 20 s time period is identified through the accumulated risk at each
time unit. Thus, risk quantification is adapted from the use of one dimension to two
dimensions, considering not only the occurrence frequency of the risky driving events, but
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also their severity levels. With regard to a driving behavior value lower than the threshold,
a constant risk value of 1 is set.
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Figure 1. The magnitude of speeding—the area method.

The proposed Model (4) can be applied to evaluate the relative risk of the 60 DMUs
selected in this study. Their overall risk scores and the relative safety ranking are presented
in Figure 2. The DMU that received a score of 1 represents the driver with the safest driving
behavior on the given road segment among all 60 DMUs, namely, DMUs 3, 4, 23, 43 and 59.
While DMUs 54 and 55 obtain an overall risk score of higher than 8, which implies that the
risk of the drivers driving on these two road segments is at least 8 times higher than the
others under evaluation.
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To further understand the reasons behind such a high relative risk score received
by these two DMUs, the original driving behavior data of the drivers on these two road
segments are retrieved, presented in Figure 3.

The speed limit of both road sections is 50 km/h, and we can see that neither of
these two DMUs exceed the speed limit during driving. Regarding the other two risky
driving behaviors, however, both of the DMUs demonstrate certain moments in which their
acceleration or deceleration values exceed the second severity level of sharp acceleration
and the third severity level of emergency braking. Their risky behavior areas that score
above the thresholds are shown in Figure 4. It can be seen that the area of emergency
braking is relatively large for both DMUs (DMU 55 is even larger), which contributes the
most to their overall risk, and results in higher overall relative risk relative to distance
travelled compared to the others.
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Figure 4. The area accumulation with respect to acceleration and deceleration for DMUs 54 and 55.
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3.2. A Comparison with the Absolute Risk Evaluation

One of the most important contributions of the proposed model described in Section 2
is to manage the challenge of the absolute risk of each driving behavior being unknown.
In other words, the severity weights Wij that were used to convert each behavior into its
risk should not be a fixed value, but a variable. We can ensure that the larger the degree
by which behavior data exceeds the threshold value, the higher the risk of this behavior,
and accordingly, the greater the severity weight. As a result, in this study, we developed
a driving behavior-based relative risk evaluation model, in which the concept of relative
risk instead of absolute risk is proposed. To verify the results obtained from this model, we
establish another model to evaluate the absolute risk of these 60 DMUs by referring to the
fixed risk values provided in the literature. Specifically, some studies have investigated
the relationship between speed and crash risk. One of the most authoritative studies was
conducted by Kloeden and McLean in 1997 on roads with a speed limit of 60 km/h in
Australia [37]. The result from their research concerning the relationship between speeding
and risk is summarized in Table 2. The results derived by Bagdadi and Varhelyi [11] are
utilized for acceleration and deceleration, as shown in Table 3.

Table 2. Risk of speeding under 60 km/h speed limit condition.

Speed (km/h) Risk

Speed ≤ 60 1
60 < Speed ≤ 65 2
65 < Speed ≤ 70 4.16
70 < Speed ≤ 75 10.6
75 < Speed ≤ 80 31.81
80 < Speed ≤ 85 56.55

Speed > 85 100

Table 3. Risk of sharp acceleration and emergency braking.

Acceleration (m/s2) Risk Deceleration (m/s2) Risk

Acceleration ≤ 3
3 < Acceleration ≤ 4
4 < Acceleration ≤ 5
5 < Acceleration ≤ 6

Acceleration > 6

1
3
5
7
9

Deceleration ≤ 2
2 < Deceleration ≤ 3
3 < Deceleration ≤ 4
4 < Deceleration ≤ 5
5 < Deceleration ≤ 6

Deceleration > 6

1
3
6

12
24
48

Using the fixed risk values given in Tables 2 and 3, the relationship between the
driving behavior data exceeding the threshold values and the corresponding risk can be
established in unit time at time t. The area method can then be applied to calculate the
absolute risk of various driving behaviors during a trip. Speed is considered as an example
and 20 s of naturalistic driving data are used to illustrate the method (shown in Figure 5).
Each rectangle in this figure represents the risk posed by the speed per unit time according
to Table 2. Thus, the total risk of speeding during this 20 s time period represents the
accumulation of the risk at each time unit.
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By obtaining the total risk for all three risky driving behaviors at each road segment
under consideration, the following absolute risk evaluation model can be formulated:

minr1 =
3

∑
i=1

vi × x′i1

s.t.


3
∑

i=1
vi × x′ik ≥ 1, k = 1, 2, 3, . . . , 60

v = (v1, v2, v3)
T ≥ 0

(5)

where x′ik represents the total risk corresponding to the ith driving behavior relative
to distance travelled of the kth DMU. vi denotes the behavior category weight, which
indicates the relative contribution of the ith risky driving behavior to the overall risk.
Since no severity weight variable is considered, we use a linear programming model, and
solutions can be obtained using Lingo software directly.

Applying the same naturalistic driving data to Model (5), we obtain the overall risk
scores of the same 60 DMUs and their ranking, shown in Figure 6.
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By comparing the results from the two models, a high correlation coefficient with
respect to the overall risk scores is found, which is 0.933. DMUs 4 and 59 obtain a relatively
lower overall risk score from both models, implying that they are better-performers among
all others, regardless of which model is applied. Conversely, DMUs such as 54 and 55
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always receive a higher risk value and rank at the bottom of all the DMUs involved in the
evaluation. However, there are also some variations. The DMU with the largest difference
in ranking is DMU 3, obtaining the lowest overall risk score of 1 from Model (4), but
ranks in the middle by Model (5). The original data of this DMU together with DMU 4
(a relatively good performer from both models) are shown in Figure 7. The risky behavior
areas above the thresholds of these two DMUs are shown in Figure 8.
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The speed limit of both road sections is 60 km/h. It can be seen that both drivers do
not exceed the speed limit during the trip. Although sharp acceleration and emergency
braking occurs from time to time for both DMUs, the occurrence frequency relative to
distance travelled is much lower than for the high-risk DMUs shown in Figure 3, and
neither demonstrates acceleration and deceleration values exceeding the third severity level.
It is therefore reasonable to treat both DMUs 3 and 4 as better-performers. Nevertheless,
since the fixed risk values are assigned directly to the behavior data in the absolute risk
evaluation model, and they increase exponentially in relation to the extent to which the
behavior data exceeds the different levels of the threshold, especially for deceleration (see
Table 3), DMU 3, for which deceleration performance is slight worse than that of DMU 4,
obtains a much higher overall risk score (2.727 vs. 1.140) and a worse ranking from this
model, although its acceleration performance is found to be better than DMU 4.
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4. Discussion

Having developed and applied the driving behavior-based relative risk evaluation
model and having compared the results with those from the absolute risk evaluation
model, we are able to review the whole modeling process and discuss its main advantages
and limitations. First, when estimating the risk of drivers based on their various risky
driving behaviors, not only the occurrence frequency of these risky driving behaviors, but
also their severity levels should be taken into account. In this study, the area method is
proposed to collect the risky driving behavior data over the threshold values along the
time dimension. Thus, the severity levels of each risky driving behavior are considered in
the evaluation. Second, given the fact that the absolute risk associated with each driving
behavior is usually unknown or estimated with a large degree of uncertainty, a severity
weight Wij is introduced in this study to convert each behavior into its risk, which is not a
fixed value, but a variable with its value increasing in relation to the degree to which the
behavior data exceeds the threshold value. Third, to evaluate a driver’s overall risk relative
to distance travelled, the contribution of each risky driving behavior to the final risk score
should be different and driver-dependent. Accordingly, another variable, i.e., a behavior
category weight vi is assigned, and a nonparametric optimization model—employing
a data envelopment analysis (DEA) for relative efficiency evaluation—is developed. By
minimizing the overall risk score relative to distance travelled of the driver under study and
taking all other drivers into account, both the severity weights and the behavior category
weights are derived simultaneously (in cross-product form, i.e., Uij), and the relative risk
of each driver instead of his/her absolute risk is obtained. Consequently, it provides a
valuable solution to the difficulties of behavior-based risk evaluation in quantifying the
relationship between each risky driving behavior and crash risk on the one hand, and in
estimating the contribution of various risky driving behaviors to the overall crash risk
on the other. In addition, the nonparametric nature of the model means that it is a ‘data-
oriented’ technique and assumptions about the functional form of the optimal input-output
relations are not necessary, which is beneficial as they are often complex or even unknown
in the real world situation [38].

Regarding the comparison with the absolute risk evaluation model adopted in this
study, although both of the models (Models (4) and (5)) use the idea of DEA, their mecha-
nisms are fundamentally different. In Model (4), the input data includes the accumulated
area of each risky driving behavior in different clusters. The severity weights that are used
to convert each behavior into its risk, are treated as (part of) the decision variables of the
model. Thus, as long as the behavior severity clusters are determined, the input values
of the model can be derived from the original driving behavior data directly. Whereas in
Model (5), the fixed risk values should be predefined for each cluster, and they are used as
the input of the model. Hence, even if the same clusters are applied, the results obtained
from these two models would be different. In other words, Model (4) is not a special
case of Model (5), and they are not interchangeable. In general, Model (4) is preferred in
practical applications, as it avoids the absolute risk quantification for all kinds of risky
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driving behaviors. Meanwhile, in contrast to the fixed number of clusters considered in
Model (5), the clusters used in Model (4) are derived from the original driving behavior
data. Therefore, the number can be determined based on practical needs, and a sensitivity
analysis can be conducted to reveal the impact of adopting a different number of clusters
on the relative risk evaluation.

However, there are also some limitations in this study. (1) The models are restricted
to the in-vehicle device used for driving behavior data collection; only three behavioral
indicators—speed, acceleration, deceleration—are considered for risk evaluation in this
study, which may not be sufficient to represent the overall risk of a driver. During the actual
driving process, drivers may be influenced by overtaking behavior, following behavior
and lane changing behavior of the surrounding vehicles. These behavioral data could be
acquired by using video acquisition equipment either installed in vehicle or at roadsides.
Although they are important in risk evaluation, they are not included in this study due to
data unavailability. (2) In the naturalistic driving experiments, drivers may not encounter
the same traffic environment, even if they drive through the same road section. It implies
that the drivers who are identified as high-risk from the model may have encountered
events that were not experienced by other drivers. For those underperforming drivers,
lessons from the better-performing drivers with respect to safer driving behaviors may not
be learned directly. (3) By applying the proposed model, 60 DMUs have been evaluated
in the case study, including 60 different driving segments, conducted by 14 drivers. In
other words, a driver may be considered within different units of evaluation when multiple
segments from his/her driving sessions are selected. This does not present a problem
from the perspective of model application, as the same driver may perform differently in
different trips and can be ranked by his/her driving performance in these trips. In this way,
however, the impact of a driver’s personal characteristics (e.g., gender, age, personality,
historical crashes) on his/her risky driving behaviors cannot be assessed.

5. Conclusions and Future Research

Given the fact that road crashes are rare and random events, research on drivers’
naturalistic driving behavior data is widely recognized as a promising direction for risk
evaluation, and great efforts have been made in this regard over the past decades. How-
ever, a uniform and methodological framework has not yet been successfully established.
The difficulties encountered in this research topic mainly concern two aspects: (1) how
to quantify the relationship between each risky driving behavior and crash risk, and
(2) how to estimate the contribution of various risky driving behaviors to the overall risk.
To properly address these issues, we developed, in this study, a driving behavior-based
relative risk evaluation model by using a nonparametric optimization method. More
specifically, by adopting an area method, both the occurrence frequency and the severity
level of different risky driving behaviors are taken into account. After which a severity
weight and a behavior category weight are introduced to convert each behavior into a value
for its risk and to identify the contribution of various risky driving behaviors to the final
risk score, respectively. Instead of using constant values that need to be predefined, these
weights are treated as decision variables in this study and are determined by applying
the nonparametric optimization model. In this way, the absolute risk quantification of all
kinds of risky driving behaviors is avoided, and a prior knowledge on the contribution
of different risky driving behaviors to the overall risk is not required. Meanwhile, no
assumption about the functional form of the optimal input–output relations is required.
In the case study, based on the identification of various risky driving behaviors from the
naturalistic driving data of multiple drivers in their different trips, the proposed model is
applied to assess the overall risk relative to distance travelled of individual drivers. The
results are further compared with the ones from the absolute risk evaluation.

The model proposed in this paper has a wide range of application potentials. In-
dividual drivers, by comparing their driving behaviors with others, are able to better
understand their own driving performance, and key problems related to safe driving can
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be diagnosed for each driver separately, and driver-specific improvement strategies can
also be formulated. All these results are valuable for feedback related to safe driving,
for a personalized insurance assessment based on drivers’ behavior, and for the safety
evaluation of professional drivers such as ride-hailing drivers. Moreover, the long-term
tracking and analysis of a large number of different drivers’ behaviors will help road safety
policy-makers to formulate more reasonable traffic regulations and provide more extensive
insights in effective road-safety management.

In future studies more aspects could be investigated. (1) To represent a more enriched
picture of behavior-related crash risk, other behavioral indicators such as turning behavior,
following behavior, lane changing behavior, etc. should be developed and refined, and
the model proposed in this study can be applied directly once indicator data are available.
(2) Traffic environment factors that are encountered differently for different drivers, should
be taken into account in drivers’ relative risk evaluation. However, since they should
be treated as non-discretionary (or non-controllable) variables in the evaluation, new
methodological challenges will likely appear when integrating such variables into the
existing model. (3) By collecting more drivers’ behavior data, each driver could be treated as
a separate DMU, through which the impact of a driver’s personal characteristics on his/her
risky driving behaviors can be explored. (4) Apart from the CCR model introduced in this
study, the added value of using a large number of other DEA models (such as the BCC
model, the additive model, the slacks-based measure of efficiency, and the multiplicative
model) can also be investigated in future.
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