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Abstract: Despite the abundant literature on vasopressor therapy, few studies have focused on
vasopressor-sparing strategies in patients with shock. We performed a scoping-review of the pub-
lished studies evaluating vasopressor-sparing strategies by analyzing the results from randomized
controlled trials conducted in patients with shock, with a focus on vasopressor doses and/or duration
reduction. We analyzed 143 studies, mainly performed in septic shock. Our analysis demonstrated
that several pharmacological and non-pharmacological strategies are associated with a decrease
in the duration of vasopressor therapy. These strategies are as follows: implementing a weaning
strategy, vasopressin use, systemic glucocorticoid administration, beta-blockers, and normothermia.
On the contrary, early goal directed therapies, including fluid therapy, oral vasopressors, vitamin C,
and renal replacement therapy, are not associated with an increase in vasopressor-free days. Based
on these results, we proposed an evidence-based vasopressor management strategy.

Keywords: vasopressor; shock; norepinephrine; sepsis; weaning

1. Introduction

Because fluid and vasopressors are the main treatments for shock, they are used
on a day-to-day basis as symptomatic treatment for arterial hypotension. Vasoplegia is
associated with vasodilation and vascular hypo-responsiveness, and involves multiple
mechanisms [1]. The aim of vasopressor therapy is to restore organ perfusion so as to limit
the risk of multiple organ failure and death. For several years, the published literature re-
garding the different types of vasopressors (catecholaminergic and non-catecholaminergic
agents) has grown considerably. Most of this literature has studied superiority in terms
of death or specific clinical outcomes (e.g., acute kidney failure or arrythmia) [2–4]. De-
spite the emergence of new vasopressor agents, norepinephrine is still the recommended
first-line agent [5]. One problem with the use of vasopressors is the risk of side effects and
the ensuing need for intensive care management, which is costly. Studies have demon-
strated that vasopressor use can be associated with specific side effects, and prolonged
use may be associated with mortality [6,7]. A study has demonstrated that implement-
ing vasopressor sparing strategies is associated with lower morbidity and ICU (intensive
care unit) length of stays [7]. Numerous reviews have investigated the different types of
vasopressors and their hemodynamic effects [1,8–11], but, to date, no review has specifi-
cally focused on therapeutic and non-therapeutic strategies associated with the sparing
effect for vasopressor use. Thus, we do not have meta-analyses or reviews evaluating the
vasopressor-sparing strategies.

Our objective was to perform a scoping-review of the published studies evaluating
the vasopressor-sparing strategies. We therefore analyzed the results from randomized
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controlled trials (RCTs) conducted in patients with shock, focusing on vasopressor doses
and/or duration reduction.

2. Materials and Methods
2.1. Population

We aimed to study vasopressor-sparing strategies in adult patients with shock. We
conducted a scoping-review by following PRISMA-scoping review guidelines [12]. Because
of its nature, the present scoping-review could not be registered (refusal from Prospero).

2.2. Criteria

The inclusion criteria were RCT studies (with parallel groups), with at least one of the
reported outcomes including vasopressors. Outcomes were classified as follows: (1) shock
reversal, (2) duration of vasopressor use, (3) day free of vasopressors, (4) cumulative dose
of vasopressors, and (5) dose of vasopressors.

The exclusion criteria were as follows: articles not available in English, as well as
those on traditional Chinese medicine, anaphylactic shock, and reporting COVID-19.

Studies with non-significant outcomes in terms of vasopressor use were reported only
if the studies reporting significant outcomes for the same intervention were found.

All of the studies were reviewed by two independent reviewers (A.M. and V.B.). When
most studies agreed with the vasopressor-sparing effect, the authors concluded a positive
effect. When the results did not meet a consensus, the authors concluded uncertainty, and
when most studies were negative, the authors concluded a negative effect.

2.3. Algorithm and Study Selection

We included all of the relevant studies found in the Medline database (Pubmed) and
Cochrane Library from searches conducted in May 2020 and updated in March 2021, us-
ing the following algorithm: (“Cardiovascular Agents/therapeutic use” [Mesh Terms] OR
“Cardiovascular Agents/administration and dosage” [Mesh Terms] OR “vasoconstrictor
agents/administration and dosage” [Mesh Terms] OR “norepinephrine/administration and
dosage” [Mesh Terms] OR “Catecholamines/administration and dosage” [Mesh Terms] OR
“Vasoconstrictor Agents/therapeutic use” OR “Catecholamines/therapeutic use” [Mesh
Terms] OR “norepinephrine/therapeutic use” [MeSH Terms] OR “Shock/therapy” [MeSH
Terms] OR “Algorithms” [MeSH Terms]) AND “humans” [MeSH Terms] AND (“adult”
[MeSH Terms] OR “aged” [MeSH Terms] OR “middle aged” [MeSH Terms]) AND (“Shock”
[MeSH Terms] OR “Multiple Organ Failure” [MeSH Terms] OR (“Lactic Acid/blood”
[MeSH Terms] AND (“vasoconstrictor agents/administration and dosage” [Mesh Terms] OR
“norepinephrine/administration and dosage” [Mesh Terms] OR “Catecholamines/admin-
istration and dosage” [Mesh Terms] OR “Vasoconstrictor Agents/therapeutic use” OR
“Catecholamines/therapeutic use” [Mesh Terms] OR “norepinephrine/therapeutic use”
[MeSH Terms] “Cardiovascular Agents/therapeutic use” [Mesh Terms] OR “Cardiovas-
cular Agents/administration and dosage” [Mesh Terms])) AND Randomized Controlled
Trial [Publication Type]). The search included all publications since 1995.

3. Results

Among the 830 studies screened, 143 were included (Figure 1). Forty studies were not
reported because the intervention was only negative for the intervention presented. The
main reason for vasopressor administration was septic shock (75%); 6% of studies included
patients with cardiogenic shock. Other reason for vasopressor administrations were post
cardiopulmonary bypass (3%), post-operative (2%), post cardiac arrest (1%), burn (3%),
hypovolemia (1%), distributive shock (1%), vasodilatory shock (2%), and trauma (1%). In
4% of studies, the causes of shock were multiple. Only four RCTs were specifically related
to vasopressor weaning [7,13–15]. Three studies reported therapeutic algorithms and one
study reported a pharmacological intervention.



J. Clin. Med. 2021, 10, 3164 3 of 16

J. Clin. Med. 2021, 10, x FOR PEER REVIEW 3 of 16 
 

 

burn (3%), hypovolemia (1%), distributive shock (1%), vasodilatory shock (2%), and 

trauma (1%). In 4% of studies, the causes of shock were multiple. Only four RCTs were 

specifically related to vasopressor weaning [7,13–15]. Three studies reported therapeutic 

algorithms and one study reported a pharmacological intervention. 

 

Figure 1. Flow chart study. 

3.1. Pharmacological Interventions 

The main results are summarized in Table 1. 

Table 1. Main intervention and proposed use. 

Intervention References Outcome Evaluated 
Clinical 

Effect 
Proposal 

Hemodynamic management   

Active, hemodynamic algorithm [7,13] Dose and duration Positive Systematic 

Blood pressure target [16,17] Dose and duration Positive Individualized on organ perfusion 

Wean norepinephrine before vasopressin [14] Duration Uncertain Wean norepinephrine first 

Pharmocological  

Dopamine [3] Dose and duration Negative No 

Terlipressin  [18–23] Dose and duration Negative No 

Vasopressin [4,20,24–31] Dose and duration Uncertain 
Consider if norepinephrine > 0.2 

µg/kg/min 

Angiotensin-2 [32,33] Dose and duration Uncertain Mores studies need 

Glucocorticoids [34–52] Dose and duration Positive 
Systematic if norepinephrine > 0.2 

µg/kg/min 

Fluid therapy and hemodynamic goal direct 

therapy  
[53–66] Dose and duration Uncertain Assess preload dependency 

Colloid  [67,68] Dose and duration Positive  Not recommended 

Beta-blockers [69] Dose Uncertain 
Selected population with persistent 

tachycardia 

Methylene blue [70,71] Dose and duration Uncertain  Rescue 

Mineralocorticosteroids [39,72]  Duration  Negative No 

N-acetyl cysteine [73–75] Dose and duration Uncertain No 
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3.1. Pharmacological Interventions

The main results are summarized in Table 1.

Table 1. Main intervention and proposed use.

Intervention References Outcome Evaluated Clinical Effect Proposal

Hemodynamic
management

Active, hemodynamic
algorithm [7,13] Dose and duration Positive Systematic

Blood pressure target [16,17] Dose and duration Positive Individualized on organ
perfusion

Wean norepinephrine before
vasopressin [14] Duration Uncertain Wean norepinephrine first

Pharmocological

Dopamine [3] Dose and duration Negative No

Terlipressin [18–23] Dose and duration Negative No

Vasopressin [4,20,24–31] Dose and duration Uncertain Consider if norepinephrine >
0.2 µg/kg/min

Angiotensin-2 [32,33] Dose and duration Uncertain Mores studies need

Glucocorticoids [34–52] Dose and duration Positive Systematic if norepinephrine
> 0.2 µg/kg/min

Fluid therapy and
hemodynamic goal direct

therapy
[53–66] Dose and duration Uncertain Assess preload dependency

Colloid [67,68] Dose and duration Positive Not recommended

Beta-blockers [69] Dose Uncertain Selected population with
persistent tachycardia

Methylene blue [70,71] Dose and duration Uncertain Rescue

Mineralocorticosteroids [39,72] Duration Negative No
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Table 1. Cont.

Intervention References Outcome Evaluated Clinical Effect Proposal

N-acetyl cysteine [73–75] Dose and duration Uncertain No

Vitamin C [43,44,73,76–78] Dose and duration Negative No

Oral vasopressor [15,79] Dose and duration Negative No

Non-pharmacological

Body temperature [80–82] Dose and duration Positive Target normothermia

High volume hemo-filtration [83–88] Dose and duration Negative No

Adsorption [89–93] Dose and duration Uncertain No

3.1.1. Vasopressor

The SOAP (Sepsis Occurrence in Acutely Ill Patients) II study, which compared
norepinephrine to dopamine, demonstrated a higher number of vasopressor-free days
with norepinephrine [3]. In a small trial, norepinephrine doses were lower when ran-
domized against phenylephrine [94]. Similar vasopressor outcomes were observed with
epinephrine compared with norepinephrine [95,96] and with norepinephrine plus dobu-
tamine [97,98]. Many RCTs have compared therapeutic strategies by combining a cate-
cholaminergic to a non-catecholaminergic vasopressor. These RCTs mainly demonstrated
that adding a non-catecholaminergic vasopressor decreased the catecholamine dose. The
non-catecholaminergic vasopressors studied were vasopressin [20,24–29] and its deriva-
tives (terlipressin [18–20,23], selepressin [99]), as well as angiotensin-2 [32]. The effect of
vasopressin seems to be dose-dependent [100]. Two small studies did not demonstrate
differences in catecholamine administration in patients treated with terlipressin [21] and
angiotensin-2 [33]. Vasopressin has also been studied in several large RCTs. The VANCS
(Vasopressin Versus Norepinephrine for the Management of Shock After Cardiac Surgery)
study demonstrated a shorter duration of vasopressor use [30]. The VANISH (Vasopressin
vs. Norepinephrine as Initial Therapy in Septic Shock) and the VASST trial found no
difference in vasopressor duration in patients with septic shock [4,31], but in the VASST
(Vasopressin and Septic Shock Trial) study, vasopressin was associated with a lower dose
of norepinephrine. In 526 patients with septic shock, the terlipressin and norepinephrine
duration did not differ [22]. Another study comparing dopamine and terlipressin did not
demonstrate any difference in vasopressor-free days [101].

3.1.2. Adjuvant

The most studied adjuvant therapy was glucocorticoids [34–42,45–52]. In large RCTs,
substitutive corticotherapy consistently decreased the time to shock reversal [38–41]. Pa-
tients were mostly included in the early phase of septic shock. One RCT demonstrated an
improvement in shock reversal in patients with late septic shock (i.e., >48 h) [36]. Hydrocor-
tisone as an adjunctive treatment of vasopressin also decreased the duration of vasopressor
administration [42]. Only one trial evaluated mineralocorticoid against a placebo. In this
2 × 2 factorial trial, fludrocortisone alone was not associated with more vasopressor-free
days than the placebo [72].

Vitamin C has also been the object of several negative RCTs [76–78]. Two RCTs
demonstrated a decrease in the time to resolution of shock in patients treated with a
combination of thiamine, hydrocortisone, and vitamin C. However, because a combination
of several drugs, including hydrocortisone, was used, the effect of vitamin C was not
evaluated [43,44].

In patients with septic shock and tachycardia, esmolol decreased the norepinephrine
requirements [69]. In 70 patients with multi-organ dysfunction, a heart rate higher than
90 BPM (beats per minute), and a contraindication to beta-blockers, ivabradine administra-
tion did not decrease vasopressor use [102].
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Two small randomized trials evaluating methylene blue demonstrated a decrease
in vasopressor use in both septic and post cardiopulmonary bypass vasoplegia [70,71].
N-acetyl cysteine has been reported to decrease a composite vaso-inotropic score in burn
patients [75]. However, two studies performed in septic shock did not confirm these
results [73,74].

Drotrecogin alfa (activated) [103], pyridoxalated hemoglobin polyoxyethylene
(PHP) [104,105], nitric oxyide synthase inhibitors [106–108], and monoclonal antibody to
human tumor necrosis factor [109,110] have been associated with decreased norepinephrine
administration, but these drugs were abandoned for safety reasons (PHP [104] and nitric
oxide synthase inhibitor [106]) or lack of efficacy (monoclonal antibody to human tumor
necrosis factor [111], and Drotrecogin alfa [103,112,113]).

One RCT study demonstrated a decrease in norepinephrine and dopamine adminis-
tration with heptaminol [15]. Midodrine is another oral vasoconstrictor frequently admin-
istered to reduce the time to norepinephrine weaning. Midodrine has been inconsistently
associated with shorter vasopressor administration and ICU length of stay [114–116]. The
recent MIDAS (effect of midodrine versus placebo on time to vasopressor discontinuation
in patients with persistent hypotension in the intensive care unit) trial reported that mi-
dodrine did not reduce time to vasopressor discontinuation in patients with persistent
hypotension [79].

3.2. Fluid Therapy

During early goal-directed therapy (EGDT), the relationship between the volume of
fluid administered and the norepinephrine doses were inconstant [53,54,57–60,62,63]. One
RCT evaluating a restrictive fluid strategy did not result in increased doses of vasopressors,
despite the higher volumes of administered fluid [61], whereas a second study found
no differences in fluid volume and vasopressor use between groups [56]. Fluid titration
based on dynamic preload parameters resulted in a similar shock duration, despite a lower
fluid intake [64]. In line with this result, two RCTs evaluating a hemodynamic strategy
based on cardiac output monitoring did not demonstrate a decrease in vasopressor treat-
ment [65,66]. In another trial, PICCO (Pulse Contour Cardiac Output) guided resuscitation
was associated with the administration of fewer vasopressors [55]. The CRISTAL-RCT
(Colloids Versus Crystalloids for the Resuscitation of the Critically Ill) reported more days
alive without vasopressors with colloid use in comparison with crystalloid use [67]. In the
ALBIOS (Albumin Italian Outcome Sepsis) study, the administration of albumin decreased
both the time to vasopressor or inotropic agent cessation and the fluid balance [68].

3.3. Body Temperature

In septic patients, external fever control aiming for 36.5 to 37 ◦C decreased the vaso-
pressor requirement [80]. Hypothermia (32–34 ◦C) was associated with fewer vasopressor-
free days [81]. In patients with cardiogenic shock, moderate hypothermia (33 ◦C) did not
decrease vasopressor administration [82].

3.4. Kidney Replacement Therapy

In patients with septic shock, the early application of continuous veno-venous filtra-
tion resulted in a longer time to shock reversal [117]. Three small studies on high volume
hemofiltration [83,84] and cytosorb therapy [89] demonstrated a decrease in vasopressor
treatment. Several studies including high volume hemofiltration did not confirm those
results [85–88]. Adsorption did not allow for a decrease in norepinephrine administra-
tion [90–93]. One study comparing adsorption to high volume hemofiltration did not
demonstrate any differences [118].

4. Discussion

This review suggests that several pharmacological and non-pharmacological strategies
are associated with a decrease in the duration of vasopressor therapy. These strategies
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are as follows. (1) The implementation of a blood pressure objective affects vasopres-
sor duration, but without evidence in terms of mortality. (2) Implementing a weaning
strategy decreases the duration of vasopressor treatment and ICU stays. (3) Vasopressin
may decrease norepinephrine doses—weaning norepinephrine after vasopressin in case
of co-administration seemed to decrease hypotensive episodes. (4) Systemic glucocor-
ticoid administration increased the number of vasopressor-free days. (5) Beta-blockers
might decrease norepinephrine doses and duration in selected patients. (6) Targeting
normothermia might make it feasible to decrease vasopressor administration. (7) On the
contrary, an analysis of the literature demonstrated that EGDT, including fluid therapy,
oral vasopressors, vitamin C, and renal replacement therapy, are not associated with an
increase in vasopressor-free days.

4.1. Pharmacological Strategies

Adding a non-catecholaminergic vasopressor to norepinephrine makes is possible to
lower its dosage, and the administration of a non-catecholaminergic drug is recommended
for patients in refractory shock [5]. Vasopressin deficiency is part of the pathological
mechanisms leading to vasoplegia in septic shock [119], and might explain the lower
tolerance to vasopressin weaning compared with norepinephrine [14]. However, meta-
analysis did not report any differences in mortality or length of stay [120,121]. Angiotensin-
2 is likely to have similar effects, but has been less studied because it only recently received
FDA (Food and Drug Administration) approval. Thus, in a context where vasopressin and
norepinephrine are being administered, it seems that norepinephrine should be weaned
first [14,121]. However, because of its inotropic effect, norepinephrine should be weaned
depending on the myocardial contractility.

Glucocorticoids are known to restore vascular responsiveness [122], and can be used
to treat corticosteroid insufficiency [123] and block the synthesis of pro-inflammatory
cytokines [124]. Substitutive corticotherapy was the most described adjuvant treatment,
and it was reported to consistently decrease time to shock reversal. However, the timing of
this intervention was not consistent in every trial, and in the most recent surviving sepsis
guidelines, glucocorticoids are only advised in refractory shock [5]. One trial specifically
focused on late shock reversal demonstrated that low-dose glucocorticoids are beneficial
in vasopressor weaning, mainly in patients with sepsis and a high dose of vasopressors
(more than 0.20 µg/kg/min).

Cardio-selective beta-blockers were demonstrated to lower vasopressor doses in
patients with sepsis and tachycardia [69]. This phenomenon was attributed to a decrease in
arterial load associated with an improvement in ventriculo-arterial coupling [125]. During
weaning, the rate control might improve the ventriculo-arterial coupling [126], suggesting
that it could be an interesting therapeutic approach in selected patients.

During hemodynamic resuscitation, fluid therapy does not result in shorter vasopres-
sor treatment, and could even increase vasopressor duration [127]. Thus, it is unlikely
that uncontrolled administration of fluids during the optimization and weaning phases
would reduce vasopressor duration. Because increasing vasopressors might increase car-
diac preload [128,129], in the context of weaning, hypotension might be related to preload
reduction. Because removing fluids is another cornerstone of de-resuscitation [130], we
believe that preload status should be carefully evaluated in patients with hypotension
attributed to vasopressor weaning.

4.2. Hemodynamic Strategies

In practice, norepinephrine weaning is implemented empirically: when the arterial
pressure is consistently above the given objective, the dose of norepinephrine is decreased
until discontinuation. Because vasopressors act on several pathological mechanisms in-
volved in blood pressure (preload [128], inotropism [10], and vascular resistance [10]),
arterial hypotension following a decrease in vasopressor dose can have multiple causes,
and several studies demonstrated that arterial dynamic elastance (EAdyn = respiratory pulse
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pressure variation/respiratory stroke volume variation), which may reflect ventriculo-
arterial coupling and vasomotor tone, can predict the pressure response to norepinephrine
weaning [131]. An EAdyn-based algorithm decreased norepinephrine administration [7],
and the automation of the weaning process by a controller responding to “fuzzy logic”
made it possible to reduce the weaning time [13]. Because targeting the lower blood pres-
sure target is associated with faster vasopressor discontinuation, it is clear that setting the
right pressure target is an important decision. During acute circulatory failure, a minimal
threshold for blood pressure is often set in order to ensure organ perfusion. In a recent
study, setting a low blood pressure target (60 to 65 mmHg) in patients older than 65 years
old with vasodilatory hypotension resulted in lower exposure to vasopressors, without a
significant difference in morbidity or mortality [132]. This trial further suggested that lower
blood pressure might be targeted in a selected resuscitated population, and that a lower
objective might result in lower vasopressor exposure without adverse events. Nevertheless,
blood pressure targets should be individualized to ensure organ perfusion [133].

4.3. Proposed Algorithm

Because vasopressors are associated with adverse effects [134], vasopressor-sparing
strategies have emerged [135]. Vasopressor sparing strategies aim to reduce vasopressor
exposure and their side effects [7]. Vasopressor administration is part of the continuum from
initial resuscitation to shock reversal. As for fluid therapy, the management of vasopressors
can be divided into several phases: an initial resuscitation phase with the objective of
obtaining the target blood pressure to restore tissue perfusion as quickly as possible, a
stabilization phase, and a weaning phase (Figure 2). When the patient is stabilized, active
management, including pharmacological therapies and hemodynamic strategies, may be
introduced to decrease the time to vasopressor discontinuation. Hemodynamic stability can
be defined as a blood pressure variation of less than 10% without changing the vasopressor
dose, and with an improvement in tissue perfusion (capillary refill time, hyperlactatemia,
diuresis, and venous oxygen saturation) [7]. When blood pressure is controlled, the cardiac
and vascular properties are gradually restored and the withdrawal of vasopressor drugs
can be initiated (Figure 2). As the pathological process may not be symmetrical during
acute circulatory failure and recovery, and as catecholamine administration leads to the
down-regulation of adrenergic receptors [30], it is unlikely that vasopressor withdrawal is
a parallel process to the initial resuscitation phase.
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Optimization and weaning should be part of a protocolized process (Figure 2). Firstly,
a blood pressure target aiming to optimize organ perfusion should be defined by taking
into account that a lower blood pressure objective may be possible. Secondly, physicians
should consider the early use of intravenous hydrocortisone, non-catecholaminergic vaso-
pressors (vasopressin and blue methylene), and maintaining normothermia. In selected
patients with persistent tachycardia, beta-blocker therapy should be considered. Thirdly,
when hemodynamic stability is obtained, active weaning should be initiated following a
hemodynamic algorithm (see below). Because of their action on preload, inotropism, and
arterial load, vasopressor withdrawal should be adapted to the patient’s haemodynamic
profile, similarly to therapeutic escalation in the acute phase.

Several approaches can be followed depending on the type of monitoring (Figure 3).
Basic management based on continuous measurement of blood pressure is probably the
most commonly used approach. In the case of poor tolerance, the different causes listed
above should be considered and eliminated in the order of the following frequency: preload,
arterial load, and inotropism. A hemodynamic approach based on the analysis of ventriculo-
arterial coupling and/or EAdyn may be suitable [131,136–139]. Studies have demonstrated
that EAdyn and the analysis of ventriculo-arterial coupling are able to predict the effects
of norepinephrine on stroke volume and blood pressure [7,140]. Arterial elastance (EA)
is an index of arterial load [141] that integrates the main components of arterial load
(i.e., total peripheral resistance, total net arterial compliance, characteristic impedance,
and systolic and diastolic time intervals). EA can be estimated by using the equation
EA = mean arterial pressure/stroke volume (mmHg/mL) [142]. Left ventricular end-
systolic elastance (EV) is an indicator of cardiac function [143], and might be extrapolated
by using the non-invasive single beat method described by Chen et al. [144]. Ventriculo-
arterial coupling is the ratio of EA to EV, and it is an indicator of the balance between cardiac
effort and arterial load. When the left ventricle and the vascular system are coupled, this
ratio is around 1 [145]. Such approaches are made possible by the use of echocardiography
or a continuous hemodynamic monitoring system [136–139]. In the future, physicians could
consider using automation and artificial intelligence to guide the weaning process [13,146].
A recent study published in the JAMA showed that the use of this index with a therapeutic
management decision algorithm reduces hypotension time [146].

J. Clin. Med. 2021, 10, x FOR PEER REVIEW 8 of 16 
 

 

Figure 2. Principles of vasopressor treatment. MAP—mean arterial pressure; ScVO2—central ve-

nous oxygen saturation; pCO2 Gap—difference between partial pressure of CO2 in venous blood 

and arterial blood; SVV—stroke volume variation; PPV—pulse pressure variation. 

Optimization and weaning should be part of a protocolized process (Figure 2). 

Firstly, a blood pressure target aiming to optimize organ perfusion should be defined by 

taking into account that a lower blood pressure objective may be possible. Secondly, phy-

sicians should consider the early use of intravenous hydrocortisone, non-catecholaminer-

gic vasopressors (vasopressin and blue methylene), and maintaining normothermia. In 

selected patients with persistent tachycardia, beta-blocker therapy should be considered. 

Thirdly, when hemodynamic stability is obtained, active weaning should be initiated fol-

lowing a hemodynamic algorithm (see below). Because of their action on preload, inotro-

pism, and arterial load, vasopressor withdrawal should be adapted to the patient’s hae-

modynamic profile, similarly to therapeutic escalation in the acute phase. 

Several approaches can be followed depending on the type of monitoring (Figure 3). 

Basic management based on continuous measurement of blood pressure is probably the 

most commonly used approach. In the case of poor tolerance, the different causes listed 

above should be considered and eliminated in the order of the following frequency: pre-

load, arterial load, and inotropism. A hemodynamic approach based on the analysis of 

ventriculo-arterial coupling and/or EAdyn may be suitable [131,136–139]. Studies have 

demonstrated that EAdyn and the analysis of ventriculo-arterial coupling are able to predict 

the effects of norepinephrine on stroke volume and blood pressure [7,140]. Arterial elas-

tance (EA) is an index of arterial load [141] that integrates the main components of arterial 

load (i.e., total peripheral resistance, total net arterial compliance, characteristic imped-

ance, and systolic and diastolic time intervals). EA can be estimated by using the equation 

EA = mean arterial pressure/stroke volume (mmHg/mL) [142]. Left ventricular end-systolic 

elastance (EV) is an indicator of cardiac function [143], and might be extrapolated by using 

the non-invasive single beat method described by Chen et al. [144]. Ventriculo-arterial 

coupling is the ratio of EA to EV, and it is an indicator of the balance between cardiac effort 

and arterial load. When the left ventricle and the vascular system are coupled, this ratio is 

around 1 [145]. Such approaches are made possible by the use of echocardiography or a 

continuous hemodynamic monitoring system [136–139]. In the future, physicians could 

consider using automation and artificial intelligence to guide the weaning process 

[13,146]. A recent study published in the JAMA showed that the use of this index with a 

therapeutic management decision algorithm reduces hypotension time [146]. 

 

 

Hemodynamic stability: 
Mean arterial pressure> 60-80 mmHg with improvement of tissue perfusion parameters 

Decrease norepinephrine Weaning

Fluid expansion

Stop weaning, 
Increase 

vasopressor

NO YES

MAP

Preload ?

Stability

Decrease

Figure 3. Cont.



J. Clin. Med. 2021, 10, 3164 9 of 16
J. Clin. Med. 2021, 10, x FOR PEER REVIEW 9 of 16 
 

 

 

 

 

Figure 3. Algorithm proposed for vasopressor weaning. (A) . Basic algorithm. (B) Advanced algorithm based on dynamic 

arterial elastance analysis. (C) Advanced algorithm based on ventriculo-arterial coupling analysis. EAdyn—dynamic arterial 

elastance; PPV—pulse pressure variation; SVV—stroke volume variation; Ev—ventricular elastance; EA—arterial elas-

tance. 

Several limitations can be discussed. We can question the clinical benefit of a vaso-

pressor sparing strategy. There is no direct evidence that reducing pressor “stress” de-

creases mortality. However, studies have demonstrated that decreasing the duration of 

vasopressor use is associated with a decrease of ICU length of stays and morbidity [7]. 

Moreover, a pooled analysis of two studies suggested that increased exposure to vaso-

pressor increased the risk of death [6]. Because vasopressor adverse effect are largely doc-

umented, sparing vasopressor and/or catecholamine is a topic of growing interest 

Hemodynamic stability: 
Mean arterial pressure> 60-80 mmHg with improvement of tissue perfusion parameters 

Decrease norepinephrine Weaning

MAP

• EV > EA : preload, vasopressor

• EV < EA : beta-blocker (tachycardia), inotrope

Stability

Decrease

NO

YES

Figure 3. Algorithm proposed for vasopressor weaning. (A) Basic algorithm. (B) Advanced algorithm
based on dynamic arterial elastance analysis. (C) Advanced algorithm based on ventriculo-arterial
coupling analysis. EAdyn—dynamic arterial elastance; PPV—pulse pressure variation; SVV—stroke
volume variation; Ev—ventricular elastance; EA—arterial elastance.

Several limitations can be discussed. We can question the clinical benefit of a vasopres-
sor sparing strategy. There is no direct evidence that reducing pressor “stress” decreases
mortality. However, studies have demonstrated that decreasing the duration of vasopressor
use is associated with a decrease of ICU length of stays and morbidity [7]. Moreover, a
pooled analysis of two studies suggested that increased exposure to vasopressor increased
the risk of death [6]. Because vasopressor adverse effect are largely documented, sparing
vasopressor and/or catecholamine is a topic of growing interest [135,147]. Most included
studies were performed in sepsis (75%) or postoperative vasoplegic shock, thus limiting the
extrapolation of our scoping review to these types of shock. According to the PRISMA-scr
guidelines, the critical appraisal of the included sources of evidence was not mandatory. Be-
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cause of the study design, the clinical benefit of the reviewed interventions was determined
by the authors, and the criteria may be subjective.

5. Conclusions

There are a few published RCTs focused specifically on sparing strategies. In patients
with shock, several pharmacological strategies, such as hydrocortisone, can be safely
used to optimize vasopressor treatment. In addition, it appears that optimized patient
management using hemodynamic guidelines could be associated with more vasopressor-
free days and shorter ICU stays.
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