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Abstract

After two decades of quiescence, epidemic resurgence of Chikungunya fever (CHIKF) was reported in Africa, several islands
in the Indian Ocean, South-East Asia and the Pacific causing unprecedented morbidity with some cases of fatality. Early
phylogenetic analyses based on partial sequences of Chikungunya virus (CHIKV) have led to speculation that the virus
behind recent epidemics may result in greater pathogenicity. To understand the reasons for these new epidemics, we first
performed extensive analyses of existing CHIKV sequences from its introduction in 1952 to 2009. Our results revealed the
existence of a continuous genotypic lineage, suggesting selective pressure is active in CHIKV evolution. We further showed
that CHIKV is undergoing mild positive selection, and that site-specific mutations may be driven by cell-mediated immune
pressure, with occasional changes that resulted in the loss of human leukocyte antigen (HLA) class I-restricting elements.
These findings provide a basis to understand Chikungunya virus evolution and reveal the power of post-genomic analyses
to understand CHIKV and other viral epidemiology. Such an approach is useful for studying the impact of host immunity on
pathogen evolution, and may help identify appropriate antigens suitable for subunit vaccine formulations.
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Introduction

Chikungunya virus (CHIKV), an Alphavirus belonging to the

Togaviridae family, was first isolated during a Tanzanian (formerly

Tanganyika) outbreak in 1952 [1,2]. Between 1960s–80s, the

pathogen infected more than 100,000 people in Africa and Asia,

before entering a state of quiescence for over two decades [3–5]. In

recent years, CHIKV has re-emerged as one of the major

important infections in South-East Asia and the Pacific region,

causing considerable morbidity with even some cases of fatality

[6]. Epidemic resurgence of disease was reported in the

Democratic Republic of Congo in 2000 [7], in Indonesia during

2001–03 [8], in India during 2005–06 [9], in Malaysia in 2006

[10], and in Singapore in 2008 [11]. During the same period, the

virus was also isolated in several islands of the Indian Ocean,

including Réunion Island, Maldives, Mayotte, Mauritius and

Seychelles [12]. Typical clinical presentations of CHIKF include

fever, headache, nausea, vomiting, myalgia, rash and arthralgia,

and can be accompanied by severe, debilitating joint pain lasting

from months to years [13–15]. Recent outbreaks of CHIKF

involving millions of people have resulted in more detailed

descriptions of clinical manifestations, including rare or previously

unknown complications, such as fatal haemorrhagic and neuro-

logic manifestations [16,17]. How and why CHIKV resurfaced

after an interval of more than twenty years remains unknown. The

ability to replicate more efficiently in another mosquito vector,

Aedes albopictus, has been proposed as a factor for the new

epidemics [18].

In many viral infections, the adaptive immune system has been

shown to exert a strong pressure on viral evolution. In particular,

antigenic drift, a phenomenon observed for Influenza virus

neuraminidase and hemagglutinin, was shown to result from the

accumulation of mutations in viral sequences recognized by

antibodies [19]. In many viral infections, escape mutants in the

face of CD8+ cytotoxic T cells has been widely described,

demonstrating an important role for the major histocompatibility

complex (MHC). CD8+ T lymphocytes recognize short sequences

in proteins, termed T-cell epitopes, cleaved from viral proteins and

presented on the surface of infected cells by HLA class I molecules,

also called HLA in humans. HLA molecules are highly

polymorphic and can only present viral epitopes that have the

appropriate amino acid composition to enable binding. We

hypothesized that mutation patterns in CD8+ epitopes may

provide important clues to what kind of immune selection pressure

operates on CHIKV. The viral sequence is, therefore, expected to

show patterns of mutations in epitope sequences presented by

MHC class I molecules. In particular, the rapid emergence of

sequence variation within T-cell epitopes provides clear evidence

for host-driven immune selection during infection [20,21].

Phylogenetic analyses based on partial envelope glycoprotein (E)

1 sequences have revealed important insights into the evolution of

CHIKV, suggesting the existence of three distinct phylogroups:

one from Asia, one from Western Africa, and one from Eastern,

Central and Southern Africa [13]. In this study, we extended the

analysis to full CHIKV structural and non-structural sequences

and examined for the first time, the genetic diversity and antigenic
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relationships of CHIKV sequences from its introduction into

humans in 1952 to 2009 to assess the extent of geographical

variability and existence of potential selective pressure. We

employed post-genomic approaches to identify the basis of

CHIKV resurgence and aimed to show that site-specific mutations

and variations may be driven by cell-mediated immune pressure,

with occasional changes that resulted in the huge loss of human

leukocyte antigen (HLA) class I-restricting elements. These

findings may provide an explanation for the explosive viral

outbreaks observed since 2005.

Results and Discussion

First, we examined the genetic diversity and antigenic

relationships of CHIKV sequences from its introduction into

humans in 1952 to 2009 to assess the extent of geographical

variability and existence of potential selective pressure. Previous

studies based on partial E1 sequences have shown the existence of

three distinct CHIKV genotypes: one from Asia, one from

Western Africa, and one from Eastern, Central and Southern

(ECS) Africa [13]. Complete phylogenetic analysis of full CHIKV

structural and non-structural sequences was performed to

appreciate the extent of CHIKV proteome variation. Our results

showed the existence of two main phylogroups: one from Asia and

one from Africa (Figure 1). The Asian, ECS African, and Western

African genotypes were divergent. The observed pattern of

phylogenetic structure is consistent with existing studies based on

CHIKV E1 protein sequences [13,22]. For both structural and

non-structural sequences, the Indian Ocean isolates represent a

homogenous clade within the India isolates, and form a

continuous lineage; from the Asian cluster, through the Indian

Ocean cluster, to the African cluster.

We next applied position-specific plots to examine the extent of

amino acid conservation in the CHIKV genome. This can also

reveal the spatial dynamics of mutations at any specific positions.

We define an ‘‘antigenic switch’’ as the change in expression of

CHIKV genes at a specific site which may 1) abrogate binding to

HLA molecule [23]; or 2) antagonize or interfere T-cell response

leading to cellular immune evasion [24,25] (Figure S1). Our

analysis revealed that significant amounts of antigenic switches

were clustered over the CHIKV genome (Figure 2a). In particular,

residues 697–709 of E2 structural protein have undergone the

most number of substitutions with up to seven site-specific

mutations in isolates derived from India, Mauritius and Senegal

since 1983. Recent studies have shown that this domain is

important for vector infectivity of CHIKV and might also play an

epistatic role in adaptation of the virus to Ae. Albopictus and Ae.

Aegypti [26]. On the contrary, the non-structural proteins nsP1,

nsP2, the N-terminal region of non-structural protein (nsP) 3,

nsP4, as well as the structural region of capsid protein (C),

contained many historically fully conserved regions (entropy = 0.0)

(Figure 2a and b). No amino acid frequency changes were

observed at nsP2, nsP4, C, E3, E2 and 6K for CHIKV Indian

Ocean isolates, except four substitutions (nsP2-Y643N, C-C54R,

C-D132N and E2-Q471R) between Mauritius isolate Wuerzburg

[27], Réunion isolates 06.21, 06.27 [13] and Seychelles isolate

Figure 1. Phylogenetic relationships among CHIKV isolates. a. Structural polyproteins and b. Non-structural polyproteins based on full
nucleotide sequences. CHIKV is a linear, positive-sense, single-stranded RNA genome of approximately 12,000 nucleotides. The genome contains two
large open reading frames (ORF) encoding the non-structural polyprotein (nsP) (2,474 aa) and structural polyprotein (sP) (1,248 aa) respectively. ORF1
encodes non-structural proteins nsP1 (535 aa), nsP2 (798 aa), nsP3 (530 aa) and nsP4 (611 aa). ORF2 encodes structural proteins, including one capsid
protein (C), two major envelope surface glycoproteins (E1, E2) and two small proteins (E3, 6K). The branches leading to the Senegal strain and the
India strain were shortened by 40% for convenience.
doi:10.1371/journal.pone.0009291.g001

HLA and Chikungunya
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Figure 2. Position-specific plots of CHIKV amino acid sequences from 1952 to 2008. a. Overview of all CHIKV amino acid sequences. i.
Entropy profile. Sequence variability is observed at almost every position (entropy .0.1) in E1 and E2. The E3, 6k and C-terminal region of nsP3 also
demonstrated a history of sequence variability. ii. Profile illustrating the loss of HLA class-I restricting elements due to CHIKV position-specific
mutations, and iii. Profile illustrating the number of putative HLA class I-restricting elements at each position along the CHIKV primary sequence. b.
Entropy profiles of CHIKV sequences. i. Africa, ii. Indian Ocean, and iii. Asia.
doi:10.1371/journal.pone.0009291.g002

HLA and Chikungunya
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05.209 [13]. Deletions were found to occur primarily within the

capsid domain at positions 83, 114 and 127.

The rate of synonymous and non-synonymous nucleotide

substitutions can be used as a basis for studying molecular

sequence evolution [28]. We then applied the Nei and Gojobori’s

method [29,30] to analyze the pairwise selection pressures of

CHIKV nucleotide sequences (Figure 3). A small class of structural

genes (167 out of 13530 pairs), with positive selection pressure of

v.1 was found. Among them, evidence for diversifying selection

(v.1) was observed in the structural genes of reported isolates

derived from seven countries: Democratic Republic of Congo,

Senegal, Reunion Island, Mauritius, Seychelles, India and Italy, all

of which appear to be under mild positive selection (Figure 4). The

India Chennai isolates 02TANUVAS and 04TANUVAS, with

strength of selection v<1.52, shared 92.3% nucleotide identity.

The E2 protein potential glycosylation sites at positions 263 and

345 were fully conserved [31]. Amino acid changes were found

between protein positions 241–243, 346–349 and 369–376. Five

substitutions were observed in the E1 proteins: Y123H, Y181C,

L242V, S350N and Q352R. Among them, E1 proteins of the

Democratic Republic of Congo isolates DRC1720 and

DRC1725/28 (nucleotide identity 99.4%) are under the highest

selection pressure, with v<2.92 (Figure 3 and 4).

Having shown that regions of the CHIKV were under selective

pressure, we hypothesize that this pressure may be immune

mediated, and in particular by HLA molecules. Thus, we decided

to search for putative CD8+ T-cell epitopes restricted by 41

common HLA class I alleles. The T-cell epitope predictors used in

this paper are derived from the Immune Epitope Database and

Analysis Resource [32]. We used all 41 HLA class I predictors that

are available at the time of study, focusing on nonameric peptide

sequences, because they represent the predominant length of HLA

class I-restricted T-cell epitopes [33]. As illustrated, we find

remarkable overall correspondence between amino acid sequence

and antigenic switch variability (correlation coefficient = 0.73)

(Figure 2a). Increased changes in amino acid contents result in a

higher switch frequency. The rate of antigenic switches per

substitution (i.e., the rate of change from HLA binding to non-

binding peptide) was fastest within 6K and E2 domains (3.27 and

3.58 switches per amino acid respectively), and slowest within nsP2

and nsP4 domains (8.33 and 7.18 switches per amino acid

respectively). We found significant changes in potential HLA class

I-restricted recognition patterns within E1 and E2 domains that

have undergone mutations (Figure 5). Among all substituted sites,

only two mutations, nsP3-V1770A and E2-D457E appear fixed

with no changes in HLA class I restricted recognition patterns.

Strikingly, 62 substitutions resulted in the loss of restriction to all

41 putative HLA class I alleles, and multiple substitutions has

helped enhanced the antigenic switch process (Figure 3 and 5).

The correlation between antigenic switch frequency and the

number of amino acid substitutions was 0.89. The observed

patterns of antigenic transitions are most pronounced within the

E1 domain, where 58 out of 81 antigenic switches resulted in the

complete loss of restriction to all 41 HLA class I alleles. Mutations

at these putative sites appear to be largely driven by selective

immune evasion.

We identified a total of 6336 (nsP = 3931, sP = 2405) immuno-

logical signatures or unique HLA class I-restricted T-cell epitope

candidates. There are 477 (nsP = 209, sP = 268) substitutions from

407 (nsP = 191, sP = 216) sites, resulting in an increased diversity

of 668 immunological signatures. Across CHIKV outbreak

regions, immunological signatures specific to ECS Africa (9/

322), Congo (18/336), Senegal (310/930), Seychelles (9/1231),

India (314/1554), Malaysia (12/223), and USA (27/1222) were

observed among the structural genes. No immunological signa-

tures unique to CHIKV outbreak regions are observed among the

non-structural genes, suggesting the lack of selection pressure by

HLA class I alleles on these genes. The ability to define unique

signatures allows us to identify the amino acid compositions that

characterize the difference between countries (Figure 6a and b).

Some of these amino acid substitutions may lead to the antigenic

difference between countries, some may be compensatory changes

to retain function, and others may be hitchhikers that evolved

purely by chance [34]. Consistent with phylogenetic analysis of

CHIKV full structural and non-structural sequences, three distinct

groups may be observed with respect to these immunological

signatures: African, Indian Ocean and Asian phylogroups, with

average correlations of 0.88, 0.89 and 0.86 respectively. The

African phylogroup contains has a higher concentration of Ala

(30%), Ser (20%) and Val (19%) compared to the Indian Ocean

and Asian phylogroups. For the Indian Ocean phylogroup, a

higher concentration of Lys (19%), Leu (30%), Pro (23%) and Arg

(31%) was detected (Figure 6a and b). Collectively, these findings

suggest that some amino acid substitutions may possess larger

antigenic effect in certain geographical regions.

CHIKV is endemic in many parts of Africa and Asia with

variable levels of transmission in populations which are largely

immune [8,35–37]. In naive populations, massive epidemics occur

before herd immunity develop and curb virus dissemination in the

population. Different extrinsic and intrinsic viral factors could

variously be ascribed to continuous viral evolution leading to novel

virulence and survival properties of CHIKV, such as i) changes in

demography and human behaviour, and ii) sequence variation.

The latter could result to a change of vector competence and

vector ecology leading to increased transmission, and the decrease

or absence of antibody or T cell recognition leading to less viral

inhibition by the adaptive immune system.

Here, we employed post-genomic approaches to identify a

possible basis for CHIKV resurgence. The availability of viral

isolates and genetic sequences, coupled with bioinformatics tools

offered an unprecedented opportunity to study viral evolution in

the context of the population genetics and HLA driven selection

pressures which must inevitably play an important role in

determining the outcome of the infection. We focused on HLA

i) since during CHIKV infection T cell responses are observed

[38], and ii) it has been proposed that these strong responses,

although not involved in the control of the virus during the acute

phase of the primo-infection, might provide protection upon re-

infection [39] and thus limit virus dissemination to the community.

These strong T-cell responses might exert a potent selection on

CHIKV evolution.

Using well-established predictive and analytical tools, we

showed how amino acid substitutions may affect cell-mediated

immune recognition. The existence of a continuous lineage from

the Asian cluster, through the Indian Ocean cluster, and to the

African cluster, reveal a remarkable correspondence between

amino acid sequence variability and putative HLA class I-

restricted recognition patterns. The influence of human host

responses against CHIKV appears to play a dominant role in

evolution. Our data showed that selective pressures on CHIKV

are higher within individual countries than across countries

(Figure 6 and Figure S2). Overall, this study confirms that HLA

class I-restricted recognition patterns can be used as a base for

studying the evolution of viruses [40], and in particular CHIKV.

The growing capacity of full genome sequencing and improved

epitope prediction methods provide a powerful new high-

resolution tool for classification, and may serve as primary criteria

for vaccine development.

HLA and Chikungunya
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Figure 3. Proposed antigenic relationships among CHIKV isolates. The Nei and Gojobori’s map showing the selection pressure of reported
isolates in pairwise comparison of CHIKV nucleotide sequences. Blue indicates negative selection (v,1), black for neutral substitutions (v = 1) and
red for positive selection (v.1). Orange boxes are drawn around positive selection clusters.
doi:10.1371/journal.pone.0009291.g003
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Materials and Methods

CHIKV Data Collection
A total of 189 structural and 116 non-structural CHIKV

sequences isolated from humans were extracted from National

Center for Biotechnology Information (NCBI) GenBank [41] and

SwissProt [42]. From these, 73,516 nonameric peptide sequences

(46,913 non-structural peptides, 26,564 structural peptides) were

generated and used for the current analysis.

HLA Frequency Data Collection
HLA allele frequencies of Africa, Indian Ocean, Asia, Europe

and USA were extracted from the Allele Frequency Database [43]

and used for the current analysis.

Protein Sequence Analyses
The ClustalX program [44] was used to align and to construct

the phylogram of CHIKV proteomes. Bootstrap analysis was

performed on 1000 replicates to ascertain support for the

groupings in the tree. The Shannon entropy was used to assess

the variability of CHIKV proteomes [45]. For a given alignment,

the entropy of an amino acid position H(x) is defined as H(x) = 2g
P(x) log P(x) where x is one of 20 amino acid residue types. P(x), the

probability of occurrence of x, is estimated by f(x), the frequency of

the appearance of residue type within the alignment column

P(x)<f(x) = N(x)/L where N(x) is the number of appearances of

amino acid residue x, and L is the length of the column.

Nucleotide Sequence Analyses
Synonymous substitutions may be used as a molecular clock for

studying the evolutionary time of highly conserved sequences [29].

In this study, the Nei and Gojobori’s method [29,30] was applied to

calculate the rates of synonymous (dS) and non-synonymous (dN)

substitutions in the sequences under study. The dN/dS ratio (v)

indicates the extent of evolutionary divergence of DNA sequences.

v.1 suggests positive (diversifying) selection, v,1 suggests

negative (purifying) selection, and v = 1 indicates no selection.

Antigenic Diversity Analyses
ntigenic diversity among CHIKV proteins was defined as the

minimal set of unique HLA class I-restricted T-cell epitopes or

immunological signatures encoded by all CHIKV sequences [46].

Computational prediction of T-cell epitopes that bind to 21

common HLA-A alleles (A*0101, *0201, *0202, *0203, *0206,

*0301, *1101, *2301, *2402, *2403, *2601, *2902, *3001, *3002,

*3101, *3201, *3301, *6801, *6802, *6901 and *8001) and 20

HLA-B alleles (B*0702, *0801, *1501, *1503, *1517, *1801,

*2705, *3501, *4001, *4002, *4402, *4403, *4501, *4601, *4801,

*5101, *5301, *5401, *5701 and *5801) was performed using two

online computational systems available in the Immune Epitope

Database Analysis Resource (IEDB-AR) [47], namely Average

Relative Binding (ARB) matrix and Artificial Neural Network

(ANN). The ARB system is based upon a matrix of coefficients

derived from the association of each of the 20 amino acids at each

possible position along the peptide sequence [48]. The ANN

system predicts HLA-binding peptides using an input representa-

tion consisting of a combination of sparse encoding, BLOSUM

encoding and inputs derived from hidden Markov models [49].

Hierarchical Clustering
A hierarchical clustering technique using the agglomerative

algorithm was used to assess the immunological signatures of

CHIKV in different outbreak countries [50]. The distance

between the immunological signatures was computed by the

single-linkage method as implemented in MATLAB version 7.0.

Supporting Information

Figure S1 Consequences of antigenic drift in a T cell epitope.

(A) T cell epitope are peptides derived from pathogens or host

proteins which bind HLA molecules. Peptides of 9 to 11 amino

acids binds to HLA class I and longer peptides to HLA class II

molecules. T cell epitope peptide forms a ternary complex with a

MHC (HLA) molecule on the surface on an antigen presenting

cell and the T cell receptor (TCR) on the surface on a T cells.

Formation of this ternary complex is necessary for T cell

activation and activity. Mutation in nucleotide(s) can lead to a

change in amino acid in T cell epitope (variant peptide). This

change will modify the interactions of this peptide sequence

either with the HLA molecule or with the T cells. (B) Mutation

leading to amino acid may prevent epitope (variant peptide) to

bind to the HLA molecule, thus no T cells will be stimulated. (C)

Mutations can also lead to change in amino acids (variant

peptide) interacting with the TCR. In this case, the outcome of

the T cell response may be different. In the first scenario, the

mutation generates a variant peptide which cannot be recog-

nized by the TCR. Thus no T cell will be stimulated. In the

second scenario, the new variant peptide generated can be

recognized by the TCR, but this interaction will generate partial

Figure 4. Proposed evolutionary scenario of CHIKV isolates.
CHIKV evolution was proposed from its introduction in 1952 to 2008
based on positive selection pressure of v.1 calculated using the Nei
and Gojobori’s [30,31]. The dotted square indicates regions with
possibly mixed CHIKV transmissions, while the green arrows indicate
hypothetical evolutionary routes.
doi:10.1371/journal.pone.0009291.g004

HLA and Chikungunya
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response on T cell specific for the wild type peptide. Such variant

are called antagonists or altered peptide ligands (APL). It has

been shown that memory T cells specific for the wild type

peptide respond poorly (decrease in proliferation, cytoxocity or

in IFN-g secretion) after stimulation with antagonist peptides. All

these mechanisms represent powerful evasion mechanism of the

immune response.

Found at: doi:10.1371/journal.pone.0009291.s001 (0.20 MB TIF)

Figure S2 Summary of the 41 HLA class I molecules investigated

in this study. Populations with high frequencies of a given HLA are

noted. Potential CD8+ T-cell epitopes are 9 amino acids long based

on Average Relative Binding matrix and Artificial Neural Network

derived from the Immune Epitope Database and Analysis Resource.

The number of antigenic transitions for CHIKV epitopes from

binding to non-binding for a given HLA molecule is also noted.

Found at: doi:10.1371/journal.pone.0009291.s002 (0.08MBDOC)

Figure 5. Putative antigenic transitions showing the change in HLA class I-restricted recognition patterns at sites that have
undergone mutations. Significant changes in HLA class I-restricted recognition patterns are observed in E1 and E2. HLA alleles that are common in
Africa, Indian Ocean, Asia, Europe and USA are indicated in colored circles. The correlation between amino acid and antigenic variability was 0.73
(nsP = 0.72, sP = 0.74), and on average, 5 amino acid substitutions resulted in one antigenic switch (s.d = 1.08).
doi:10.1371/journal.pone.0009291.g005
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