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Cancer cells rewire their metabolism to promote cell proliferation, invasion, and
metastasis. Alterations in the lactate pathway have been characterized in diverse
cancers, correlate with outcomes, and lead to many downstream effects, including
decreas ing ox idat ive st ress, promot ing an immunosuppress ive tumor
microenvironment, lipid synthesis, and building chemo- or radio-resistance.
Radiotherapy is a key modality of treatment for many cancers and approximately 50%
of patients with cancer will receive radiation for cure or palliation; thus, overcoming radio-
resistance is important for improving outcomes. Growing research suggests that
important molecular controls of the lactate pathway may serve as novel therapeutic
targets and in particular, radiosensitizers. In this mini-review, we will provide an overview of
lactate metabolism in cancer, discuss three important contributors to lactate metabolism
(lactate dehydrogenase, monocarboxylate transporters, and mitochondrial pyruvate
carrier), and present data that inhibition of these three pathways can lead to
radiosensitization. Future research is needed to further understand critical regulators of
lactate metabolism and explore clinical safety and efficacy of inhibitors of lactate
dehydrogenase, monocarboxylate transporters, and mitochondrial pyruvate carrier
alone and in combination with radiation.
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INTRODUCTION

At the most fundamental level, cells must be self-reliant—producing sufficient ATP and
biosynthetic compounds to fuel their ongoing survival and proliferation (1). However, the ability
of tumor cells to reprogram their metabolic activity in order to promote their own survival is one of
the defining hallmarks of cancer (2). Dating all the way back to the 1920s and the pioneering work of
Otto Warburg, lactate has long been identified as a major player in cancer metabolism (3). In his
work, Dr. Warburg noted that many cancer cells uptake large amounts of glucose and preferentially
produce lactate through glycolytic pathways, even in the presence of oxygen (4). This phenomenon
has been observed across many different neoplasms and serves as the basis for tumor detection using
glucose tracers with positron emission tomography (PET) (5–9). Recent studies have further shown
that lactate plays a critical role in fueling tumor progression, remodeling the tumor
microenvironment (TME), and inducing treatment resistance (10). Even more so, research has
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begun to reveal how lactate metabolism may be used to influence
the radiosensitivity of tumors (11–13). This mini-review will
provide a general overview of lactate metabolism and its role
within diverse cancers, and specifically, summarize recent studies
that suggest an interplay between lactate metabolism and
response to radiation.
LACTATE PATHWAY

In normal human cellular physiology, glucose serves as a major
source of lactate production (Figure 1). Glucose is most commonly
taken into cells via facilitated diffusions through glucose transporter
proteins (GLUT) (14). Once inside, glucose is phosphorylated to
glucose-6-phosphate by hexokinase, effectively entrapping it in the
cell (15). In the cytoplasm, glucose-6-phosphate is routed through
several oxygen-independent glycolytic reactions to generate two
ATP and two molecules of pyruvate, among other products (15).
Under normal aerobic conditions, the majority of this pyruvate is
then transported into the mitochondria via either mitochondrial
pyruvate carrier (MPC) or after conversion to lactate via
monocarboxylate transporters (MCTs), and undergoes oxidative
phosphorylation, generating another 32 to 34 ATP per glucose
molecule via the tricarboxylic acid cycle and electron transport
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chain (16, 17). However, under anaerobic conditions, cells are
unable to rely on oxidative phosphorylation to balance their
redox state, and pyruvate is preferentially converted to lactic acid
through an enzymatic reaction catalyzed by cytosolic lactate
dehydrogenase (LDH) (18). Within cells, lactic acid almost
completely dissociates to lactate and H+, and lactic acid
accumulation leads to acidification of the cytoplasm and potent
inhibition of further glycolysis (18, 19). As such, proper
physiological functioning depends on the efflux of lactate out of
the cell, and transport across mitochondrial and cellular membranes
requires MCTs. Once outside of a glycolytic cell, the excreted lactate
is ultimately destined for one of several possible fates. Under
physiological conditions, tissues like the heart, brain, and skeletal
muscles can use lactate as a fuel source, while the liver can convert
circulating lactate into glucose through the Cori cycle (20, 21).
Indeed, a growing body of literature has shown that such “shuttling
of lactate” between organs plays an important role in the overall
regulation of metabolism (22).
LACTATE AND CANCER

In blood and healthy tissues, the physiological concentration of
lactate is roughly 1.0 to 3.0 mmol/L. However, in cancer cells,
FIGURE 1 | Schematic of the lactate pathway and illustration of novel therapeutic strategies that have been shown to decrease tumor growth in preclinical studies.
Drugs discussed in this review are presented in red and are shown by their putative target of action. ECT, electron transport chain; G-6-P, glucose-6-phosphate;
GLUT, glucose transporter; cLDH, cytosolic lactate dehydrogenase; mLDH, mitochondrial lactate dehydrogenase; MCT1, monocarboxylate transporter 1; MCT4,
monocarboxylate transporter 4; MPC, mitochondrial pyruvate carrier; NAD+, nicotinamide adenine dinucleotide (oxidized); NADH, nicotinamide adenine dinucleotide
(reduced); PEP, phosphoenolpyruvate; PDH, pyruvate dehydrogenase.
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lactate concentrations may be up to an order of magnitude
higher. Such high concentrations of lactate have been shown to
arise primarily from enhanced rates of glycolysis (23).
Interestingly, despite its inherent inefficiency in terms of ATP
production, high rates of glycolysis have been observed in many
cancer cells, even under fully aerobic conditions and with intact
oxidative phosphorylation function (23). There are two major
theories regarding the preferential dependence of cancer cells on
glycolysis. First, the rate of ATP production through glycolysis is
much more rapid than oxidative phosphorylation allowing cells
to meet changing energy requirements, and second, glycolysis
produces many intermediate biosynthetic molecules required by
rapidly proliferating cells (24, 25). Regardless of teleology, there
are a number of adaptive enzymatic alterations that lead to this
so-called, “Warburg phenotype,” including changes in the
function of hexokinase 2 (HK2), pyruvate kinase type M2
(PKM2), GLUT1, LDH, MCTs, and pyruvate dehydrogenase
(PDH) (26–32). The resulting high concentrations of lactate have
been further implicated in a wide range of tumoral aberrations,
including changes in the TME, immune suppression, and
metastasis—where increasing tumoral lactate concentrations
are associated with an increased risk of metastatic
dissemination (10, 33–39).

Radiotherapy is a curative treatment modality in diverse cancer
types, including breast cancer (40, 41), head and neck cancers (42),
brain cancer (43), and many pediatric solid tumors (44–46).
Furthermore, radiotherapy remains an essential option for
palliation such that approximately 50% of patients with cancer
will receive radiation treatments during their disease course (47, 48).
Recent studies have found that high rates of glycolysis and the build-
up of lactate likely contribute to radioresistance in many tumor
types through diverse mechanisms including antioxidant protective
effects and promoting an immunosuppressive TME (39, 49–53).
Interestingly, through impacts on several cellular processes
including LDH and PDH, radiation itself can also promote lactate
production, which, in turn, may drive a degree of radioresistance
(39, 54–56). Within the extensive cellular machinery involved with
lactate metabolism, three promising targets, LDH, MCT1/4, and
MPC, have been shown to modulate radiosensitivity.
LACTATE DEHYDROGENASE (LDH)

LDH is a nicotinamide adenine dinucleotide (NAD+)
oxidoreductase enzyme that catalyzes the conversion between
pyruvate and lactate (57). While constitutively active in aerobic
conditions, LDH expression is upregulated in hypoxic
environments via HIF-1a (58). LDH is a tetrameric enzyme
comprised of 2 subunits that can combine in any of 5
combinations. The most common subtype, known as LDHA,
preferentially reduces pyruvate to lactate, and is frequently over-
expressed in many tumors (10). In addition, LDHA has been shown
to catalyze a number of “non-canonical” reactions, including the
formation of an “onco-metabolite”—2-hydroxyglutarate—in acidic
and anaerobic environments, thus promoting oncogenesis (59–65).
Recent studies demonstrate that 2-hydroxyglutarate can promote a
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transcriptional program of genes that regulate proliferation and
growth by inhibiting histone demethylation and TET-mediated
DNA demethylation (59–65). Clinically, increased tumoral LDHA
expression is associated with poorer clinical outcomes and recent
studies suggest it may serve as a prognostic biomarker (66–68).

Knockdown studies of both PKM2 and LDHA have been shown
to reduce ATP production, inhibit cell growth, decrease
invasiveness, and induce oxidative stress and radiosensitivity in
cancer cells (39, 69, 70). Several clinical and pre-clinical studies have
further analyzed the effects of both selective and non-selective
inhibitors of LDHA on cancer cells. AT-101, a naturally occurring
compound derived from cottonseed, is an oral non-selective
inhibitor of LDH that additionally inhibits the anti-apoptotic
proteins Bcl-2, Bcl-xL, Bcl-W, and Mcl-1 while simultaneously
stimulating pro-apoptotic signaling (71, 72). A study of AT-101
monotherapy in 23 men with metastatic castrate-resistant prostate
cancer showed that a dose of 20 mg/day was well tolerated and led
to a >50% decrease in PSA in roughly 9% of patients (71). Heist and
colleagues found that while AT-101 administered concurrently with
topotecan was safe for patients with small cell lung cancer (SCLC)
who had failed prior platinum-based chemotherapy, this regimen
failed to show significant activity with only 8% of patients
experiencing a partial response (73). Similarly, Baggstrom et al.
failed to demonstrate efficacy in patients with chemo-sensitive
recurrent SCLC (74). However, in pre-clinical studies, FX11—a
derivative of AT-101 that selectively inhibits LDHA over LDHB—
effectively inhibited tumorigenesis in vivo using human lymphoma
and pancreatic tumor xenograft models (38). When combined with
a small molecule inhibitor of NAD+ synthesis, FX11 was further
able to induce tumor regression in the lymphoma xenograft model
(38). Another study found that both galloflavin, a polyphenol
inhibitor of LDH, and oxamate, a competitive analogue of
pyruvate, disrupted the heat shock response in cultured
hepatocellular carcinoma (HCC) cells and induced cellular
senescence (75). Furthermore, two recent studies found that
inhibition of LDHA in glioblastoma cell lines with either oxamate
or the selective inhibitors, NHI-1 and NHI-2, improved
chemotherapy and radiation sensitivity and triggered apoptosis
and differentiation of cancer stem cells (76, 77). More recently,
PSTMB—a novel allosteric inhibitor of LDH—was found to reduce
cellular proliferation in in vitromodels of lung cancer, breast cancer,
melanoma, HCC, and colon cancer (78). In cultured colon cancer
cells, PSTMB reduced LDH activity in both aerobic and anaerobic
conditions without altering LDH expression, and increased reactive
oxygen species (ROS) formation (78).

Despite clinical and pre-clinical interest in LDH inhibitors,
there have been few studies of these agents in combination with
radiotherapy. Koukourakis, et al. assessed the effects of LDH
blockade on the treatment sensitivity of 2 glioblastoma cell lines,
U87MG and the more radio-resistant T98G. Silencing LDHA
gene expression or inhibiting LDH with oxamate led to enhanced
sensitivity to both radiation and temozolomide, with more
pronounced effects observed in the T98G cell line (76).
Another study by Zhai and colleagues showed that oxamate
increased radiation sensitivity primarily by enhancing
mitochondrial ROS generation, which in turn promoted
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apoptosis in two nasopharyngeal cancer cell lines (79). Yang et al.
found that radiotherapy increased lactate concentrations in the
TME which then led to localized immunosuppression via
MDSCs in murine models with explanted human pancreatic
cancer cells, and administration of the selective LDHA inhibitor
GSK2837808A concurrently with radiation improved
antitumoral T-cell response and reduced tumor progression
(39). These results suggest that lactate is at least partially
responsible for the observed radiotherapy-induced
immunosuppression. In a different tact, Judge et al. observed
that high lactate concentrations activated latent TGF-b, leading
to excessive fibrosis and found that increased LDHA expression
correlated with higher rates of pulmonary fibrosis in patients
treated with radiotherapy (80). Treatment with AT-101 four
weeks after exposing C57BL/6 mice to total-body and thoracic
radiation showed significantly decreased TGF-b expression and
rates of pulmonary fibrosis (80). Two early phase clinical trials
are examining the safety of concurrent chemoradiation with AT-
101 in glioblastoma and esophageal and esophagogastric
junction cancers (Table 1). Overall, these results highlight
many of the potential advantages of LDH inhibitors in
combination with radiotherapy; however, significant work still
remains in order to determine clinical utility.
MONOCARBOXYLATE TRANSPORTERS

MCTs constitute 14 isoforms of membrane transport proteins that
aid in the absorption and efflux of a wide range of biological
Frontiers in Oncology | www.frontiersin.org 4
compounds (83). Ubiquitously expressed, MCT1 primarily
mediates import of lactate along with other monocarboxylates
(84–87). On the other hand, MCT4 expression is regulated by
hypoxia through a HIF-1a-dependent mechanism. MCT4 has
lower affinity for lactate compared to MCT1, and predominantly
participates in lactate efflux (84–87). MCT1 and MCT4 are
overexpressed in many cancer types, and their upregulation
correlates with worse overall prognosis (17, 88–91). MCT1 and
MCT4 may help not only maintain metabolic balance for oxidative
and glycolytic cancer cells, respectively, but may also promote an
immunosuppressive milieu by increasing the acidity of the TME
secondary to the accumulation of lactate (92, 93). Increased acidity
has been found to decrease CD8+ T-cell cytotoxicity and CD8+
T-cell-mediated cytokine release; and induce macrophage
polarization to an immunosuppressive M2 state (3, 94). Thus,
studies have investigated MCTs as a therapeutic target and in
particular, a radiosensitizer, in various cancers (81, 82, 89, 95–98).

Numerous studies have found that knockdown or inhibition of
MCT1 and/or MCT4 decreases lactate levels and tumor cell growth,
migration, and invasion in vitro and in vivo for diverse cancers,
including bladder cancer, breast cancer, colon cancer, glioblastoma,
and liver cancer (89, 95–100). Interestingly, in a model of Burkitt’s
lymphoma, a selective small molecule inhibitor of MCT1,
AZD3965, also decreased lipid biosynthesis after lactate build-up,
and specifically, levels of phosphocholine were significantly
decreased by inhibition of choline kinase a expression and
de novo phosphocholine synthesis. Furthermore, in the TME,
AZD3965-treated tumors also displayed greater interaction with
dendritic cells—increasing tumor antigen presentation—and
natural killer cells—leading to direct killing of tumor cells (101).
TABLE 1 | Preclinical studies and clinical trials exploring lactate pathway targets with radiotherapy in cancer.

Preclinical Studies

Target Inhibitors In vitro/In vivo model Results Reference

LDH Oxamate In vitro: U87MG and T98G glioblastoma cell lines Oxamate and radiation decreased RD50 (76)
LDH Oxamate In vitro: CNE-1 and CNE-2 nasopharyngeal

carcinoma cell lines
Oxamate and radiation increased apoptosis at 24
hours after radiation and increased radiation-
induced inhibition of clonogenic survival. Oxamate
and radiation decreased tumor growth in vivo

(79)

In vivo: CNE-1 xenograft tumors

LDH GSK2837808A In vivo: Panc-02-luciferase orthotopic tumors GSK2837808A and radiation decreased tumor
growth and MDSC activation, and increased
cytotoxic CD8+ T cells within the tumor in vivo

(39)

MCT AR-C122982, AR-C155858, simvastatin,
2-cyano-3-(4-hydroxyphenyl)-2-
propenoic acid (CHC)

In vitro: CAL27 oral squamous cell carcinoma cell
line

AR-C122982, simvastatin, or CHC and radiation
decreased cell proliferation

(81)

MCT AZD3965 In vitro: H526 small cell lung cancer cell line AZD3965 and radiation increased intracellular
lactate concentration, and decreased tumor
growth and improved survival in vivo

(82)
In vivo: H526 small cell lung cancer xenograft
tumors

MPC 7-aminocarboxycoumarin 2 (7ACC2),
UK-5099

In vivo: SiHa cervical cancer xenograft tumors 7ACC2 or UK-5099 and radiation decreased
tumor growth

(11)

Clinical studies
Target Treatment regimen Diagnosis Results Reference
LDH AT-101 and chemoradiation with

docetaxel and 5-fluorouracil
(NCT00561197)

Locally advanced esophageal or
gastroesophageal junction cancer

Ongoing trial

LDH AT-101 and chemoradiation with
temozolomide or temozolomide alone
(NCT00390403)

Glioblastoma Multiforme Ongoing trial
July 2021 | Volume 11 | Art
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Two studies have examined the combination of MCT
inhibition and radiation in tumor models. Brandstetter et al.
studied the effects of multiple MCT inhibitors with or without
radiation on the oral squamous cell carcinoma (SCC) cell line
CAL27 in vitro. Specifically, they analyzed MCT1 inhibitors, AR-
C122982 and AR-C155858, the MCT4 inhibitor, simvastatin,
and the non-specific MCT inhibitor, 2-cyano-3-(4-
hydroxyphenyl)-2-propenoic acid (CHC) (81). Though the
MCT inhibitors differed in their potency and efficacy,
treatment decreased cell proliferation, viability, and wound
healing (81). The combination of radiation with specific MCT
inhibitors further resulted in enhanced anti-proliferative activity
(81). Currently, it is not known whether these other pathways
may further contribute to the effects seen in this study.

Many studies have found that AZD3965, a selective small
molecule inhibitor of MCT1, is effective in inhibiting tumor
growth in many different preclinical models of cancer (82, 99–
104). Two studies demonstrated that AZD3965 inhibited
bidirectional lactate transport leading to both accumulation of
intracellular lactate (with greater effects observed in hypoxic
conditions), and antitumor activity in SCLC models in vitro and
in xenograft models (82, 99). Bola et al. found that radiation
alone did not affect intracellular lactate in H526 SCLC cells, but
when delivered in combination with AZD3965, intracellular
lactate concentration significantly increased (82). Furthermore,
compared with radiation alone, AZD3965 for seven days with
concurrent radiation delivered on days 3-5 significantly
decreased tumor growth and improved survival with one
mouse showing no tumor recurrence (82). Unfortunately,
MCT1 inhibitors are ineffective in tumor cells that highly
express MCT4, which suggests that MCT4 expression may
serve as a biomarker for patient selection and predictor of
response to anti-MCT1 therapy (98, 99).

Of the MCT1 inhibitors, AZD3965 has entered early phase
clinical trials. Preliminary results from a phase I study
investigating the safety of AZD3965 in patients with refractory
advanced solid malignancies found that AZD3965 was well
tolerated. While the most common side effects were nausea
and fatigue, patients also experienced expected on-target effects
of retinal electroretinographic changes that were dose-limiting at
20 mg daily and increased urinary ketones (105). One patient
had exacerbation of previously undiagnosed tumor-associated
lactic acidosis, which was dose-limiting (105). Future research is
still needed to explore the tolerability and efficacy of AZD3965
and other MCT inhibitors alone and in combination
with radiation.
MITOCHONDRIAL PYRUVATE CARRIER

MPC is formed by two proteins encoded by genes MPC1 and
MPC2. It transports pyruvate from the cytoplasm into
mitochondria, and sits at the crossroads of glycolysis,
mitochondrial oxidative phosphorylation, and lactate
production (106, 107). In highly glycolytic tumors, decreased
MPC expression can lead to aerobic glycolysis and shunting to
Frontiers in Oncology | www.frontiersin.org 5
glutaminolysis, ultimately leading to greater tumor proliferation.
On the other hand, tumors that are more dependent on oxidative
phosphorylation may be more sensitive to alterations in MPC-
mediated pyruvate transport (106). Recent studies have also
found that lactate accumulation in tumors can promote the
synthesis of intermediates of the tricarboxylic acid cycle,
further supporting cell proliferation (12, 108, 109). Thus, there
is growing interest in MPC as a regulator of both oxidative
phosphorylation and lactate production in tumorigenesis.

Recently, 7-aminocarboxycoumarin 2 (7ACC2) was identified
as a novel MPC inhibitor that led to downstream reductions in
lactate influx and delays in tumor growth within in vitro models
of cervical cancer, colorectal cancer, breast cancer,
hypopharyngeal SCC, and pancreatic cancer (11, 110–112).
Corbet et al. found that 7ACC2 blocked MPC activity, thereby
inhibiting pyruvate metabolism and subsequently blocking
lactate influx consistent with another known MPC inhibitor,
UK-5099 (11). In a spheroid model using FaDu hypopharyngeal
SCC cells, treatment with MPC inhibitors produced cytotoxic
effects and led to decreased hypoxia in the spheroids (11). In
SiHa cervical cancer xenograft models, the combination of
7AAC2 with radiation using either 16 Gy in one fraction or 20
Gy in five fractions, led to significantly decreased tumor growth
compared with 7AAC2 or radiation monotherapy. Similar
results were also observed in vivo using shRNA targeting
MPC1 or UK-5099 (11). These preclinical data suggest that
MPC represents a novel target warranting further clinical
investigation both alone and in combination with radiation.
FUTURE DIRECTIONS

Many preclinical studies have identified multiple targets within
the lactate metabol ic pathway that play a role in
radiosensitization, and future research is ongoing to identify
novel targets for lactate metabolism. Studies exploring safety of
these targets are still needed, particularly for patients at risk for
metabolic acidosis either from co-morbidities or prior cancer
therapy. Furthermore, it remains important to note that different
solid tumors may have unique alterations in lactate metabolism
and intratumoral metabolic heterogeneity may also cause
differential response to inhibition of lactate metabolism (10,
108, 113, 114). These characteristics are important
considerations for future studies and increasingly support
identifying tumor types in which harnessing radiosensitizing
properties through lactate metabolism inhibition has the
greatest therapeutic benefit. For example, additional imaging
techniques, such as 13C magnetic resonance spectroscopy, can
better provide dynamic imaging of lactate metabolic
reprogramming (115–117). A recent clinical trial explored de-
escalation of radiation to 30 Gy for patients with human
papillomavirus-associated oropharyngeal tumors who had no
hypoxia at baseline using dynamic fluorine-18-labeled
fluoromisonidazole PET or resolution of hypoxia during
intratreatment PET; while patients with persistent hypoxia
received 70 Gy (118). Identifying patients with hypoxic tumors
July 2021 | Volume 11 | Article 672339
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or tumors with specific alterations of lactate metabolism may
allow for improved patient selection for future clinical trials
involving radiation and inhibitors of lactate metabolic pathways.
CONCLUSION

A growing body of evidence has shown that, in addition to its use
as a fuel source, lactate also promotes tumor growth.
Interestingly, elevated lactate levels and lactate-mediated
downstream pathways can cause changes in transcriptional
programming (59–65), tumor immune microenvironment (10,
39), lipid synthesis (101), among others (3). The effects of these
downstream changes, particularly with regards to decreasing the
levels of ROS, can contribute to radio-resistance (3). Recent
studies have found that inhibitors of LDH, MCT, and MPC can
serve as radiosensitizers in models of glioblastoma, pancreatic
Frontiers in Oncology | www.frontiersin.org 6
cancer, SCLC and cervical cancer (11, 39, 76, 82). There remains
limited clinical investigation of these inhibitors with radiation as
only two early phase clinical trials are studying AT-101 in
combination with radiation (Table 1). Future research is
needed to understand the mechanisms by which regulators of
lactate metabolism promote tumorigenesis, identify tumor
subtypes that are uniquely dependent on lactate pathways, and
to further explore targeted inhibitors of this pathway in
preclinical and clinical studies.
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