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Cervical cancer screening

Cervical cancer is a major global health issue, particularly in developing countries where access to healthcare is 
limited. Early detection of pre-cancerous lesions is crucial for successful treatment and reducing mortality rates. 
However, traditional screening and diagnostic processes require cytopathology doctors to manually interpret 
a huge number of cells, which is time-consuming, costly, and prone to human experiences. In this paper, we 
propose a Multi-scale Window Transformer (MWT) for cervical cytopathology image recognition. We design 
multi-scale window multi-head self-attention (MW-MSA) to simultaneously integrate cell features of different 
scales. Small window self-attention is used to extract local cell detail features, and large window self-attention 
aims to integrate features from smaller-scale window attention to achieve window-to-window information 
interaction. Our design enables long-range feature integration but avoids whole image self-attention (SA) in 
ViT or twice local window SA in Swin Transformer. We find convolutional feed-forward networks (CFFN) are 
more efficient than original MLP-based FFN for representing cytopathology images. Our overall model adopts a 
pyramid architecture. We establish two multi-center cervical cell classification datasets of two-category 192,123 
images and four-category 174,138 images. Extensive experiments demonstrate that our MWT outperforms state-

of-the-art general classification networks and specialized classifiers for cytopathology images in the internal and 
external test sets. The results on large-scale datasets prove the effectiveness and generalization of our proposed 
model. Our work provides a reliable cytopathology image recognition method and helps establish computer-

aided screening for cervical cancer. Our code is available at https://github .com /nmyz669 /MWT, and our web 
service tool can be accessed at https://huggingface .co /spaces /nmyz /MWTdemo.
1. Introduction

Cervical cancer is the fourth most frequently diagnosed cancer, with 
an estimated 604,000 new cases and 342,000 deaths worldwide in 2020 
[1]. The most commonly used cervical cancer screening method is the 
Papanicolaou (Pap) smear test, which involves examining cells collected 
from the cervix under a microscope. The widespread application of cy-

tology screening in recent decades has been proven essential for the 
early detection and timely treatment of cervical cancer [2]. However, 
screening cervical smears under a microscope by cytologists consumes 
a significant amount of time and labor [3], and the accuracy of cervical 
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cancer screening is limited by the subjective experiences of cytologists 
[4].

In recent years, artificial intelligence (AI) has made significant 
progress in medical imaging [5]. Computer-aided cervical cancer 
screening reduces the workload of cytologists and improves diagnostic 
accuracy. The key to computer-aided screening is accurate and robust 
cytopathology image recognition. Traditional cervical cell recognition 
methods mainly rely on the knowledge of cytologists to extract fea-

tures such as nucleus size, shape, and nucleus-to-cytoplasm ratio [6]. 
Therefore, the accuracy of traditional rules-based methods is highly de-

pendent on precise nuclear segmentation techniques and the rationality 
of feature engineering.
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With the development of deep learning, convolutional neural net-

works (CNNs) are widely used to recognize cervical cytopathology 
images. Compared with traditional methods, CNNs can automatically 
extract features and learn mappings in an end-to-end way. Earlier, Shan-

thi et al. [7] and Zhang et al. [8] used shallow CNNs for cervical cell 
recognition. Chen et al. [9] and Li et al. [10] utilized deep CNNs such 
as ResNets to classify cervical cells. Later, Lin et al. [11] and Dong et al. 
[12] introduced cell morphology features in CNNs for cervical cell iden-

tification. Fang et al. [13] developed ordered loss with CNNs to achieve 
better classification accuracy. However, convolutional neural networks 
are based on sliding window operations for local perception and lacks 
in long-range modeling capability.

Transformer [14] can capture long-range information with self-

attention and has been widely used in natural language processing. For 
the first time, Dosovitski et al. [15] established a Vision Transformer 
(ViT) model based on a self-attention module for image classification 
tasks. Some work [16–18] follows transformer encoders for computer 
vision tasks and achieve comparable or better performance than CNNs. 
Global modeling requires substantial computational resources since 
the computational and spatial complexity of multi-head self-attention 
(MSA) in Transformers is quadratic in image size rather than linear 
in CNNs. To alleviate this difficulty, Swin Transformer [19] proposes 
Window-based Multi-head Self-Attention (W-MSA) to compute Multi-

head Self-Attention (MSA) within a small window rather than across 
the entire image. Therefore, Swin Transformer models local relation-

ships and fuses information between windows using shifted windows 
as shown in Fig. 1(a). However, this approach requires two successive 
Swin Transformer Blocks to perform W-MSA and SW-MSA to integrate 
features across windows, increasing the parameter and computational 
cost.

To the best of our knowledge, multi-scale information is beneficial 
for identifying cervical cytopathology images. Large-scale information 
allows easier access to structural and domain information of the cell 
as a whole and the relationships between contexts. In contrast, small-

scale information makes it easier to obtain detailed information such 
as cell texture and boundaries. However, most of the above work uses 
feature maps of different sizes at different stages without really fusing 
multi-scale information simultaneously.

In this paper, we propose a Multi-scale Window Transformer (MWT) 
for cervical cytopathology image classification. We design multi-scale 
window multi-head self-attention (MW-MSA) to simultaneously inte-

grate cell features of different scales. The attention heads were divided 
into three groups in each layer to perform large-scale window self-

attention (LWSA), medium-scale window self-attention (MWSA), and 
small-scale window self-attention (SWSA). Small window self-attention 
is used to extract local cell detail features, and large window self-

attention aims to integrate features from smaller-scale window atten-

tion to achieve window-to-window information interaction. Our design 
enables long-range feature integration but avoids whole image self-

attention (SA) in ViT or twice local window SA in Swin Transformer. We 
fuse the self-attention information of three different scales of windows 
to represent cells better. The large-scale features allow easier access to 
cell overall structural and image domain information. In contrast, the 
small-scale features make it easier to obtain detailed information, such 
as cell textures and boundaries. Inspired by P2T [20], we find that the 
convolutional feed-forward network (CFFN) is more efficient than the 
original MLP-based FFN for representing cytopathology images. Follow-

ing PVT [16] and Swin Transformer [19], our overall model adopts a 
pyramid architecture to gradually decrease the feature map size and 
increase the channel number at different stages like CNNs. We estab-

lish two large-scale multi-center cervical cell classification datasets of 
two-category 192,123 images and four-category 174,138 images. Exten-

sive comparison experiments demonstrate that our MWT outperforms 
state-of-the-art (SOTA) general classification networks and specialized 
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classifiers for cytopathology images in the internal and external test 
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sets. Besides, a series of ablation experiments verify the effectiveness of 
our design.

The main contributions of this paper are summarized as follows:

• We propose a multi-scale window Transformer (MWT) for cervical 
cytopathology image classification. The multi-scale window multi-

head self-attention design enables long-range feature integration 
but avoids whole image SA in ViT or twice local window SA in 
Swin Transformer.

• We construct two multi-center cervical cell classification datasets 
of two-category 192,123 images and four categories of 174,138 
images and demonstrate the effectiveness and superiority of MWT 
through extensive experiments.

2. Related work

Here, we only review CNN-based methods for cervical cytopathol-

ogy image recognition and vision Transformer methods for general 
image classification.

2.1. Cervical cytopathology image recognition methods based on CNN

In the last five years, convolutional neural networks have been ap-

plied to cervical cytopathology image recognition. For example, Zhang 
et al. [8] proposed a model Deep-Pap, which directly used convolu-

tional networks to classify cells by transferring the weights on a natural 
image dataset. Wu et al. [21] focused on augmenting image datasets 
and constructed a model DCNN to identify the cervical cell images. Lin 
et al. [11] classified cervical cells in Pap smears by integrating cell mor-

phology into CNN. Dong et al. [12] combined convolutional networks 
with artificial features to introduce prior features of cell images into an 
Inception network. Chen et al. [9] proposed a CytoBrain cell recogni-

tion method for cervical lesions by a compact VGG model. Fang et al. 
[13] proposed a lightweight classification method based on ShuffeNet 
and added channel attention. Some work further introduced attention 
mechanisms into CNNs. However, these CNN-based cytopathology im-

age recognition methods have disadvantages in long-range modeling 
since the sliding window convolution operation for local perception.

2.2. Vision transformer methods

Transformer [14] has been widely used in natural language pro-

cessing. In the last three years, Transformer’s powerful long-distance 
modeling capability has attracted much attention from computer vision 
researchers. For example, Dosovitski et al. [15], for the first time, estab-

lished a Vision Transformer (ViT) model based on a pure self-attention 
module for image classification tasks. Since ViT is whole image self-

attention, its computation amount is enormous. Yuan et al. [17] pro-

posed a T2T-ViT model to simulate local information by aggregating 
adjacent tokens and reducing the sequence length using a step-wise 
recursive approach. Wang et al. [16] proposed Pyramid Vision Trans-

former (PVT). They introduced a progressive shrink pyramid to gradu-

ally decrease the feature map size and increase the channel number at 
different stages, like CNNs. Liu et al. [19] designed Swin-Transformer 
architecture to solve the scaling problem and high computational com-

plexity using a window shifting strategy. Wu et al. proposed CvT [22]

and introduced convolution into the vision Transformer, thus improving 
performance and efficiency. Wu et al. [20] proposed a pyramid pooling 
Transformer (P2T) with high computational efficiency and context ex-

traction capability. For cervical cytopathology image recognition, a few 
works involved a vision Transformer. Recently, Khan et al. [23] used 

Swin Transformer to classify cervical cells.



Computational and Structural Biotechnology Journal 24 (2024) 314–321J. Yi, X. Liu, S. Cheng et al.

Fig. 1. (a) In contrast, the previous Swin Transformer [19] is performing window multi-head self-attention (W-MSA) and shifted-window multi-head self-attention 
(SW-MSA) in two adjacent layers. Two successive Swin Transformer Blocks fuse the information between windows. (b) The proposed Multi-scale Window Trans-

former performs self-attention computation in windows of different scales by dividing multiple self-attention heads into three groups in the same layer. MWT can 
simultaneously fuse large-scale, medium-scale, and small-scale information through LWSA, MWSA, and SWSA in a Multi-scale Window Transformer Block.

Fig. 2. (a) The overall architecture of our multi-scale window Transformer (MWT). (b) The multi-scale window Transformer block. (c) The multi-scale window 
multi-head self-attention (MW-MSA). (d) The convolutional feed-forward network (CFFN). (e) The schematic diagram of multi-scale window fusion.
3. Method

In this section, we elaborate on the three parts of our method: 
network architecture, multi-scale window-based self-attention, and con-
316

volutional feed-forward network.
3.1. Network architecture

The overall Architecture of our multi-scale window Transformer 
(MWT) is shown in Fig. 2(a). The input image is divided into 𝐻4 ×

𝑊

4
patches, with each patch treated as a “token”. The original pixels of 

each patch are linearly projected to C by a patch embedding module. 
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Then, the proposed multi-scale window transformer blocks are stacked 
to form the network. The network consists of four stages with feature di-

mensions of C, 2C, 4C, and 8C, respectively. Before the last three stages, 
a stride of 2×2 convolution is used to down-sample the feature maps, 
and a linear projection doubles the number of channels. This pyramid 
framework allows for efficient use of computational resources while re-

taining vital information in the image. By down-sampling the feature 
maps and gradually increasing the number of channels, the network 
can learn features of different scales at different stages.

The patch embedding module (yellow part in Fig. 2(a)) is a crucial 
component of our MWT. It is responsible for dividing the input image 
into patches and projecting the pixels into feature space. A Conv2d im-

plements the patch embedding module with a convolution kernel size 
of 4×4 and a stride of 4×4 and divides the input image into 𝐻4 ×

𝑊

4
patches. Each patch is projected into a C-dimension vector set to 96 in 
the proposed model. To achieve the fusion of adjacent patches, the em-

bedding modules of the latter three transformer blocks are composed of 
Conv2d with a convolution kernel size of 2×2 and a stride of 2×2. This 
allows for gradual feature concentration as the network deepens. This 
design achieves the pyramidal structure of the overall model.

We replace standard multi-head self-attention Transformer blocks 
with multi-scale window Transformer blocks (blue part in Fig. 2(a)) 
by designing multi-scale window multi-head self-attention (MW-MSA), 
which will be described later. The block consists of a MW-MSA module 
and a CFFN module, as illustrated in Fig. 2(b). Before each MW-MSA 
and CFFN, a layer norm (LN) layer is applied, and a residual connection 
is used after each module to improve the flow of information through 
the network. The multi-scale window Transformer blocks are stacked 
N1, N2, N3, and N4 times in stage 1, stage 2, stage 3, and stage 4, 
respectively. The layers N1, N2, N3, and N4 are set to 2, 4, 4, and 2, 
respectively. MWT’s modular design allows easy customization to suit 
different model size requirements.

3.2. Multi-scale window-based self-attention

Most visual Transformer models [15–18] used a global self-attentive 
mechanism. Global computation leads to a considerable computation 
amount proportional to the number of patches. To address this issue, 
Swin-Transformer [19] developed a window-based self-attention mech-

anism to reduce the computational cost by designing a shifting window 
strategy to integrate features across windows. But this manner needs 
consecutive twice MSA and adds parameters and computation cost.

We design multi-scale window multi-head self-attention (MW-MSA) 
to integrate cell features of different scales. Self-attention heads were 
divided into three groups, then self-attention was performed on each of 
the three scales. As shown in Fig. 2(b-c), MW-MSA simultaneously con-

sists of small-scale, medium-scale, and large-scale window self-attention 
in a self-attention module to extract local details and global information 
and then integrates these features across different scales. The small-

scale window self-attention mechanism (SWSA) is used to extract local 
details such as cell texture, features of the nucleus cytoplasm, and cell 
boundaries. We can take full advantage of reduced computation by 
using smaller windows to save resources. This allows us to capture fine-

grained details that more oversized windows may miss. At the same 
time, the large-scale window self-attention (LWSA) integrates the infor-

mation of small-scale window attention at the same layer to achieve 
window-to-window information interaction for long-distance modeling. 
This is meaningful for representing the cell’s overall structural and 
image domain information. We also introduce medium-scale window 
self-attention (MWSA), which transitions between the two scales. The 
multi-scale window Transformer block is computed as below:

𝑧
𝑙 =𝐿𝑁(𝑧𝑙−1) (1)

𝑧
𝑙 = [𝑧1, 𝑧2, 𝑧3] (2)
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�̂� = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐿𝑊 𝑆𝐴(𝑧1),𝑀𝑊 𝑆𝐴(𝑧2), 𝑆𝑊 𝑆𝐴(𝑧3)) + 𝑧𝑙−1 (3)
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𝑧𝑙 = 𝐹𝐹𝑁(𝐿𝑁(�̂�)) + �̂� (4)

where 𝑧𝑙−1 and 𝑧𝑙 are the input and output of the previous Transformer 
block.

Our design implements long-range feature integration but avoids the 
full-image SA in ViT or the two-local-window SA in Swin Transformer, 
thus reducing the computational complexity of self-attention to some 
extent. Supposing each window contains M × M patches, the window-

based computational complexity of Swin [19] on an image of h × w 
patches is shown in Equation. (5).

Ω(𝑊 −𝑀𝑆𝐴) = 4ℎ𝑤𝐶2 + 2𝑀2ℎ𝑤𝐶 (5)

The computational complexity of our proposed MWT is Equation. (6),

Ω(𝑀𝑊 −𝑀𝑆𝐴) = 4ℎ𝑤𝐶2 +
2ℎ𝑤𝐶(𝐿2

𝑤
+𝑀2

𝑤
+𝑆2

𝑤
)

3
(6)

where 𝐶 is the feature channel number, 𝐿𝑤 is the large window size, 
𝑀𝑤 is the medium window size, and 𝑆𝑤 is the small window size. Since 
our setting 𝐿𝑤 is equal to M (default 7) and 𝑆𝑤, 𝑀𝑤 are smaller than 
𝐿𝑤, the computational complexity of our MWT is lower than that of 
Swin. Specifically, we divide the features into three groups: LWSA with 
a window size 7×7, MWSA with a window size 4×4, and SWSA with a 
window size 2×2.

As shown in the schematic diagram in Fig. 2(e), the black grid rep-

resents the divided image patches, and the red grid represents the split 
windows. The SWSA calculates the self-attention of the nearest patches, 
which can better focus on the similarity relationship between several 
image patches nearby and thus obtain the local details of cells, such 
as texture and edge information. The LWSA can better discriminate in-

formation from large-scale ranges such as background and cell context. 
The larger window also integrates the information on the self-attention 
of several smaller windows and plays the role of information interac-

tion between smaller windows. The MWSA is a balance between SWSA 
and LWSA. In summary, the multi-scale window self-attention mecha-

nism achieves the simultaneous integration of multi-scale windows at 
the same layer. When computing self-attention, we follow Swin [19], 
using relative position bias. The following is the formula for calculating 
self-attention.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑄𝐾
𝑇

√
𝑑𝑘

+𝐵)𝑉 (7)

Here, 𝑄, 𝐾, 𝑉 ∈𝑅(𝑀2×𝑑) are the query, key, and value matrices, d is the 
query/key dimension, and 𝑀2 is the number of patches in a window.

3.3. Convolutional feed-forward network

Feed-forward networks are an essential part of the Transformer 
block and are often used to compensate for the possible lack of fit-

ting ability in attention mechanisms. The classical visual Transformer 
[15] uses linear fully connected layers as a feed-forward neural net-

work (FFN). Inspired by [20], we think the convolutional feedforward 
network is more accessible for modeling image feature spatial mapping 
in vision recognition tasks and reduces computation parameters. Thus, 
we use a convolutional feed-forward network to replace the classical 
MLP-based feed-forward network.

As shown in Fig. 2(d), the convolutional feed-forward network 
(CFFN) consists of two convolutional layers (Conv), one depthwise sep-

arable convolution layer (DWConv), and two Hard-Swish activation 
layers between them. The Hard-Swish activation function is proven to 
perform better than ReLU on deeper models.

4. Experimental analysis

We performed experiments on our private multi-center cervical cy-

topathology image classification datasets. In the following, we first in-
troduce the datasets, training details, and evaluation metrics. Then, we 
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Table 1

Dataset of two-category cytopathology images.

Training Set Validation Set Test Set Total

pos neg pos neg pos neg pos neg

data1 22,559 45,118 2,820 5,640 2,820 5,640 28,199 56,398

data2 7,862 15,725 983 1,966 983 1,966 9,828 19,656

data3(external) 0 0 0 0 3,376 6,752 3,376 6,752

data4 1,898 3,795 237 474 237 474 2,372 4,744

data5 3,211 6,422 401 803 401 803 4,014 8,028

data6 1,964 3,928 246 491 246 491 2,455 4,910

data7 6,242 12,483 780 1,560 780 1,560 7,802 15,604

data8(external) 0 0 0 0 2,450 4,900 2,450 4,900

data9 1,079 2,158 135 270 135 270 1,349 2,698

data10 1,757 3,514 220 439 220 439 2,196 4,392

Table 2

Dataset of four-category cytopathology images.

Training Set Validation Set

ASCUS HSIL LSIL neg ASCUS HSIL LSIL neg

data1 4,188 14,378 3,994 45,118 524 1,797 499 5,640

data2 4,082 3,238 542 15,725 510 405 68 1,966

data3(external) 0 0 0 0 0 0 0 0

data4 1,316 419 162 3,795 165 52 20 474

data5 3,014 22 175 6,422 377 3 22 803

data6 1,711 10 243 3,928 214 1 30 491

data7 2,435 2,587 1,219 12,483 304 323 152 1,560

Test Set Total

ASCUS HSIL LSIL neg ASCUS HSIL LSIL neg

data1 524 1,797 499 5,640 5,235 17,972 4,992 56,398

data2 510 405 68 1,966 5,103 4,048 677 19,656

data3(external) 2,365 709 302 6,752 2,365 709 302 6,752

data4 165 52 20 474 1,645 524 203 4,744

data5 377 3 22 803 3,767 28 219 8,028

data6 214 1 30 491 2,139 12 304 4,910

data7 304 323 152 1,560 3,044 3,234 1,524 15,604
Fig. 3. Examples of the multi-center datasets of cervical cytopathology images.

compare the proposed multi-scale window Transformer network with 
the previous state-of-the-art CNNs and Transformers. Finally, we ablate 
the essential design elements of our method.

4.1. Datasets

As shown in Table 1 and Table 2, we established two multi-center 
cervical cell classification datasets of two-category 192,123 images 
(ten cohorts) and four-category 174,138 images (seven cohorts). The 
dataset was obtained from Hubei Maternal and Child Health Hospi-

tal and Tongji Medical College of Huazhong University of Science and 
Technology in Hubei Province, China. The images were captured by dif-

ferent instruments, including instruments from 3DHISTECH (with 0.234 
μm/pixel, under × 20 magnification), Wuhan National Laboratory for 
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Optoelectronics (WNLO) homemade equipment (with 0.293 μm/pixel, 
under × 20 magnification), and Shenzhen Shengqiang Technology Co., 
Ltd. (with 0.180 μm/pixel, under × 40 magnification).

The datasets encompass various variables, such as diverse hospitals, 
production batches, and imaging instruments. These factors inherently 
influence image attributes like brightness, contrast, and resolution. 
These variations effectively reflect the heterogeneity typically encoun-

tered in real-world image acquisition scenarios. As shown in Fig. 3, 
there are differences in the staining style and resolution of cervical cell 
images due to the differences in staining protocols and imaging scan-

ners of different hospitals. Therefore, model generalization is critical for 
multi-center cervical cell datasets. Using the multi-source data, we can 
better train our model with diverse data distributions and validate its 
generalization by setting an external test set.

4.1.1. Two categories

The two-category dataset includes positive and negative cells. The 
specific data composition and division are shown in Table 1. To facil-

itate training our model on diverse data and evaluating its generaliza-

tion, datasets 3 and 8 were randomly selected from our ten datasets as 
the external test set, and divided the internal data set into training, vali-

dation, and test sets in the ratio of 8:1:1. There are a total of ten cohorts 
and 192,123 images. The ratio of negative images to positive images is 
2:1.

4.1.2. Four categories

The four-category dataset includes ASCUS, HSIL, LSIL, and nega-

tive. ASCUS represents atypical squamous cells of undetermined signif-

icance. HSIL refers to high-grade squamous intraepithelial lesions, and 
LSIL refers to low-grade squamous intraepithelial lesions. The specific 

dataset composition and data division are shown in Table 2. As with the 
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Table 3

Comparison of experimental results of two-category classification.

Models Params(M) GFLOPs Internal Test Acc(%) Data3 Acc(%) Data8 Acc(%)

ConvNeXt-Tiny 27.8 4.45 93.3 91.0 83.2

Swin-Tiny 27.5 4.37 95.2 91.8 85.7

CvT-13 19.6 4.06 95.1 93.6 87.4

T2T-ViT_t-14 21.1 4.35 96.0 92.1 83.2

PVT_v2_b2 24.9 3.90 95.5 93.2 88.3

P2T-Small 23.6 3.65 94.8 92.4 88.6

Deeppap 13.4 1.09 93.5 89.8 85.7

Wu et al 58.3 1.13 94.1 91.0 85.6

Fang et al 1.3 0.15 95.3 91.6 86.0

MWT 19.8 3.53 96.1 94.3 88.9

Table 4

Comparison of experimental results of four-category classification.

Models Params(M) GFLOPs Internal Test Acc(%) Data3 Acc(%)

ConvNeXt-Tiny 27.8 4.45 85.0 72.9

Swin-Tiny 27.5 4.37 88.4 77.9

CvT-13 19.6 4.06 88.8 77.8

T2T-ViT_t-14 21.1 4.35 90.3 77.3

PVT_v2_b2 24.9 3.90 85.9 78.5
P2T-Small 23.6 3.65 88.7 75.9

Deeppap 13.4 1.09 87.4 74.5

Wu et al 58.3 1.13 86.7 76.3

Fang et al 1.3 0.15 88.1 75.7

MWT 19.8 3.53 89.1 79.1
two-category classification, we use dataset 3 as an external test set. We 
divided the internal dataset into training, validation, and test sets in the 
ratio of 8:1:1. There are seven cohorts and 174,138 images. The ratio 
of negative to positive images is 2:1, and the ratio of the three positive 
categories is natural.

4.1.3. Mendeley LBC dataset

The Mendeley LBC dataset [24] includes NILM, LSIL, HSIL, and SCC. 
NILM represents negative for intraepithelial lesion or malignancy. HSIL 
refers to high-grade squamous intraepithelial lesions. LSIL refers to low-

grade squamous intraepithelial lesions. SCC refers to Squamous Cell 
Carcinoma. Consistent with the previous setup, we divided the inter-

nal dataset into training, validation, and test sets in the ratio of 8:1:1. 
There are a total of 963 images with a size of 2048 × 1536 pixels.

4.2. Evaluation metrics

We calculate the accuracy to evaluate our proposed model and other 
current SOTA models, and the accuracy is defined as follows.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(8)

True positive (TP) refers to the number of positive samples predicted 
correctly. True negative (TN) refers to the number of negative samples 
predicted correctly. False positives (FP) and false negatives (FN) are the 
number of negative and positive samples classified incorrectly.

In addition, we also calculated the Params and FLOPs of the model 
using Python’s “thop” package, as shown in Table 3.

4.3. Experiment setup

All models were run on the PyTorch framework, and the compari-

son models used the official codes. For training all models, we used the 
data augmentation methods [25] for improving model generalization, 
and then we resized the input images to 224×224 pixels. We randomly 
selected 64,000 positive and 64,000 negative images from the training 
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set as an epoch with a batch size 64. We trained our model and all the 
comparison models from scratch for 120 epochs without inheriting any 
weights when we trained two-class classification. To save training time, 
we transferred the last model parameters from two-class classification to 
four-class training and then further trained 40 epochs. For the Mende-

ley LBC dataset, we trained all models from scratch for 120 epochs 
except ConvNeXt-Tiny (ConvNeXt-Tiny only achieved 68.4% accuracy 
with the default 120 epochs, thus we trained it with more epochs). All 
models were trained using the AdamW [26] optimizer using a cosine 
decay learning rate scheduler [27]. A batch size of 64, an initial learn-

ing rate of 0.0001, and a weight decay 0.05 were used. We uniformly 
selected the model with the best performance on the validation set over 
all models as the final model and then evaluated its performance on the 
test sets.

4.4. Experiment results

To validate the superiority of MWT, we compared it with SOTA gen-

eral classification Transformers networks including Swin Transformer 
[19], CvT [22], PVT [16], T2T-ViT [17] and P2T [20], and recent 
SOTA convolutional network ConvNeXt [28], and specialized classi-

fiers for cytopathology images including DeepPap [8], Wu’s method 
[21] and Fang’s method [13]. For the general classification network, we 
selected a suitable configuration for each model to achieve similar pa-

rameter numbers and computation amounts. For classifiers specialized 
for cytopathology images, we used the default configuration of these 
methods.

In the two-category classification task, we tested all models’ per-

formance using internal and external test sets. The results are pre-

sented in Table 3. For fairness, we compared our model’s accuracy 
with state-of-the-art networks with comparable parameter numbers and 
FLOPs. The results show that our MWT outperforms ConvNeXt-Tiny, 
Swin-Tiny, CvT-13, PVTv2-b2, T2T-ViT_t-14, and P2T-Small on the ex-

ternal test dataset data3, with improvements by 3.3%, 2.5%, 0.7%, 
1.1%, 2.2% and 1.9%, respectively. Similarly, on external test dataset 
data8, our model’s accuracy is significantly higher than these models 
by 5.7%, 3.2%, 1.5%, 0.6%, 5.7%, and 0.3%, respectively. Our MWT 

also achieves the best accuracy on the internal test set. For specialized 
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Table 5

Comparison of experimental results of four-category 
classification on the Mendeley LBC dataset.

Models Params(M) GFLOPs Acc(%)

ConvNeXt-Tiny 27.8 4.45 88.4

Swin-Tiny 27.5 4.37 92.6
CvT-13 19.6 4.06 87.4

T2T-ViT_t-14 21.1 4.35 90.5

PVT_v2_b2 24.9 3.90 89.5

P2T-Small 23.6 3.65 91.6

Deeppap 13.4 1.09 84.2

Wu et al 58.3 1.13 84.2

Fang et al 1.3 0.15 91.6

MWT 19.8 3.53 94.7

classifiers for cytopathology images, our MWT has a more noticeable 
improvement of about three percentage points on the external test sets 
and 0.8-2.6 percentage points on the internal test set.

In the four-class classification task, we also tested all models’ perfor-

mance using internal and external test sets. The results are presented 
in Table 4. The results show that our MWT outperforms ConvNeXt-

Tiny, Swin-Tiny, CvT-13, PVTv2-b2, T2T-ViT_t-14, and P2T-Small on 
the external test set Data3, with improvements of 6.2%, 1.2%, 1.3%, 
0.6%, 1.8% and 3.2%, respectively. On the internal test set, T2T-ViT ob-

tains the highest accuracy of 90.3%. Our MWT achieves the sub-optimal 
accuracy of 89.1% and outperforms other methods by an accuracy im-

provement of 0.3%-4.1%. For specialized classifiers for cytopathology 
images, our MWT has a noticeable improvement of 2.8%-4.6% on the 
external test set and 1.0%-2.4% on the internal test set. These results 
demonstrate the superiority of our model compared to these state-of-

the-art models. The higher accuracy of our model on both internal and 
external test sets indicates that our model can generalize well to new 
data and is robust enough to perform well in multi-center scenarios.

The Mendeley LBC dataset classification task results are presented 
in Table 5. The results show that our MWT outperforms ConvNeXt-

Tiny, Swin-Tiny, CvT-13, PVTv2-b2, T2T-ViT_t-14, and P2T-Small with 
improvements of 6.3%, 2.1%, 7.3%, 5.2%, 4.2% and 3.1%, respectively. 
For specialized classifiers for cytopathology images, our MWT has a 
noticeable improvement of 3.1%-10.5%. These results also demonstrate 
the superiority of our model compared to these state-of-the-art models.

4.5. Ablation studies

In this section, we performed ablation studies to analyze the effec-

tiveness of our design and hype-parameter choice in MWT. We explored 
the influence of the number of scales, window size in self-attention, con-

volutional feed-forward network, and stage distribution configuration. 
We set up a baseline model of MWT, which integrates window self-

attention of three scales with CCFN. The window sizes are 2, 4, and 7, 
respectively. The depths N1, N2, N3, and N4 of the four stages of the 
baseline model are set to 2, 4, 4, and 2, respectively. The number of 
channels C is set to 96. We changed these configurations to analyze the 
influence.

4.5.1. Number of scales

To investigate the effect of multi-scale windows, we conducted the 
following ablation experiments. LW represents the self-attention within 
a window size of 7×7; MW represents the self-attention within a win-

dow size of 4×4; and SW represents the self-attention computation 
within a window size of 2×2. To ensure the fairness of comparison, we 
controlled the same number of channels for the three models as 96. As 
a result, the number of channels for each scale of self-attention for the 
two-scale windows is C/2, and the number of channels for each scale of 
self-attention for the three-scale windows is C/3. The experimental re-
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sults in Table 6 show that multi-scale windows, especially three-scale 
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Table 6

Ablation study results of the number of scales.

Scales Internal Data3 Acc(%) Data8 Acc(%)

LW 95.9 93.8 88.3

LW+MW 96.2 94.0 88.8

LW+MW+SW 96.1 94.3 88.9

MW+SW 95.8 94.0 87.9

SW 95.9 94.0 88.5

Table 7

Ablation study results of the window sizes.

Window_Sizes Internal Data3 Acc(%) Data8 Acc(%)

(4,7,12) 96.4 94.5 88.8

(2,7,12) 96.2 93.8 88.4

(2,4,7) 96.1 94.3 88.9

Table 8

Ablation study results of the convolutional feed-

forward network.

FFN Internal Data3 Acc(%) Data8 Acc(%)

MLP 95.3 92.3 86.8

CFFN 96.1 94.3 88.9

windows, significantly improve the classification accuracy of external 
test data. The experimental results also reveal different contributions 
from windows of different scales, and we explore the effect of window 
size in 4.5.2. These results demonstrate that multi-scale windows can 
improve the model’s performance and generalization. Compared with 
other Transformers, our designed multi-scale window multi-head self-

attention enables long-range feature integration but avoids whole image 
SA in ViT or twice local window SA in Swin Transformer. Thus, MWT 
has fewer parameter numbers and FLOPs.

4.5.2. Window size

To explore suitable configurations for the window size, we com-

pared different window sizes in the Transformer. As shown in Table 7, 
we set different window size combinations:(4,7,12), (2,7,12), and de-

fault (2,4,7). On the external test sets, the window size combination of 
(2,4,7) has higher accuracy than the combination of (2,7,12) and has 
lower accuracy than the combination of (4,7,12). This suggests that 1) 
continuous window sizes are more reasonable; 2) bigger window sizes 
have a slight advantage but also increase computation cost. Therefore, 
we set the window size combination of (2,4,7) as our final configura-

tion.

4.5.3. Convolutional feed-forward network

To verify the effectiveness of the convolutional feed-forward net-

work (CFFN), we compared it with the traditional MLP-based FFN that 
uses fully connected layers. The results in Table 8 show a significant 
improvement in the performance of MWT with CFFN. CFFN is more 
conducive to capturing local spatial mapping for cervical cytopathology 
image recognition than traditional FFN. Moreover, using convolution 
effectively reduces computation costs and improves training efficiency.

4.5.4. Stage distribution

To obtain a better distribution of layers per stage, we controlled the 
total number of layers in the MWT model to be 12 and adjusted the 
number of layers N1, N2, N3, and N4 in different stages as shown in Ta-

ble 9. The results of the ablation experiment show that the best perfor-

mance is achieved when the number of layers in each stage is (2,4,4,2). 
The results indicate that 1) shallower layers with more detailed infor-

mation are critical for cervical cytopathology image recognition; 2) a 

relatively balanced distribution of layers in each stage is essential. This 
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Table 9

Ablation study results of the stage distribution.

(N1,N2,N3,N4) Internal Data3 Acc(%) Data8 Acc(%)

(2,3,4,3) 96.2 94.0 88.8

(1,1,8,2) 95.1 93.0 87.2

(2,2,6,2) 95.9 94.0 88.7

(2,4,4,2) 96.1 94.3 88.9

suggests that a reasonable network architecture design is vital for high 
performance.

5. Conclusion

In this paper, we propose a multi-scale window Transformer (MWT) 
for cervical cytopathology image recognition. We design multi-scale 
window multi-head self-attention to simultaneously integrate cell fea-

tures of different scales. Unlike other vision Transformers, our multi-

scale window self-attention design enables long-range feature integra-

tion. Still, it avoids whole image SA in ViT or twice local window SA 
in Swin Transformer. On two multi-center large-scale cervical cell clas-

sification datasets of two and four categories, we prove the superiority 
of MWT compared with SOTA vision Transformers and demonstrate the 
generalization of MWT on the external test sets. In conclusion, our work 
provides a reliable cytopathology image recognition method and helps 
establish computer-aided screening for cervical cancer.

Currently, self-supervised pretraining of Transformers on large-scale 
natural images is developing rapidly. Self-supervised pretraining is 
proven to help achieve label-efficient image recognition. Massively un-

labeled cell images are easy to obtain in computational cytopathology, 
but establishing large-scale annotated cell images with doctor knowl-

edge is costly. Thus, studying self-supervised pretraining of cytopathol-

ogy images and label-efficient cell recognition is meaningful and an 
opportunity in this field. In this work, we used about 6,4000 positive 
cell annotations to train the recognition model. In the future, we will 
explore how to establish accurate and robust cervical cell recognition 
models with 102 - 103 annotations.
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