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Post-traumatic stress disorder (PTSD) is a chronic, debilitating mental illness marked
by abnormal fear responses and deficits in extinction of fear memories. The
pathophysiology of PTSD is linked to decreased activation of the ventromedial prefrontal
cortex (vmPFC). This study aims to investigate underlying functional changes in synaptic
drive and intrinsic excitability of pyramidal neurons in the rodent homolog of the
vmPFC, the infralimbic cortex (IL), following exposure to single prolonged stress (SPS),
a paradigm that mimics core symptoms of PTSD in rats. Rats were exposed to SPS
and allowed 1 week of recovery, following which brain slices containing the PFC were
prepared for whole-cell patch clamp recordings from layer V pyramidal neurons in the
IL. Our results indicate that SPS reduces spontaneous excitatory synaptic drive to
pyramidal neurons. In addition, SPS decreases the intrinsic membrane excitability of
IL PFC pyramidal cells, as indicated by an increase in rheobase, decrease in input
resistance, hyperpolarization of resting membrane potential, and a reduction in repetitive
firing rate. Our results suggest that SPS causes a lasting reduction in PFC activity,
supporting a body of evidence linking traumatic stress with prefrontal hypoactivity.

Keywords: prefrontal cortex, excitability, single prolonged stress, synaptic inputs, GABA, glutamate

INTRODUCTION

Post-traumatic stress disorder (PTSD) is among the most prevalent and debilitating
neuropsychiatric disorders in the world. In the United States alone, nearly 25 million people
will develop PTSD at some point in their lives (Kessler et al., 1995; Maren and Holmes, 2016).
To date no universally efficacious treatment exists for PTSD, underscoring the importance of the
development of effective therapeutic strategies for this disorder.

Clinical research has linked PTSD with deficits in fear extinction (Ressler et al., 2004; Quirk et al.,
2006; Milad et al., 2008), indicative of enhanced responsiveness to emotional stimuli. Symptoms of
PTSD can be modeled in rodents using the single prolonged stress (SPS) paradigm (Liberzon et al.,
1997; Eagle et al., 2013). For example, multiple studies indicate that SPS disrupts the extinction of
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fear memories in male rats (Yamamoto et al., 2008; Knox
et al., 2012; Souza et al., 2017). Studies in our group indicate
that SPS disrupts extinction learning in male (but not female)
rats, indicative of a sex-specific impact on fear regulation
(Cotella et al., 2021).

Under normal conditions of fear extinction, excitatory
projections from the infralimbic (IL) medial prefrontal cortex
(mPFC) to the basolateral amygdala (BLA) activate the
intercalated cell clusters, which ultimately reduces output from
the central amygdala, thereby promoting extinction of fear
(Garcia et al., 1999; Milad and Quirk, 2002; Quirk et al.,
2003; Likhtik et al., 2005). However, exposure to an acute
traumatic experience may lead to a reduction in activity in
the IL mPFC, resulting in a loss of prefrontal inhibition
of the amygdala, consistent with exaggerated fear responses
(Akirav and Maroun, 2007).

The IL plays an essential role in extinction, extinction
recall and reinstatement of conditioned fear, and damage or
inactivation of this structure produces extinction memory deficits
that resemble those seen in PTSD patients (Sotres-Bayon and
Quirk, 2010; Norrholm et al., 2011; Sierra-Mercado et al.,
2011). Indeed, abnormally low mPFC activity, together with
abnormally high amygdala activity, can be observed in PTSD
patients (Liberzon et al., 1999; Milad et al., 2009). Magnetic
resonance spectroscopy (MRS) studies indicate that activation
of the IL mPFC is reduced following SPS in rats (Piggott et al.,
2019), further consistent with a role for reduced IL output
in stress pathology. While the role of the IL in promoting
fear extinction and emotional regulation is well documented
(Sierra-Mercado et al., 2011; Milad and Quirk, 2012; Cho et al.,
2013; Little and Carter, 2013; Kim et al., 2016), the cellular
mechanisms underlying severe stress-related dysfunction remain
to be determined.

In this study we tested the impact of SPS on
electrophysiological properties of principal projection neurons
in layer V of the IL, assessing (1) intrinsic membrane excitability
(2) excitatory and inhibitory synaptic drive. Our results indicate
that SPS reduces the intrinsic excitability of IL projection
neurons and decreases the efficacy of excitatory signaling
onto this population, the latter likely reflecting a reduction in
presynaptic glutamate release. We also observed that SPS slowed
the decay of GABAergic currents, although this was insufficient
to significantly change the overall inhibitory synaptic drive
onto IL-PFC neurons. Our results highlight a novel potential
mechanism underlying the reduced prefrontal activity observed
following SPS, and provides insight into the pathophysiology of
abnormal fear memory deficits associated with PTSD.

METHODS

Rats
Male Sprague Dawley rats were purchased from Envigo and
allowed to acclimate for a week at the University of Cincinnati
animal housing facility. Male rats were used for the study
as prior studies in our group indicate SPS-induced extinction
learning deficits in male rats only (Cotella et al., 2021). Rats

were maintained under standard conditions (12/12 h light/dark
cycle, 22 ± 1◦C, food and water ad libitum; two rats per cage)
in accordance with the University of Cincinnati Institutional
Animal Care and Use Committee, which specifically approved all
stress regimens employed in this study. All animal experiments
were carried out in accordance with the National Institutes
of Health Guide for the Care and Use of Laboratory Animals
(NIH Publications No. 8023, revised 1978). All experiments were
performed on adult male rats at 12 weeks of age.

Single Prolonged Stress (SPS) Protocol
Animals were randomly assigned into the control or SPS groups.
After the acclimation period, the SPS group was exposed to
the SPS paradigm. SPS consisted of three sequential stressors
(restraint stress, forced swimming, and ether exposure). First, rats
were restrained for 2 h in a plastic animal restrainer, followed
immediately by 20 min of forced group swim in water (20–
24◦C) in a tub, filled two-thirds from the bottom. Following
15 min of recuperation, rats were exposed to ether vapors (inside
a desiccator) until loss of consciousness (less than 5 min). Rats
were then returned to their home cages for 7 days without further
disturbance (Knox et al., 2012). Control group rats remained in
their home cages for 7 days without any stress.

Electrophysiology
Slice Preparation
Rats were sacrificed 7 days post SPS at approximately postnatal
day 91. The 7 days incubation time was selected as behavioral
abnormalities are consistently observed following this incubation
period (Iwamoto et al., 2007; Knox et al., 2012, 2016; Keller
et al., 2015). Animals were deeply anesthetized with sodium
pentobarbital (390 mg/kg, Fatal-Plus) and decapitated. A warm
slicing protocol was used to prepare healthy adult rat brain
slices as previously described (Ting et al., 2014). Adult rats of
approximately 12 weeks of age were used for electrophysiology,
since SPS effects on fear learning are observed in adult rats (Knox
et al., 2012) (adolescent animals are resistant to the effects of SPS
and do not show deficit in fear extinction) (Chen C. V. et al.,
2018). Brains were quickly isolated and dura matter carefully
removed before removing the cerebellum. The brain was then
immediately glued to a cutting stage and immersed in NMDG
solution (92 mM NMDG, 2.5 mM KCl, 1.2 mM NaH2PO4,
30 mM NaHCO3, 20 mM HEPES, 25 mM glucose, 5 mM sodium
ascorbate, 2 mM thiourea, 3 mM sodium pyruvate, 10 mM
MgSO4, and 0.5 mM CaCl2) at a temperature of 34–36◦C and
continuously bubbled with 95% oxygen and 5% carbon-dioxide.
Coronal slices containing the IL mPFC were sectioned at 300 µm
thickness using a vibrating microtome (Vibratome 7000smz-2;
Campden Instruments Ltd., Lafayette, IN, United States) with
ceramic blades (Campden Instruments Ltd.) at an advance speed
of 0.03 mm/s. Vertical vibration of the blade was manually tuned
in accordance with the user manual, and was set to 0.1–0.3 µm.
Bath temperature was kept within the desired range of 34–36◦C,
by adding warm or cold water into the external chamber of the
Vibratome, and was monitored throughout the cutting procedure
with a conventional mercury/glass thermometer. The slices were
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allowed to recover for 1 h in oxygenated NMDG solution at 34–
36◦C. At the end of recovery, slices were transferred to a chamber
containing oxygenated artificial CSF solution (125 mM NaCl,
2.5 mM KCl, 25 mM NaHCO3, 1 mM NaH2PO4, 25 mM glucose,
1 mM MgCl2, and 2 mM CaCl2) for at least 30 min at room
temperature after which the slices were ready for in vitro patch
clamp recordings.

Electrophysiological Recording From Layer V IL
mPFC
Brain slices were transferred to a submersion-type recording
chamber (RC-22; Warner Instruments, Hamden, CT,
United States) and mounted onto the stage of an upright
microscope (BX51WI, Olympus, Center Valley, PA,
United States). Slices were then perfused at a flow rate of
2–4 ml/min with oxygenated aCSF at 34–36◦C. Patch electrodes
were constructed from thin-walled single-filamented borosilicate
glass (1.5 mm outer diameter; World Precision Instruments)
using a microelectrode puller (P-97; Sutter Instrument, Novato,
CA, United States). Pipette resistances ranged from 4 to 6 M�,
and seal resistances were >1 G� .

Whole-cell patch clamp recordings were obtained from layer
V pyramidal neurons in the IL mPFC using a MultiClamp 700B
amplifier (Molecular Devices, Sunnyvale, CA, United States).
Pyramidal neurons were easily identifiable in the slice based
on soma morphology and the presence of a prominent
apical dendrite. For all electrophysiological recordings,
membrane voltages were adjusted for liquid junction potentials
(approximately −14 mV) calculated using JPCalc software
(P. Barry, University of New South Wales, Sydney, NSW,
Australia; modified for Molecular Devices). Signals were filtered
at 4–6 kHz through a −3 dB, four-pole low-pass Bessel filter
and digitally sampled at 20 kHz using a commercially available
data acquisition system (Digidata 1550A with pClamp 10.5
software; Molecular Devices). Data were recorded using pClamp
and stored on a computer for offline analysis. Current clamp
recordings were analyzed using Clampfit (Molecular Devices).
For studies examining synaptic transmission, the amplitude
and frequency of miniature excitatory postsynaptic currents
(mEPSCs) and miniature inhibitory postsynaptic currents
(mIPSCs) were measured using MiniAnalysis 6.0.7 (Synaptosoft;
Decatur, GA, United States), and the threshold for mEPSC and
mIPSC detection was set at twice the root mean square (RMS) of
the background noise.

Intrinsic Excitability Measurements
For intrinsic excitability measurements, patch electrodes were
filled with a solution containing the following: 130 mM
K-gluconate, 10 mM KCl, 10 mM HEPES, 10 mM sodium
phosphocreatine, 4 mM MgATP, and 0.3 mM Na2-GTP, pH
7.2, 295–300 mOsm. In the current clamp mode, once a
stable membrane potential was observed, intrinsic excitability
measurements were performed at the resting membrane potential
(RMP). Cell capacitance was measured using the membrane
test function in pClamp 10.5 (Molecular Devices, Sunnyvale,
CA, United States). All measurements of intrinsic membrane
excitability were taken from RMP. Rheobase was measured

by applying depolarizing current steps (10 pA steps, 100 ms
duration) until the generation of a single action potential
(AP). Input (membrane) resistance (Rinput) was measured by
applying a hyperpolarizing current step (−10 pA) via the patch
electrode. AP threshold was defined as the Vm measured 0.5 ms
before the peak in the second derivative of the waveform.
The action potential threshold and amplitude were analyzed
for the first spike at the rheobase current injection. AP half-
width (AP50) was determined by measuring the elapsed time
from the peak of the AP to 50% maximum amplitude during
the repolarization phase. Firing rate was measured in response
to 20 pA depolarizing current steps in the current clamp
configuration. The number of action potentials generated over
a period of 1 s was recorded across the stimulus intensity
range of 0–280 pA. All intrinsic excitability measurements
were conducted in oxygenated aCSF at 34–36◦C. Cells with
RMP lower than −55 mV were included in the final analysis.
Recordings were obtained from 14 to 17 cells from three
rats in each group.

Synaptic Drive Measurements
To measure synaptic drive, miniature postsynaptic currents
(mPSCs) were recorded in the presence of TTX (0.5 µM; Hello
Bio; Princeton, NJ, United States). Patch electrodes were filled
with a solution containing the following (in mM): 130 Cs-
gluconate, 10 CsCl, 10 HEPES, 11 EGTA, 1 CaCl2, and 2 MgATP,
pH 7.2 (295–305 mOsm). In order to isolate mEPSCs, cells
were voltage clamped at −70 mV. To record mIPSCs, cells
were held at 0 mV. Peak mPSC amplitude was measured from
baseline. Decay kinetics were estimated using a single exponential
function: [y(t) = a × exp(−t/τ)] using the average mPSC in
a given neuron. Synaptic drive was measured in each sampled
neuron by multiplying the area under the average mPSC by the
mPSC frequency to measure the overall charge transfer across the
membrane. mEPSC and mIPSC recordings were obtained from
the same 14–18 cells from three rats in each group. For mIPSC
recordings, additional recordings were performed from the same
three rats to obtain a total of 23–27 cells in each group.

Statistical Analysis
All data sets were tested for normality using the Kolmogorov–
Smirnoff test. Data were analyzed by unpaired t-test when
groups were normally distributed. The Mann–Whitney non-
parametric test was performed for groups not following a
normal distribution. To ensure that a single animal was not
driving the differences in measurements, further analysis with
nested t-test analysis was conducted to confirm our conclusions
(Supplementary Table 1). AP firing rate was analyzed by
two-way repeated measures ANOVA with SPS and stimulus
intensity as factors. In the cases where significant differences
and interactions were found, multiple comparisons with false
discovery rate correction (FDR) was performed for post hoc
analysis. Data were analyzed using Prism 8 (GraphPad Software,
La Jolla, CA, United States). Outliers for normally distributed
dataset were calculated using Prism Grubbs’ test and excluded
from the analysis.
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RESULTS

SPS Reduces the Intrinsic Excitability of
Layer V Pyramidal Neurons in the IL
mPFC
One week following SPS, patch clamp recordings were obtained
from layer V pyramidal neurons under the current clamp
configuration to probe potential changes in the intrinsic
membrane properties of this population (Figure 1A).
Experiments were performed on three animals per group.
A representative image of the slice is shown in Figure 1B
depicting healthy pyramidal neurons with thick apical dendrite.
Rheobase was increased in animals exposed to SPS [t = 5.6,
df = 31, p < 0.0001, cell n = 16 (control) and 17 (SPS);
Figure 1C]. SPS also decreased input (membrane) resistance
(U = 29, p = 0.001, cell n = 14/group; Figure 1D), which may
contribute to the increase in rheobase observed following
SPS. There was a significant decrease in RMP following SPS
(U = 45, p = 0.001, cell n = 16/group; Figure 1G). SPS also
significantly decreased AP50 (t = 3.8, df = 30, p = 0.0006, cell
n = 16/group; Figures 1H,I). Mean capacitance between the SPS
and control groups were not significantly different (t = 0.42,
df = 30, p = 0.8, cell n = 16/group). Mean capacitance of the cells
were 90.2± 3.4 pF and 94.8± 5.6 pF for control and SPS groups,
respectively. No significant change in AP threshold (t = 0.55,
df = 30, p = 0.6, cell n = 16/group; Figure 1E) or AP amplitude
[t = 0.96, df = 29, p = 0.34, cell n = 16 (control) and 15 (SPS);
Figure 1F] were observed following SPS.

We next analyzed the repetitive firing rate of the pyramidal
neurons following SPS (Figures 1J,K). There was a significant SPS
X stimulus intensity interaction [F(14,280) = 2.03; p = 0.002, cell
n = 13 (control) and 9 (SPS); Figure 1K]. Multiple comparisons
with FDR correction indicate that the SPS group had significantly
lower action potential firing compared to the control group at a
stimulus intensity range of 120–220 pA and at 260 pA (p < 0.05).
Collectively, these results suggest that SPS reduces the intrinsic
membrane excitability of layer V IL pyramidal neurons.

SPS Reduces Excitatory Synaptic Drive
Onto Layer V Pyramidal Neurons in the IL
mPFC
Previous studies indicate reduced overall glutamate levels in the
mPFC following SPS (Piggott et al., 2019), but the underlying
mechanisms by which SPS alters glutamatergic transmission in
the region remain unclear. Seven days after SPS, mEPSCs were
recorded in pyramidal neurons under voltage clamp conditions
at holding potential of −70 mV (Figure 2A). Experiments were
performed on three animals per group. Our results show that SPS
significantly reduces the frequency of mEPSCs [t = 3.9, df = 32,
p = 0.0004, cell n = 18 (control) and 16 (SPS); Figures 2B,C]
while having no effect on mEPSC amplitude [t = 0.9, df = 31,
p = 0.33, cell n = 17 (control) and 16 (SPS); Figure 2D] or mEPSC
decay [t = 0.1, df = 29, p = 0.91, cell n = 17 (control) and 14
(SPS); Figure 2E]. Finally, we show that SPS decreases overall
excitatory synaptic drive onto pyramidal neurons in the IL mPFC

(Mann–Whitney U = 62, p = 0.03, cell n = 16/group; Figure 2F).
Collectively these data suggest that SPS reduces spontaneous
excitatory synaptic drive onto IL layer V pyramidal neurons,
which is likely driven by a presynaptic mechanism.

SPS Prolongs the Decay of GABA
Currents With No Effect on Total
Inhibitory Synaptic Drive Onto Layer V IL
mPFC Pyramidal Neurons
Similar to the excitatory synaptic drive experiments, mIPSCs
were measured 7 days following SPS under the voltage clamp
configuration at a holding potential of 0 mV (Figure 3A).
Experiments were performed on three animals per group.
Analysis of mIPSC frequency [t = 1.62, df = 49, p = 0.11, cell
n = 24 (control) and 27 (SPS); Figures 3B,C] and amplitude [t = 2,
df = 48, p = 0.05, cell n = 23 (control) and 27 (SPS); Figure 3D] did
not reveal any significant effects. However, analysis of the mIPSC
decay constant showed that SPS significantly prolongs the decay
of GABA currents in the IL mPFC [t = 3.5, df = 48, p = 0.001, cell
n = 24 (control) and 26 (SPS); Figure 3E]. Nonetheless, analysis
of total inhibitory synaptic drive did not reveal any significant
difference between the SPS and Control groups [Mann–Whitney
U = 263, p = 0.3, cell n = 23 (control) and 27 (SPS); Figure 3F].
Collectively, these data suggest that SPS might not affect the
presynaptic release of GABA in the IL, but may allow for GABA
to be present in the synaptic cleft longer as demonstrated by
the reduction in the decay of GABA currents. However, that
effect does not result in significant changes in the strength of
spontaneous synaptic inhibition within the IL following SPS.

DISCUSSION

Our results indicate that SPS causes physiological changes in
IL mPFC glutamatergic pyramidal neurons and their associated
synaptic inputs (Figure 4). Here we demonstrate that SPS reduces
the intrinsic membrane excitability of IL pyramidal neurons, as
indicated by an increased rheobase, decreased input resistance,
hyperpolarized RMP, and a reduction in repetitive firing rate. In
addition, SPS causes alterations in spontaneous synaptic drive
onto the major output pyramidal neurons in layer V of the IL. SPS
reduces the excitatory glutamatergic synaptic tone via presynaptic
mechanisms. Our results further indicate that SPS prolongs the
decay of GABA currents in the IL but does not change total
inhibitory synaptic drive. Collectively, these data suggest possible
mechanisms via which SPS may cause a reduction in IL mPFC
activity and contribute toward a better understanding of the
pathophysiology associated with PTSD symptoms.

Single prolonged stress causes deficits in fear learning and
extinction of fear responses (Iwamoto et al., 2007; Knox et al.,
2012, 2016; Keller et al., 2015). The IL mPFC in rodents and
the ventromedial cortex (Brodmann area 25) in humans plays a
role in driving extinction of fear responses (Quirk et al., 2000;
Quirk and Mueller, 2008; Milad and Quirk, 2012). Prefrontal
hypoactivity and subsequent amygdala hyperactivity leads to a
disruption of the top-down executive control of fear responses,
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FIGURE 1 | SPS decreases the intrinsic excitability of IL pyramidal neurons. Schematic of the experimental timeline (A). Image of brain slice obtained using warm
slicing protocol is represented in (B). Healthy pyramidal neurons are triangular in shape and have thick apical dendrite. Electrophysiological recordings in current
clamp mode from the IL mPFC were conducted in male rats 7 days post SPS. SPS increases rheobase (C) [t(31) = 5.6, p < 0.0001], decreases input resistance (D)
[Mann–Whitney U(26) = 29, p < 0.01], hyperpolarizes RMP (G) [Mann–Whitney U(34) = 45, p < 0.01], decreases AP50 (H) [t(30) = 3.8, p < 0.001] and also
decreases firing rate of IL pyramidal neurons (K) with a main effect of SPS [F (1,20) = 4.7; p < 0.05], main effect of stimulus intensity [F (14,280) = 20.3; p < 0.01] and
a significant SPS X stimulus intensity interaction [F (14,280) = 2.03; p < 0.01]. The SPS group had a significantly lower action potential firing rate compared to
controls at a stimulus intensity range of 120–220 pA and at 260 pA (p < 0.05). Representative traces of AP50 are shown in (I). Scale bar: 20 mV, 0.5 ms.
Representative traces of action potentials in control (black) vs. SPS (red) groups following –40, 100, 160, and 220 pA current injection are shown in (J). Scale bar:
30 mV, 0.05 s. SPS had no effect on action potential threshold (E) [t(30) = 0.55, p > 0.5] or amplitude (F) [t(29) = 0.96, p > 0.5]. Data presented as Mean ± SEM.
* indicates p < 0.05. For (B–H) n = 14–17 cells from three rats in each group. For (J), n = 13 and 9 cells from three rats in control and SPS group, respectively.
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FIGURE 2 | SPS decreases spontaneous glutamatergic drive onto IL pyramidal neurons. Schematic of the experimental timeline (A). Electrophysiological recordings
in voltage clamp mode from the IL mPFC were conducted in male rats 7 days post SPS. Representative voltage clamp mEPSC traces of control (black) and SPS
(green) groups are shown in (B). Arrows indicate mEPSC events. Scale bars: 40 pA, 0.2 s. Magnified image of a single mEPSC event is shown on top right (B). SPS
decreases frequency of mEPSCs (C) [t(32) = 3.9, p < 0.01]. SPS has no effect on mEPSC amplitude (D) [t(32) = 0.9, p = 0.3] or mEPSC decay rate (E) [t(29) = 0.1,
p = 0.9]. SPS significantly decreases excitatory synaptic drive (F) (Mann–Whitney U = 62, p < 0.05). Data presented as Mean ± SEM. * indicates p < 0.05.
n = 14–18 cells from three rats in each group.

and is thought to underlie the abnormal extinction of fear
responses in human PTSD patients and also in rodent models
of traumatic stress (Quirk et al., 2003; Milad et al., 2009; Piggott
et al., 2019). Prior studies indicate that SPS results in reduced
activation of the IL mPFC suggesting reduced prefrontal drive,
which might underlie the abnormal fear extinction observed in
SPS treated animals (Lisieski et al., 2018; Piggott et al., 2019). Our
current clamp results indicate that following SPS, the ability to
generate an action potential is impaired in IL layer V pyramidal
cells (as evidenced by the increased rheobase, reduced input
resistance and hyperpolarized RMP). Furthermore, once firing
is initiated, SPS animals show a reduction in the number of
action potentials across different stimulus intensities compared
to controls. Our findings suggest that SPS reduces the intrinsic

membrane excitability of glutamatergic pyramidal neurons in
the IL mPFC. It is known that fear conditioning can reduce IL
pyramidal neuron excitability, and extinction learning reverses
the effect (Santini et al., 2008). Future studies are needed
to determine if the reduced baseline excitability following
SPS exacerbates the decrease in excitability evoked by fear
conditioning, leading to fear extinction deficits.

Our voltage clamp experiments show that SPS reduces
spontaneous excitatory synaptic drive onto IL pyramidal
neurons. Specifically, our findings indicate that SPS reduces the
frequency of mEPSCs without causing any change in mEPSC
amplitude. According to the quantal theory of neurotransmitter
release, a change in quantal amplitude is interpreted as
a change in postsynaptic function, whereas a change in
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FIGURE 3 | SPS prolongs the decay of GABA currents but has no effect on overall spontaneous inhibitory synaptic drive in the IL. Schematic of the experimental
timeline (A). Electrophysiological recordings in the voltage clamp mode were obtained from the IL mPFC in male rats 7 days post SPS. Representative voltage clamp
mIPSC traces of control (black) and SPS (blue) groups are shown in (B). Arrows indicate mIPSC events. Scale bars: 40 pA, 0.2 s. Magnified image of a single mIPSC
event is shown on top right (B). SPS has no effect on mIPSC frequency (C) [t(49) = 1.6, p = 0.1] or mIPSC amplitude (D) [t(48) = 2.0, p = 0.05]. SPS increases the
mIPSC decay (E) [t(48) = 3.5, p < 0.01] but has no effect on inhibitory synaptic drive (F) (Mann–Whitney U = 263, p = 0.3). Data presented as Mean ± SEM.
* indicates p < 0.05. n = 23–27 cells from three rats in each group.

quantal frequency is thought to represent a change in
presynaptic neurotransmitter release (del Castillo and Katz,
1954; Redman, 1990; Stevens, 1993; Choi and Lovinger, 1997).
Therefore, our results suggest that SPS causes a reduction in
presynaptic glutamate release onto pyramidal neurons without
affecting postsynaptic NMDA/AMPA receptor function. The
changes in presynaptic input might be due to changes in the
probability of glutamate release or the number of glutamatergic
synaptic contacts onto the pyramidal neurons, and further
studies are needed to answer that question. Nevertheless, our
results are consistent with previous reports showing reduced
glutamate levels in the mPFC following SPS (Piggott et al.,
2019) and further suggest that the stress-evoked reduction
in glutamatergic signaling within the IL cortex may be
presynaptically mediated.

It is not known which long-range excitatory inputs, or IL
pyramidal neuron outputs, are specifically affected by SPS.
Afferent input to the IL includes glutamatergic input from
regions implicated in emotional memory, including the BLA,
thalamus and ventral hippocampus (vHPC) (Hoover and Vertes,
2007). Importantly, BLA-IL projections are selectively activated
during extinction of conditioned fear, and stimulation of the
BLA-IL connection facilitates extinction of conditioned fear
(Senn et al., 2014). Thus, it is possible that SPS targets
glutamatergic BLA-IL connections. Layer V pyramidal neurons
in the IL project to various limbic structures such as the BLA and
periaqueductal gray (PAG), regions that are known to play a role
in modulating fear responses (Cheriyan et al., 2016). Activation of
the IL-BLA circuit is needed for proper fear extinction (Cho et al.,
2013; Bloodgood et al., 2018), and SPS selectively may reduce
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FIGURE 4 | Summary of observed effects. SPS causes a decrease in
excitatory synaptic drive and intrinsic excitability of pyramidal neurons which
are the major output neurons in Layer V of IL. SPS has been shown to reduce
glutamatergic excitatory synaptic drive driven mainly by reduction in
presynaptic glutamate inputs. SPS was found to delay the decay of GABA
currents but that did not have an effect on overall inhibitory synaptic
transmission.

activation of IL-BLA circuitry (Piggott et al., 2019). Thus, the
reduced excitability of IL Layer V pyramidal neurons may be
sufficient to influence downstream circuits in the BLA. Future
studies should aim to explore this potential circuit specificity of
the physiological effects following SPS.

Processes underlying SPS-induced decreases in IL intrinsic
excitability or excitatory synaptic drive remain to be determined.
The increase in rheobase, decrease in input resistance and a
more hyperpolarized RMP indicates that it is more difficult to
depolarize the neuron to spike threshold following SPS. A more
hyperpolarized RMP and reduced membrane resistance after SPS
could be due to an increase in the number, or conductance,
of “leak” K+ channels, resulting in a greater K+ efflux from
the cells and reduced excitability (Honoré, 2007). Rat mPFC
pyramidal neurons express KCNQ2 channels (Kv7 voltage gated
K+ channel), the excessive opening of which might reduce
neuronal firing in the PFC following stress (Arnsten et al., 2019).
Some forms of KCNQ channels are constitutively active and may
contribute toward the leak conductance (Schroeder et al., 2000;
Goldstein et al., 2001). Moreover, stimulating KCNQ2 channels

in IL mPFC reduces intrinsic excitability of IL pyramidal neurons
and reduces fear extinction, while inhibiting these channels
enhances fear extinction (Santini and Porter, 2010), further
suggesting that disruption of M-type K+ currents might underlie
SPS induced changes in intrinsic excitability. Several lines of
evidence also implicate G-protein gated inwardly rectifying
K+ (GIRK) channel dysfunction in stress-related alterations in
the excitability of prefrontal neurons and psychiatric disorders
(Clarke et al., 2011; Victoria et al., 2016). Activation of GIRK
channels results in K+ efflux, which hyperpolarizes the neuronal
RMP and dampens neuronal excitability (Dascal, 1997; Hibino
et al., 2010). It is also possible that SPS may increase constitutive
GIRK channel activity (Takigawa and Alzheimer, 2002; Chen
and Johnston, 2005), leading to membrane hyperpolarization
and a reduction in excitability. Our results indicate that SPS
decreases AP half-width. Modulation of spike duration can affect
neurotransmission by altering Cav channel opening (Rowan
et al., 2014, 2016). Since Ca2+ entry mainly occurs during spike
repolarization (Sabatini and Regehr, 1996, 1997), shorter spike
width may lead to less calcium influx in the presynaptic terminal
resulting in reduced neurotransmitter release and decreased
activation of downstream brain regions. Further studies will
be needed to determine the role of specific ion channels in
modulating the excitability of IL neurons after chronic stress.

Literature evidence regarding changes in GABAergic signaling
following SPS is inconsistent. Some studies using MRS show
no change in GABA levels following SPS (Knox et al.,
2010; Piggott et al., 2019) in rodents or in humans with
PTSD (Rosso et al., 2014; Schür et al., 2016). Our results
demonstrate a slower decay of GABA currents following SPS,
with no evidence for changes in presynaptic GABA release
or postsynaptic GABA receptor expression. Slower IPSC decay
could be due to factors such as reduced neurotransmitter
uptake and delayed clearance (Overstreet and Westbrook, 2003),
slower deactivation time of GABA-A receptors (Schofield and
Huguenard, 2007), and changes in GABA-A receptor subunit
composition which may alter postsynaptic GABA channel closing
kinetics (Haas and Macdonald, 1999).

Taken together, our findings suggest that increasing the
intrinsic excitability and glutamatergic synaptic input onto
IL pyramidal neurons might be effective in preventing some
of the behavioral changes observed with SPS (Figure 4).
Indeed, various studies indicate that enhanced top-down
control of subcortical regions leads to more efficient control
of emotion regulation. fMRI studies in humans have shown
that greater prefrontal drive may be a resilience factor in
PTSD (Chen F. et al., 2018). Recent studies indicate increased
neuronal activation of mPFC in resilient mice following
chronic predator or social defeat stress (Adamec et al.,
2012). Consistent with this hypothesis, direct optogenetic
stimulation of the ventral portion of the mPFC has been
shown to promote resilience to social defeat stress (Covington
et al., 2010). Overall, our findings indicate that reduced
prefrontal drive following SPS may underlie the abnormal
fear responses observed with the stress paradigm. Our results
highlight novel multifaceted mechanisms by which SPS
can cause a reduction in PFC activity, supporting growing
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evidence that severe stress leads to prefrontal hypoactivity, a
characteristic of diseases such as PTSD.
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