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A 21-year-oldmalewith an SCN1Amutation died of cerebral herniation 3 h after a seizure occurring during phys-
ical activity. Cases of fatal cerebral edema in patients with SCN1A mutations after fever and status epilepticus
have been recently reported raising the question whether sodium channel dysfunction may contribute to cere-
bral edema and thereby contribute to the increased premature mortality in Dravet Syndrome. We report on
our patient and discuss whether the combination of hyperthermia and ion channel dysfunction may not only
trigger seizures but also a fatal pathophysiological cascade of cerebral edema and herniation leading to
cardiorespiratory collapse.
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1. Introduction

Patients with Dravet Syndrome (DS) are at a significantly increased
risk for premature death (16–17 per 1000 patient years), with sudden
unexpected death in epilepsy (SUDEP) representing the leading cause
of death in childhood followed by status epilepticus [1,2]. Despite spo-
radic reports of acute encephalopathy in DS, cerebral edema is not tradi-
tionally considered a key pathological mechanism contributing to high
mortality in DS. Recently Myers et al. report 5 fatal cases of cerebral
edema occurring days after status epilepticus in children with DS. We
were recently confronted with a similar case in our emergency depart-
ment (ED). This was remarkable because our DS patient experienced
fatal transtentorial herniation within three hours of a generalized con-
vulsive seizure despite being immediately aborted with buccal midazo-
lam. We therefore find it relevant to report on this case and bring to
attention that there may be circumstances under which fatal cerebral
edema develops rapidly in patients with DS.
ical Faculty, Heinrich-
f, Germany.
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2. Case: 21 year-old male with SCN1A mutation

A 21-year-old male patient with an SCN1A mutation and childhood
diagnosis of DS was transferred to our ED via helicopter from a hospital
nearby requiring cardiopulmonary resuscitation (CPR). According to his
father his seizures could be triggered by intense emotion (especially
joy) in the past but he had been seizure-free for the past 7 years with
a combination of topiramate and potassium bromide. On the day of ad-
mission, a warm summer day, he had suffered from a generalized con-
vulsive seizure of unknown duration during a 5 kilometer city run
only a few meters from the finish line. Acting upon orders from the pa-
tients' father, paramedics standing by quickly applied buccal midazo-
lam, which successfully aborted the seizure. The exact seizure
duration was not reported. Upon arrival of an emergency physician
the patient was asystolic but was successfully resuscitated in the ambu-
lance. Despite having spontaneous circulation upon admission to the ED
of the closest hospital, he quickly became in need of CPR again. He was
therefore transferred to our hospital for tertiary care, where CPR was
unsuccessfully attempted for 2 h. Arterial blood gas analysis was per-
formed after cumulative 2 h of cardiopulmonary resuscitation. All pa-
rameters in the blood gas analysis were within the normal range
except potassium (K+ [mmol/l]= 8.7)which ismost likely attributable
to the failed resuscitation attempts. CT revealed global cerebral edema
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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with completely compressed ventricular cavities and no signs of trau-
matic brain injury, or lesions of any type. A post-mortem full body CT
also did not reveal any intra- or extra-cranial signs of trauma (Fig. 1).
3. Discussion

SUDEP is the most frequent cause of death directly related to epi-
lepsy, and patients with Dravet Syndrome (DS) display a significantly
increased SUDEP risk compared to the general epilepsy population [3].
The majority of observed SUDEP cases occur shortly after a seizure
[4–8], however a previous seizure is not a prerequisite for SUDEP [9].
While the exact pathological mechanism contributing to SUDEP is still
unresolved, the 11 cases of monitored SUDEP offer crucial insight into
the events leading to SUDEP [10]: following a generalized tonic–clonic
seizure (GTCS), heart rate and respiration are transiently increased be-
fore a combination of central apnoea, severe bradycardia, and most
often transient asystole occurs together with postictal generalized EEG
suppression, typically peaking between 1 and 3 min postictally. These
observations lead to the hypothesis that SUDEP is an early post-ictal
neurovegetative breakdown and potentially a consequence of years of
autonomic dysfunction, a common phenomenon in epilepsy —espe-
cially in DS patients [11–14]. The observation of impaired heart-rate
variability in patients with DS compared to healthy controls and other
epilepsy populations is of interest considering that a voltage-gated so-
dium channel (VGSC) such as Nav 1.1 is not expressed in cardiac tissue
suggesting that cardiac dysfunction in patientswith SCN1Amutations is
mainly centrally mediated [15].

Edema and increased intracranial pressure (ICP) are not considered
a mechanism contributing to SUDEP, however if the post-ictal events
occurring in this patient had been unwitnessed (e.g., at night) his
death would have likely been attributed to SUDEP. Our patient
displayed a similar pattern to SUDEP: fatal cardiac arrest occurring
shortly after a generalized seizure. Post-ictal cerebral edema developed
rapidly after an aborted seizure probably triggered by a state of
prolonged hyperthermia due to physical activity on a warm day. The
combination of hyperthermia, ion channel dysfunction and possibly
emotional stress may trigger seizures in DS. Hyperthermia is well
known to induce seizures and to influence neuronal activity in patients
with SCN1Amutations and in experimental conditions involvingNav1.1
dysfunction [16–18]. Under experimental conditions, exposure to a
stressor such as emotional stress increases seizure susceptibility in
both SCN1A mutant animals and non-genetically altered controls [19].

According to his father, our patient suffered from drug-resistant
seizures in childhood but could ultimately be controlled with anti-
seizure drug polypharmacy in adolescence and adulthood which is not
Fig. 1.Cranial computed tomography after cumulative 3 h of cardiopulmonary resuscitation. Cra
signs. (with permission from the Institute of the Diagnostic und Interventional Radiology, Med
uncommon in DS. At his death the patient was taking potassium bro-
mide and topiramate, which may be of interest, as topiramate can de-
crease sweating and increase body temperature, leading to life-
threatening dehydration especially during warm weather. In combina-
tion with the warm weather and physical activity, topiramate could
have therefore contributed to hyperthermia promoting the seizure.

In neurosurgical practice, edema and raised ICP can be observed rap-
idly after seizures and edema as a consequence of prolonged seizures is
known to represent a predictor of poor outcome [20–22]. Additionally,
the combination of hyperthermia, ion channel dysfunction and possibly
emotional stress may lead to fatal cerebral edema and subsequently to
increased ICP with cerebral transtentorial herniation. Recently, Myers
et al. reported a series of fatal cerebral edema in childrenwith DS. Inter-
estingly, all DS patients with fatal cerebral edema suffered from fever of
≥40 °C and hyperthermia-related seizures [23]. Acute encephalopathy
referring to non-inflammatory cerebral edemaas a complication of febrile
illness has been sporadically reported for childrenwith DS [24–27]. How-
ever, pathophysiological mechanisms connecting hyperthermia-induced
seizures and fatal cerebral edema have yet to be described: Three distinct
possible mechanisms or a combination of thereof are considerations:

(1) Hyperthermia-induced seizures may lead to an early post-ictal
compromise, resulting in respiratory failure and cardiac arrest
as described in the monitored SUDEP cases in the MORTEMUS
study [10]. In addition to autonomic dysfunction, this may fur-
ther impede CPR during cardiac arrest which promotes cerebral
hypoxia. Cerebral hypoxia leads to a disturbance of ion hemosta-
sis and in particular to a neuronal sodium ion influx [28–30].
Several studies suggested that VGSCs are important in the path-
ophysiology of hypoxia [28–31]. It has however yet to be investi-
gated whether SCN1A mutations in DS alter susceptibility for
hypoxia and promote hypoxia-related cerebral edema by in-
creasing neuronal sodium ion influx. Altered susceptibility to
hypoxia and increased ICP from cerebral edema may impede
CPR.

(2) Hyperthermia-related seizures themselves may promote cere-
bral edema. It is widely accepted that post-ictal cerebral edema
begins with excessive influx of sodium and calcium ions through
their respective voltage-gated channels into neurons during the
repetitive hypersynchronous glutamatergic firing due to seizure
activity. Post-ictal hypoxia, energy depletion and lack of suffi-
cient ATPultimately cause failure of both the sodium-calciumex-
change and sodium-potassium exchange further promoting
sodium and calcium accumulation with hyperosmolar effects af-
fecting the integrity of the blood-brain barrier [32]. Additionally,
neuronal sodium and calcium influx will likely influence the
nial imaging revealed cerebral herniation due to global cerebral edemawithout any trauma
ical Faculty, Heinrich-Heine-University, Düsseldorf).
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membrane potential facilitating further ion influx through
voltage-gated ion channels. Sodium influx through VGSCs during
seizure activitymay therefore be considered as the crucial mech-
anism initiating the cascade leading to cerebral edema. It is
therefore likely that this cascademay be impacted by both avail-
ability of sodium ions and/or changes in the sodium ion gradient
as well as altered functioning or expression of VGSCs. Increased
excitability due to loss of function from mutations of SCN1A
may reflect compensatory upregulation of other VGSC and
voltage-gated calcium channels [33] or lack of signaling through
GABA-ergic [inhibitory] interneurons in the hippocampus [34].
Increased excitability due to gain of function mutations of
SCN1A also reported in DS, may reflect a lowered activation
threshold of the channel or prolong channel opening increasing
intracellular sodium influx and accumulation [35–37].

(3) Post-ictal bradycardia and asystole as a consequence of ictal ac-
tivity spreading to the cardiorespiratory nuclei of the brainstem
is a proposed mechanism of SUDEP. Bradycardia is also a well-
documented reaction to increased ICP (Cushing Reflex) and
may further contribute to post-ictal cardio–respiratory dysfunc-
tion. Furthermore it is also possible autonomic dysfunction ob-
served in DS patients may alter physiological compensatory
mechanisms to increased ICP mediated given the complexity of
brainstem-subcortical networks.

This case report is limited by the inherent nature of an isolated pa-
tient report but also by the limited documentation due to the
emergency situation. However, disease-directed treatment strategies
aimed at attenuating autonomic dysfunction and preventing cardiac
arrest in DS patients require further investigation.

4. Conclusion

Cytotoxic brain edema, neuronal swelling and subsequently Ca2+-
independent neuronal death are mediated by a sodium ion influx into
neurons, which peaks during the repetitive firing of neurons underlying
seizures. It is therefore possible that sodium channel dysfunction can
promote fatal cerebral edema under certain circumstances including
the post-ictal period. The combination of hyperthermia, ion channel dys-
function and possibly emotional stress may therefore not only trigger
seizures but also facilitate a fatal pathophysiological cascade of cerebral
edema leading to cerebral herniation causing cardiorespiratory collapse.
Furthermore, SCN1A mutations may alter susceptibility for neuronal
hypoxia. Further analyses are required to elucidate underlying patho-
physiological mechanisms of SUDEP and post-ictal edema in DS patients.
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