
www.aging-us.com 6537 AGING 

INTRODUCTION 
 

Atrial fibrillation (AF), one of the most common 

arrhythmias health and socioeconomic burdens, has 

complex pathophysiology and significantly contributes 

to enhanced morbidity and mortality [1]. Recent 

evidence suggests a regulatory role for the gut bacteria 

in human health, including the influence on host 

metabolism and immune homeostasis in several 
cardiovascular diseases [2] such as hypertension [3], 

heart failure [4], atherosclerosis [5], and AF [6–8]. 

Notably, many AF patients (approximately 40%) 

suffered from gastrointestinal comorbidities, pre-

dominantly dyspepsia [9]. Therefore, the role of the gut 

environment or microbiome deserves more attention in 

the context of AF pathogenesis. 

 

However, researchers are still striving to determine 

what shapes the microbial community. Some changes 

are driven by the powerful external influence of the 

environment and lifestyle [5]. However, the internal 

micro-environment of gut bacteria is the gut micro-

biome, a complex ecosystem that contains communities 

of bacteria, archaea, unicellular eukaryotes, multi-
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ABSTRACT 
 

The gut microbiota has a known complex association with atrial fibrillation (AF) progression, but the association 
of gut viruses with AF is undefined. Metagenomic data in a cohort of 50 AF patients and 50 matched controls 
were examined to profile the gut viral signals and determine their associations with intestinal bacteria and the 
AF phenotype. The gut viral alterations were examined, and the marked elevation of viral diversity, including 
increased Simpson, Shannon, and Pielou index, was revealed in AF patients. The specific alteration of the 
intestinal viral population, such as overgrowth of Streptococcus virus DT1 and Pseudomonas phage, as well as 
imbalanced gut viral function, dominated by integral component of the membrane, and metal ion binding were 
detected in AF patients. Moreover, regarding co-occurrence networks connecting viruses and bacterial 
organisms, increasingly disordered virus-bacteria linkages were seen in AF cases with severe AF progression. 
Notably, the associations of Synechococcus phage S−SM1 and Cronobacter phage CR5 with bacterial species 
were very tight in control individuals but markedly dampened in AF cases. Furthermore, the viral score built by 
the selected discriminative taxa between AF cases with or without recurrence after ablation was still 
significantly associated with recurrence (HR = 2.959, P = 0.0085), with a survival AUC of 0.878. We 
demonstrated for the first time that gut viral signatures are associated with AF, and suppressed viral-bacterial 
associations in AF suggest the gut virus might participate in AF progression, which has a potential value in 
predicting ablation outcomes. 
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cellular eukaryotes, and viruses. Sharing the same host 

niches, these communities compete against, synergize 

with, and/or antagonize each other, potentially 

impacting the host [10]. 

 

With recent progress in high-throughput sequencing 

technology and data mining strategies, unculturable 

viral communities should not be underestimated as 

“dark matter”, whose number likely far surpasses 

those of bacterial populations [11–13]. The intestinal 

virome in healthy individuals includes eukaryote-

infecting viruses and bacteriophages. Intestinal 

bacteriophages are substantially diverse among 

individuals and temporarily stable [11]. These viruses 

latently infect bacteria and co-evolve with intestinal 

bacteria, shaping bacterial ecology and acting as a 

driving factor in bacterial diversification and 

community composition through predation and 

horizontal gene transfer [10]. 

 

Currently, few reports have assessed the gut virome  

in AF patients. To examine the regulatory roles of 

intestinal viruses, it is urgent to determine their 

composition and functions. Hence, in this study, we 

performed analyses based on our previously published 

metagenomic dataset about AF, addressing the potential 

changes in virus composition and functions and the 

subsequent effects on clinical AF progression. More 

importantly, we proposed to reveal the importance of 

assessing the virus as an essential part of the 

microbiome ecological network based on the trans-

kingdom interaction between virus and bacteria. In 

addition, this study evaluated the viral signal for its 

potential diagnostic potential in recurrent AF prediction 

after catheter ablation. 

 

RESULTS 
 

Data processing and taxonomic profiles of the gut 

viral signals in AF 

 

Based on the metagenomic assembly, 857,736 contigs 

were obtained, with an average N50 length of 4,123 

bp, ranging between 1,000 and 348,062 bp. Briefly, 

the comparison of bacterial and viral reads in non-AF 

controls and AF showed an elevation of relative 

proportions of the virome in the gut environment, with 

an average of 3,451,194.14 and 3,113,567.34 viral 

reads in AF cases and non-AF controls, respectively, 

and 49,676,139.2 and 44,817,408 bacterial-reads, 

respectively (Supplementary Figure 1A, 1B). 

Altogether, viral taxa, including 13 orders, 128 

families, 756 genera, and 4,168 species, were 

annotated in the Kraken database, and relative 

abundance levels were calculated (Supplementary 

Figure 1C, 1D). 

Virome differences could be driven by vertebrate 

viruses or bacteriophages. Next, the virome was 

examined at the order level for similarity to eukaryotic 

viruses or bacteriophages, based on the viral host 

information downloaded from the international 

committee on taxonomy of viruses (ICBV). Globally, 

53.85% of all viral orders were known vertebrate-

infecting viruses, and 15.38% were matched to 

bacteriophages’ reference genomes. Notably, AF was 

associated with a tendency towards the enrichment of 

phages (Supplementary Figure 1E). The above data 

indicated dysbiosis in bacteriophages is important in 

AF, with some vertebrate-infecting viruses showing an 

increased abundance in non-AF individuals, pointing to 

a potential linkage between bacterial dysbiosis and 

bacteriophage expansion in AF. 

 

Further, we assessed whether these community 

bacteriophages were mostly lytic or temperate by 

detecting three markers of temperate phages in the (1) 

bacteria reference genome from the NCBI database, (2) 

prophage genes from the ACLAME database, and (3) 

Uniprot [14]. The abundances of lysogenic phages were 

calculated based on the species level, and we found that 

the proportion of lysogenic phages showed an 

increasing tendency throughout non-AF controls, PAF, 

and psAF (Supplementary Figure 1F). These findings 

might suggest that the intestinal virus mainly comprises 

temperate bacteriophages. 

 

Viral diversity in AF 

 

Rarefaction analysis was carried out by enumerating 

viral contigs (Figure 1A) and viruses (Figure 1B) in 

sample pairs, and the results showed that the 

accumulation curves for the totality of specimens 

nearly plateaued, suggesting most viral contigs and 

viruses could be detected. Specifically, the scatter plot 

of nonmetric dimensional scaling (NMDS) based on 

the abundances of viruses at the species level 

separated control and AF patients (P = 0.0403 for 

NMDS1; P = 1.25e−14 for NMDS2, Figure 1C), 

indicating different gut viral structures between the 

two groups. Moreover, α diversity (reflected by the 

Shannon index, Simpson index, and Pielou evenness at 

the species level) was markedly elevated in AF cases 

compared with control individuals (P = 0.0953 for the 

number of viruses, Figure 1D; P = 1.74e−08 for the 

Simpson index, Figure 1E; P = 7.05e−07 for the 

Shannon index, Figure 1F; P = 2.05e−07 for Pielou 

evenness, Figure 1G; P = 0.0953 for the Chao1 index, 

Figure 1H). 

 
To address whether the observed alteration of viral 

signals was influenced by traditional AF risk factors, 

multivariate linear regression analysis for age, BMI, 
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HTN, T2DM, TC, and medication was performed. Also, 

the independent strength of association between AF and 

the viral signatures of alpha diversity was examined. 

The results showed that AF was associated with 

increased viral Shannon index, Pielou evenness, and 

Simpson index independent of age, gender, BMI, TC, 

HTN, T2DM, or medication (Supplementary Table 1, 

Supplementary Figure 2). Therefore, it was concluded 

that the contribution of confounders to disordered viral 

signals was less than that of AF. 

 

Altered gut viral composition in AF 

 

DESeq analysis was performed to identify taxa 

differentially with the standard of adjusted p < 0.05 and 

|Log2 (fold change) |>2 between controls and AF at the 

family, genus, and species levels. A total of 10 families, 

134 genera, and 1,173 species were identified as 

differential taxa between non-AF controls and AF cases, 

and more taxa, including 7 families, 80 genera, and 694 

species, were found to be significantly enriched in AF 

cases than in control patients (Figure 2A, Supplementary 

Table 2). There was a higher abundance of families such 

as Secoviridae and Fimoviridae in the gut of AF patients 

(Figure 2B). 

Functional changes in the intestinal viral signals in 

AF 

 

To examine gut viral functions, a HUMANN2-based 

assessment of reads of viral contigs in the GO, Pfam 

protein family, and the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) databases was conducted. We 

compared the predicted gut viral functions between 

non-AF controls and AF cases. Interestingly, AF 

patients had altered viral functions, with 505 GO 

(Figure 3A), 518 Pfam protein functions (Figure 3B), 

and 17 KEGG pathways (Figure 3C; Supplementary 

Table 3), where P < 0.05 was considered statistically 

significant based on limma analysis. Of these, GO terms 

such as integral component of the membrane, 

cytoplasm, ATP-binding, DNA binding, and metal ion 

binding (Figure 3D), Pfam proteins such as ABC 

transporter, Histidine kinase-, and DNA gyrase B- 

(Figure 3E), as well as KEGG pathways such as 

Glycerophospholipid metabolism, Purine metabolism, 

Pyrimidine metabolism, RNA polymerase (Figure 3F), 

were the prominent proteins/functions, indicating the 

essential roles of viruses in virus-host interactions and 

the potential interconnection of gut viruses and bacterial 

organisms. 

 

 
 

Figure 1. Viral diversity in AF. Rarefaction curves depicting viral contigs (A) and virus (B) numbers in control and AF specimens. Beta 

diversity by nonmetric dimensional scaling (NMDS) at the species level (C). Alpha diversity indexes, including the number of viruses (D), the 
Simpson index (E), the Shannon index (F), the Pielou index (G), and the Chao 1 index (H) at the species level in controls and AF cases. + 
denotes p-value < 0.01, *p < 0.05, and NS indicates no significant difference based on Wilcoxon rank-sum test. 
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Virus-bacteria co-occurrence networks 

 

Virus-bacteria co-occurrence network analysis was 

carried out to determine the associations between 

viruses and bacterial organisms. We found that 

Prevotella copri CAG:164 and Prevotella copri were 

more abundant in non-AF control patients, and multiple 

viruses, including Hepacivirus G, were negatively 

associated with this group (Figure 4A). We also 

observed that Bacteroidetes, including Bacteroides 

vulgatus, Bacteroides eggerthii, and Bacteroides 
fragilis, were positively correlated with Synechococcus 

phage S-SM1 (enriched in control patients), suggesting 

Synechococcus phage S-SM1 could infect these species 

(Figure 4B). 

 

Structurally, the network of non-AF controls had 116 

nodes, 183 edges, and 28 linkages, while that of AF 

cases encompassed 88 nodes, 117 edges, and 31 

linkages (Supplementary Table 4). The densities of the 

networks in non-AF controls and AF cases were 0.0274 

and 0.0306, respectively. The degrees of network 

distribution differed between the non-AF controls and 

AF cases (Figure 4C). Despite the higher number of 

linkages in the network of AF cases, its natural 

connectivity was reduced than that of the network 

generated in non-AF controls (Figure 4D). Next, 

entropies were assessed for these networks, and the 

control network (1.7138) showed an elevated value 

compared with that of AF cases (1.4171), indicating 

reduced randomness of potential virus-bacteria 

interactions, while the linkage of viruses to bacteria was 

increased. Specifically, virus-bacteria linkages 

increased from 28 in control patients to 31 in AF cases 

(Figure 4E), suggesting the linkage is pervasive across 

non-AF individuals to AF patients. 

 

To characterize the relationship between gut bacteriome 

and virome, the association of the α diversity 

parameters of the bacteriome and the virome. In control 

patients, significant correlations were found between 

intra-kingdom and trans-kingdom α diversity 

parameters. However, associations of intra- and trans-

kingdom α diversity parameters were attenuated in the 

AF group, being more severe from PAF to Pers AF<12 

m and to Pers>12 m (Supplementary Figure 3A), 

indicating elevated dysbiosis of the gut microbiome in 

AF. Furthermore, the associations of bacterial species 

with viruses were examined in non-AF controls and AF 

patients. The altered virus-bacteria associations in AF 

 

 
 

Figure 2. Altered gut viral composition in AF. The Manhattan plot shows an overview of differentially enriched viral taxa between 

non-AF and AF individuals (A). Box plots of differentially enriched viral families (B) between non-AF control and AF individuals. Boxes are 
interquartile ranges; lines denote medians; circles are outliers. The scatter plot shows absolute values of Log 2 (fold change of CTR/AF), 
while dots colored in purple and green denote enriched viruses in AF and controls, respectively. + denotes adjusted p (q) value < 0.01, *q < 
0.05, and NS indicates no significant difference based on DESseq analysis. 
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were driven by both depleted and newly acquired ones; 

meanwhile, these correlations were lower in AF cases 

versus control patients (Supplementary Figure 3B). 

Notably, the associations of the viruses Synechococcus 

phage S−SM1 and Cronobacter phage CR5 with 

bacterial species were very tight in control individuals 

but markedly dampened in AF cases. The above 

findings suggested a changed viral-bacterial relationship 

in AF, with viruses and bacterial organisms becoming 

intertwined and more specialized, further revealing the 

 

 
 

Figure 3. Functional alterations of the gut viral signals in AF. Presence-absence heat map of categorized viral functions in non-AF 
and AF individuals, including in Gene Ontology (GO, A), the Pfam protein family database (B), and the KEGG pathway (C). The abundance 
distributions were graphed with line charts, and abundance levels were presented as Log2 reads per million mapped reads (RPM). The box 
plots show the top 10 differential viral functions (D for GO and E for Pfam). Boxes represent interquartile ranges; lines denote medians, and 
circles are outliers. + denotes adjusted p (q) value < 0.01, *q < 0.05, and NS indicates no significant difference based on limma analysis. (F) 
Differential abundance in the discriminative KEGG pathways in AF compared to the control group. 
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significance of inter-kingdom equilibrium among gut 

viruses and bacterial organisms in human health. 

 

Association of the gut viral signals with the risk of 

AF recurrence 

 

Given the significance of the risk of AF recurrence after 

radiofrequency catheter ablation, whether the gut 

virome could help predict recurrent AF (RAF) was 

examined to identify individuals who could highly 

benefit from catheter ablation. In this work, we 

constructed a gut virome-dependent signature for 

assessing the risk of AF recurrence. 

 

First, taxa with the highest predictive values in AF 

recurrence were selected by LASSO analysis. Totally 21 

viruses of all candidates (124 viruses with differences 

between the non-RAF and RAF groups with Wilcoxon 

rank-sum test q < 0.05) retained statistical significance, 

showing non-zero coefficients in 40 AF cases (Figure 

5A, 5B). Then, a risk score (viral score based on a linear 

combination of the 21 viral taxa-based markers) 

 

 

 
 

Figure 4. Virus-bacteria co-occurrence networks. Virus-bacteria co-occurrence networks for non-AF controls (A) and AF patients (B). 
The nodes are viruses and bacterial species. Purple ellipses and blue rectangles represent bacterial species and viruses, respectively. Edges 
represent positive (orange) and negative (grey) associations of viruses with bacterial organisms at the species level. Nodes denote distinct 
bacterial organisms or viruses, with their sizes being proportional to mean relative abundances. The cutoff Spearman correlation coefficient 
and the adjusted p-value were |0.7| and 0.05, respectively. Degrees of distribution of virus-bacteria co-occurrence networks (C). 
Comparison of the alteration levels of the virus-bacteria co-occurrence networks based on the rates of removed modes (D). Degrees of viral 
nodes in virus-bacteria co-occurrence networks (E). 
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was obtained. The value of −0.5727 was used as a cut-

off for the viral score to determine the high- and low-risk 

groups of RAF cases by the nearest neighbor estimation 

(NNE) method. Kaplan-Meier curves showed that the 

high-risk group had an increased risk of RAF compared 

with low-risk individuals (P = 0.002, Figure 5C). The 

AUC of the time-dependent ROC curve for the viral 

score was 0.741 for sinus rhythm maintained on an 

average follow-up of 15.6 ± 12.57 months (Figure 5D). 

Finally, we found that the viral score (HR = 2.959, 95% 

CI: 1.3189−6.64, p = 0.0085) independently predicted 

prognosis upon adjustment for potential confounders, 

e.g., the bacterial score which was built in our previous 

study [15] (HR = 0.239, 95% CI: 0.0476−1.20, p = 

0.0818) and a clinical scoring system called CAAP-AF 

score (HR = 1.100, 95% CI: 0.8311−1.46, p = 0.5042) 

(Figure 5E, Supplementary Table 5). 

 

DISCUSSION 
 

Based on metagenomics data, the current work 

described the first and an in-depth human gut viral 

signature in AF patients. As demonstrated above, AF 

cases had an altered gut viral signal, characterized by 

increased viral diversity and changed viral composition. 

In addition, marked functional alterations in the gut 

virus were detected in AF, indicating essential roles for 

viruses in virus-host interactions. Furthermore, a virus-

based strategy was utilized to build a predictive model 

for RAF after ablation. Moreover, we provide initial 

support regarding the virus as a vital part of the 

microbiome ecological network. 

 

The human gut contains a vast array of viruses that are 

highly diverse and stable [16]. Disordered gut virome 

has been revealed in several human diseases [17], 

including colorectal cancer [18, 19], ulcerative colitis 

[20], nonalcoholic fatty liver disease [21], 

carcinogenesis [22], diabetes mellitus [23] and 

hypertension [24]. There are few studies examining the 

relationship between gut viruses and diseases, and the 

substantial role of gut viruses in human health is 

unknown. Viruses might regulate the compositions of 

the microbial community, therefore affecting the

 

 
 

Figure 5. Association of the gut viral signals with the risk of recurrent AF. The tuning index (lambda) was identified utilizing the 

LASSO. Then, receiver operating characteristic (ROC) curve analysis was performed, and the AUC was plotted against log (lambda) (A). 
Dotted vertical lines represent the optimal values based on the minimum criteria and one standard error of the minimum criteria (1-SE 
criteria). Coefficients versus log (lambda) are shown (B). Kaplan-Meier curve analysis of overall survival based on the viral score (C). Survival 
ROC curves for the viral score (D). Forest plot of multivariate Cox regression analysis of virome-related risk groups and baseline patient 
covariates (E). Hazard ratios and 95% CIs are shown. Abbreviations: C-index: concordance index; CI: confidence interval. 



www.aging-us.com 6544 AGING 

functions of the microbiota and disease progression 

[25]. Bacteriophages change bacterial community 

composition, promoting colonization by driver bacterial 

species. Then, passenger bacterial organisms initiate 

biofilm formation, which increases with phage-induced 

dispersal. Epithelial cell transformation, tight junction 

disruption, and bacterial infiltration also occur. Bacteria 

step into a dysbiotic microenvironment and may thrive 

off specific metabolites, which are disease-related and 

participates in the progression of the disease [26–28]. 

 

Viral richness across the human life stages was assessed 

in healthy, western individuals. Across the human 

lifespan in the human gut virome database, the highest 

overall viral richness was observed in infants and adults 

and there were significant increases between children 

and adults, and significant decreases between adults and 

elderly individuals [29]. Notably, the tendency of the 

viral diversity, which increases with aging and 

decreases between adults and elderly individuals, is 

similar to the age-dependent patterns revealed in 

western individuals. The role of aberrant gut viruses in 

the pathogenesis of age-related AF remains for further 

study. 

 

Previous reports have suggested that viral markers may 

help diagnose pathologies and predict therapeutic 

responses [30, 31]. In the current study, multiple viruses 

had elevated levels and significant between-group 

variations, including Synechococcus phage S-SM1, 

Cronobacter phage CR5, and Staphylococcus phage 

SPbeta-like. The above viruses are firstly linked to AF 

in this report, and their functions in the gut microbiota 

remain largely undefined. The random forest model 

constructed based on viral species may provide some 

clues for the screening and detection of occult AF, 

which refers to AF with no typical clinical symptoms 

and no clear history detected by ECG monitoring. 

Occult AF accounts for 15%–40% of the total AF and is 

also a significant cause of cryptic stroke [32]. 

Therefore, it is of great clinical significance to carry out 

effective screening. The gut virome might be of specific 

value for the screening and stratification of the high-risk 

population for occult AF. In addition, altered gut virome 

independently predicted AF recurrence. Catheter 

ablation is broadly utilized in clinical AF, with high 

efficacy. However, high post-ablation recurrence 

demands the development of tools capable of improving 

the selection of individuals who would potentially 

benefit from ablation. Although no clear association of 

viruses with AF has been reported, we examined viruses 

as potential markers for detecting asymptomatic latent 

AF or building a predictive model for RAF. 
 

Application of the gut virome mainly targets the 

modulation of the gut bacteriome, where lytic 

bacteriophages could reshape the structure of the gut 

microbiome [33]. With growing metagenomic evidence, 

the engineering of viral genomes could become a 

patient-specific therapy as a “final destination” [34]. For 

example, Caudovirales and Microviridae may be 

applied for future phage-specific therapies in Crohn's 

disease, and inhibiting bacteriophage infection of the 

respective bacterial hosts might also curve the natural 

course of inflammatory bowel diseases [35]. 

 

Finally, a large gap remains between human intestinal 

virome and AF. The current study is not typical virome 

research but a study mining viral signal from the vastly 

available bulk gut metagenomic sequencing data, which 

is accompanied by the limitation of omission about the 

viruses which need to be enriched during sampling 

purification. A standard virome study based on the deep 

shotgun metagenomic sequencing of virus-like 

particles-derived DNA should be performed to explore 

the role of the viral community in disease development. 

Further studies such as fecal virome transplantation 

trying to examine whether the AF phenotype is 

transferrable by altered gut virome and the subsequent 

effects on pathological changes related to atrial 

remodeling are still needed. 
 

Overall, we described the altered gut viral profile in AF 

patients based on metagenomic data, which could be 

summarized as increased viral diversity, disturbed viral 

composition and functions, and disordered linkage 

between virus and bacteria. In addition, viruses were 

shown to have a superior predictive value for AF 

recurrence after ablation. 

 

MATERIALS AND METHODS 
 

Description of the study population of the 

metagenomic data 
 

The whole-metagenome sequencing data analyzed in 

the current study were acquired from our previously 

published human non-valvular AF study 

(PRJEB28284) [6], which examined 50 non-AF 

control and 50 non-valvular AF cases in northern 

China. Fifty patients with nonvalvular AF were 

consecutively enrolled in the Heart center of Beijing 

Chaoyang Hospital since March 2016, and 50 

individuals as matched controls were enrolled from the 

Kailuan cohort who received biennial medical 

examination in Kailuan General Hospital. Individuals 

with a history of heart failure, coronary heart disease, 

structural heart disease, comorbidities (inflammatory 

bowel diseases, irritable bowel syndrome, autoimmune 
diseases, liver diseases, renal diseases, or cancer), or 

use of antibiotics or probiotics in the past one month 

were excluded. 
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According to AF history and cardiogram manifestations 

[1], the 50 AF patients were assigned to the paroxysmal 

(PAF, n = 30) and persistent (psAF, n = 20) groups. 

Subsequently, the psAF cases were grouped into the 

<12-month (Pers<12 m, n = 12) and >12-month 

(Pers>12 m) groups, reflecting cases with psAF 

durations shorter and longer than one year, respectively. 

In addition, 40 AF patients underwent radiofrequency 

catheter ablation during the hospital stay. AF recurrence 

(RAF) occurred in 17 AF cases after a follow-up of 15.6 

± 12.57 months [36]. 

 

As previously reported [6–8, 36], AF patients were 

older, with more females than males, with a higher 

incidence of type 2 diabetes mellitus (T2DM), lower 

total cholesterol serum levels, and a higher incidence of 

medications compared to the non-AF CTR group. The 

baseline clinical characteristics among the different AF 

types were similar (PAF vs. psAF; Pers< 12 m vs. Pers> 

12 m; non-RAF vs. RAF), with no remarkable 

difference in terms of age, sex, gender, body mass 

index, hypertension, T2DM, fasting blood glucose, 

serum creatinine, or alanine aminotransferase. The 

information about the treatment history of AF patients 

has been provided in Supplementary Table 6, including 

renin-angiotensin system inhibitors, amiodarone, statin, 

metformin, and radiofrequency ablation history. The 

study had approval from the ethics committees of 

Beijing Chaoyang and Kailuan General Hospitals. Each 

patient provided signed informed consent at the time of 

enrolment. 

 

Assembly of metagenomic data, taxonomic 

assignment, and abundance profiling 

 

MEGAHIT v1.1.3 was applied to assemble using 

presets meta-large, with a k-mer ranging from 27 to 

127, step 10. Only contigs >1,000 bp were retained for 

subsequent assessment for high predictive accuracy for 

viral sequences [37]. Viral sequences from these contigs 

were predicted and annotated based on the Kraken virus 

database (default parameters) and the taxonomies of 

various viruses [38]. The viral sequences were utilized 

for constructing a viral database to calculate viral 

composition in 100 fecal specimens. Contig coverage 

(Reads Per Kilobase per Million mapped reads, 

RPKMs) was determined with Bowtie2 (default 

parameters), normalizing to contig length and the 

number of mapped reads in a given specimen [39]. 

Average RPKM for a given virus was determined in 

every specimen for relative abundance calculation. 

 

Rarefaction curve and diversity analyses 

 

Rarefaction analysis based on relative abundance levels 

of viral contigs and viruses was conducted to evaluate 

whether the sequencing data were sufficiently deep and 

the current sample size was optimal for the present 

analysis. The patient population underwent 100-time 

random sampling with replacement, and common viral 

contigs/viruses and viral contigs/viruses joint in sample 

pairs were assessed, and R v2.15.3 (vegan package) was 

utilized for plotting. To determine taxonomic diversity, 

the total number of viruses, α (within-individual) 

diversity indexes such as Simpson index, Shannon 

index, Pielou index, and Chao 1 richness, and β 

(between-individual) diversity using nonmetric 

dimensional scaling (NMDS) according to Bray-Curtis 

differences at the species level were calculated. 

 

Virome function analysis 

 

Virome functions were classified by annotating all 

viral-contig derived reads with HUMANN2 v0.9.4 

(default parameters). Gene ontology (GO) terms, Pfam 

protein family identities, and KEGG orthology data 

were utilized to predict functions, and abundance levels 

were determined in RPK (reads per kilobase) [20]. 

 

Virus and bacteria co-occurrence network analysis 

 

To determine the associations of bacterial and viral 

communities in non-AF controls and AF patients, the 

top 100 viruses and top 100 bacterial species based on 

their relative abundances were selected, and virus-

bacteria linkages were further examined. Spearman 

correlation analysis was carried out to determine these 

associations, using the “cor” function in R and 

correcting for multiple testing by the Benjamini-

Hochberg method. The cutoffs for the correlation 

coefficient and adjusted p-value were 0.7 and 0.05, 

respectively. The igraph package (v1.1.2) in R was used 

to quantitate distribution, node betweenness, and the 

network’s natural connectivity. Entropy for every 

network was obtained based on node degree using the 

entropy package (v1.2.1) in R. Finally, associations 

with statistical significance were imported into 

Cytoscape for visualizing virus-bacteria bipartite 

networks, in which nodes and edges represent viral and 

bacterial entities, and positive and negative associations 

of bacteria with viruses, respectively [24]. 

 

Design and validation of a predictive model for RAF 

 

The least absolute shrinkage and selection operator 

(LASSO) algorithm was utilized to select indexes with 

the highest predictive efficiencies based on significant 

taxa between the non-RAF and RAF groups. Viral scores 

were obtained for all cases by a linear combination of the 
retained taxa weighted by their respective coefficients. 

Internal validation was carried out based on a method 

reported in our previous study [36]. 
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Data availability 

 

Raw data was available at European Nucleotide Archive 

via PRJEB28384; the datasets generated and analyzed 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Taxonomic profile of the gut viral signals in AF. Relative proportions of bacterial and viral read numbers 

in the gut of controls (A) and AF patients (B). Taxonomic landscapes of the numbers of viral taxa at the order, family, genera, and species 
levels in controls (C) and AF patients (D). The box plot shows the abundance of vertebrate-infecting viruses and phages (E) and lysogenic 
phages (F). Boxes are interquartile ranges; lines denote medians, and circles are outliers. *indicates p < 0.05, and NS indicates no significant 
difference based on the t-test. 

 

 
 

Supplementary Figure 2. Spearman correlation between age and viral diversity including (A) Simpson index, (B) Shannon index, (C) 

Pielou evenness, and (D) Chao1 richness. 
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Supplementary Figure 3. Trans-kingdom linkage between gut virus and bacteria in AF. (A) Correlations between the α diversity 

indexes of intestinal bacteria and viruses in non-AF individuals, PAF, Pers<12 m and Pers>12 m. Spearman’s correlation coefficients were 
determined for all pairs. *P < 0.05 and **P < 0.01 indicate statistical significance. The circle’s size and intensity reflect the correlation’s 
magnitude, the darker and greater the circle, the tighter the correlation. (B) Associations of the most common 30 viruses with the most 
common 20 bacterial species in non-AF controls and AF patients. Spearman’s correlation coefficients were determined for all pairs. Only 
correlations with statistical significance are shown. Blue and orange circles denote positive and inverse correlations, respectively. The 
circle’s size and intensity reflect the correlation’s magnitude, the darker and greater the circle, the tighter the correlation. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2, 3, 4 and 6. 

 

 

Supplementary Table 1. The association between potential confounders and viral diversity. 

Spearman correlation analyses  

 
Shannon index Pielou evenness Chao1 richness Simpson index 

Correlation p value Correlation p value Correlation p value Correlation p value 

AF 0.499  <0.001 0.522  <0.001 0.168  0.095  0.567  <0.001 

Age 0.337  0.001  0.348  <0.001 0.131  0.195  0.374  <0.001 

Gender 0.004  0.972  0.036  0.726  −0.153  0.130  0.040  0.691  

BMI 0.048  0.638  0.032  0.752  0.053  0.605  0.032  0.751  

TC −0.215  0.032  −0.229  0.022  −0.107  0.289  −0.248  0.013  

T2DM 0.035  0.728  0.058  0.569  −0.102  0.311  0.091  0.370  

HTN 0.018  0.858  0.024  0.810  −0.041  0.683  0.006  0.956  

Statin −0.034  0.740  −0.035  0.727  −0.042  0.675  0.018  0.861  

Metformin 0.089  0.379  0.124  0.219  −0.086  0.395  0.140  0.165  

RASI 0.312  0.002  0.304  0.002  0.145  0.150  0.296  0.003  

Amiodarone 0.382  <0.001 0.359  <0.001 0.379  <0.001 0.358  <0.001 

Multivariate Linear Regression 

 
Shannon index Chao richness Pielou evenness Simpson 

Beta p value Beta p value Beta p value Beta p value 

AF 0.386  0.003  0.064  0.631  0.419  0.001  0.380  0.004  

Age 0.111  0.324  0.112  0.353  0.108  0.339  0.175  0.131  

Gender −0.092  0.333  −0.171  0.094  −0.074  0.432  −0.088  0.363  

BMI −0.051  0.587  0.053  0.600  -0.067  0.476  −0.090  0.351  

TC −0.064  0.532  −0.126  0.252  −0.049  0.632  0.009  0.931  

T2DM −0.170  0.192  −0.100  0.473  −0.171  0.187  −0.095  0.473  

HTN −0.078  0.443  −0.168  0.124  −0.058  0.566  −0.185  0.078  

RASI 0.125  0.267  0.007  0.951  0.136  0.223  0.133  0.246  

Statin −0.149  0.121  −0.114  0.266  −0.147  0.126  −0.067  0.492  

Amiodarone 0.199  0.050  0.377  0.001  0.153  0.127  0.091  0.378  

Metformin 0.103  0.423  −0.068  0.621  0.127  0.321  0.095  0.469  

Abbreviations: AF: atrial fibrillation; BMI: body mass index; HTN: hypertension; DM: diabetes mellitus; TC: total cholesterol; 
HTN: hypertension; RASI: renin-angiotensin system inhibitor. 

 

Supplementary Table 2. DESeq analysis of taxa. 

 

Supplementary Table 3. Limma analysis of function (GO, Pfam, and KEGG pathway). 
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Supplementary Table 4. Virus-bacteria co-occurrence network. 

 

Supplementary Table 5. Viral, bacterial, and CAAP-AF score for each sample. 

ID Viral score Bacteria score CAAP-AF score 

no_reAF1 −1.643436274 −0.438057175 8 

no_reAF2 −0.572739537 −0.559589758 4 

no_reAF3 −1.112909752 −0.41292474 5 

no_reAF4 −1.720926254 −0.480547348 4 

no_reAF5 −1.663225355 −0.629424774 3 

no_reAF6 −1.207326045 −0.457982056 2 

no_reAF7 −0.794490746 −0.403373535 7 

no_reAF8 −1.449086837 −0.924431659 4 

no_reAF9 −0.690488681 −0.372348362 3 

no_reAF10 −1.590535439 −0.83456788 5 

no_reAF11 −1.454642971 −1.018637523 1 

no_reAF12 −1.38143236 −0.522411896 3 

no_reAF13 −1.17920171 −0.784698581 6 

no_reAF14 −0.745314246 −0.941740217 7 

no_reAF15 −1.446141423 −0.846711054 3 

no_reAF16 −2.376555056 −0.406248875 4 

no_reAF17 −1.028053231 −0.121126375 0 

no_reAF18 −0.853312857 −1.094805179 2 

no_reAF19 −1.086303952 −0.405425016 1 

no_reAF20 −1.390471095 −0.474613524 1 

no_reAF21 −1.001423967 −0.838099047 4 

no_reAF22 −1.534434775 −0.913203781 3 

no_reAF23 −0.39917529 −0.515052 1 

reAF1 0.857412367 0.130452354 5 

reAF2 0.662074237 −0.114841987 2 

reAF3 0.788297736 −0.430826956 4 

reAF4 0.808764009 −0.072169315 1 

reAF5 0.089692379 0.094527915 4 

reAF6 1.711957888 0.744633894 8 

reAF7 1.333083101 −0.166743886 7 

reAF8 0.539843254 −0.285436126 7 

reAF9 0.67832355 0.1271324 2 

reAF10 1.638005186 0.942875207 4 

reAF11 1.182311213 −0.386605779 4 
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reAF12 0.194674374 −0.160757943 4 

reAF13 1.581301599 −0.215528759 6 

reAF14 0.785256346 0.821312269 5 

reAF15 0.2598357 0.680733825 6 

reAF16 0.638192391 −0.413989751 7 

reAF17 0.067054588 0.611781801 8 

Abbreviations: viral score = (−0.4191 *(Intercept)) + (−151.9898 *Lepidopteran hudovirus) + (−824.8187 *Acanthocystis 
turfacea chlorella virus 1) + (−32.1303 *Synechococcus phage S-RIM8) + (−36.6109660550033 *Agrotis segetum 
nucleopolyhedrovirus B) + (−1001.4687 *Mokola lyssavirus) + (1046.1101 *Rhodococcus phage REQ1) + (564.2624 *Chicken 
anemia virus) + (1061.2306 *Escherichia virus HX01) + (1216.3961 *Guajara orthobunyavirus) + (−879.1352 *Escherichia virus 
ADB2) + (−80.5973 *Azospirillum phage Cd) + (−3751.0734 *Helicoverpa armigera granulovirus) + (1722.6372 *Salmonella 
phage SPN3UB) + (73.0350 *Listeria virus P100) + (112.2706 *Beihai zhaovirus-like virus 1) + (9441.7402 *Maize rayado fino 
virus) + (34369.6655 *Ribgrass mosaic virus) + (568.4422 *Wuhan millipede virus 3) + (2657.2776 *Wuhan insect virus 14) + 
(3857.4019  *Narcissus mosaic virus) + (1303.9541 *Paracoccus phage vB_PmaS-R3). 

 

Supplementary Table 6. Medication history. 

 

 


