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Machine learning‑based automatic 
estimation of cortical atrophy 
using brain computed tomography 
images
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Yeshin Kim1,2, Seongheon Kim1,2, Soo‑Jong Kim5, Duk L. Na5, Seung Hwan Moon6, 
Sang Won Seo5* & Joon‑Kyung Seong4*

Cortical atrophy is measured clinically according to established visual rating scales based on magnetic 
resonance imaging (MRI). Although brain MRI is the primary imaging marker for neurodegeneration, 
computed tomography (CT) is also widely used for the early detection and diagnosis of dementia. 
However, they are seldom investigated. Therefore, we developed a machine learning algorithm for 
the automatic estimation of cortical atrophy on brain CT. Brain CT images (259 Alzheimer’s dementia 
and 55 cognitively normal subjects) were visually rated by three neurologists and used for training. 
We constructed an algorithm by combining the convolutional neural network and regularized logistic 
regression (RLR). Model performance was then compared with that of neurologists, and feature 
importance was measured. RLR provided fast and reliable automatic estimations of frontal atrophy 
(75.2% accuracy, 93.6% sensitivity, 67.2% specificity, and 0.87 area under the curve [AUC]), posterior 
atrophy (79.6% accuracy, 87.2% sensitivity, 75.9% specificity, and 0.88 AUC), right medial temporal 
atrophy (81.2% accuracy, 84.7% sensitivity, 79.6% specificity, and 0.88 AUC), and left medial temporal 
atrophy (77.7% accuracy, 91.1% sensitivity, 72.3% specificity, and 0.90 AUC). We concluded that 
RLR‑based automatic estimation of brain CT provided a comprehensive rating of atrophy that can 
potentially support physicians in real clinical settings.

Structural brain imaging is recommended in the diagnostic guidelines for  dementia1,2, and it is known to be 
related to cognitive dysfunction in normal elderly or patients with Alzheimer’s disease (AD)3,4. In addition to 
excluding surgical lesions, the assessment of cerebral atrophy suggestive of underlying pathology, including the 
medial temporal lobe for  AD5, is possible with the use of structural brain imaging. Several visual rating scales 
based on structural imaging have been reported to assess brain atrophy, with some of them being widely used 
in research and clinical  practice5,6. Compared to quantitative volumetric measures, visual rating scales have the 
advantage of directly applying clinically acquired images without a time-consuming  process7. However, there 
are reliability issues for inter- or intra-rater  agreement8,9, and most of the visual rating scales are made based on 
brain magnetic resonance imaging (MRI)7. Although brain MRI is the primary imaging marker for neurodegen-
eration according to the recent research framework for  AD10, brain computed tomography (CT) may also yield 
important information in subjects with  dementia11. More importantly, brain CT is increasingly being used for 
the early screening of dementia, as a part of the Korean national dementia plan since  200812. Therefore, there is 
a growing need for a reliable and practical method for brain CT visual rating, which was seldom investigated.

Computerized, automated grading of brain CT has potential benefits for maximizing reliability and efficiency, 
resulting in the coverage of a screening system for cognitive decline. The algorithm for visual rating is necessary 
to increase the clinical utility of automated grading. This suggests that an “artificial intelligence (AI)–based, 
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computer-aided (CAD)” approach will be needed for structural imaging-based visual rating scales based to 
discover and analyze neurodegeneration by enabling the statistical power to detect subtle effects.

AI is an all-embracing field of computer science that use computers and machines to perform certain tasks to 
mimic the problem-solving and decision-making capabilities of the human mind, thereby creating an intelligent 
system. Machine learning, representation learning, and deep learning are subfields of AI. A growing number of 
clinical applications based on machine learning and deep learning have been proposed in neuroimaging for risk 
assessment, diagnosis, prognosis, and  prediction13. Therefore, machine learning, which adopts explicit features 
specified by experts and has shown potential benefits in identifying dementia risk on  neuroimaging14, could be 
used for the automated grading of brain CT to support clinical assessment.

As such, this study aimed to develop machine learning algorithms for the automatic grading of cortical 
atrophy using brain CT and compare these with the visual ratings of neurologists.

Materials and methods
Subjects. We recruited 259 patients with AD and 55 cognitively normal (CN) subjects, who underwent 
brain MRI and CT. Alzheimer’s disease was diagnosed based on the National Institute on Aging-Alzheimer’s 
Association (NIA-AA) research criteria for probable  AD1. Subjects with normal cognition were defined as those 
without any history of neurologic or psychiatric disorders, and normal cognitive function was determined using 
neuropsychological tests.

All subjects were evaluated by clinical interview, neurological examination, neuropsychological tests, and lab-
oratory tests, including complete blood count, blood chemistry, vitamin B12/folate, syphilis serology, and thyroid 
function tests. Brain MRI confirmed the absence of structural lesions, including territorial cerebral infarctions, 
brain tumors, hippocampal sclerosis, and vascular malformations. Demographic data are described in Table 1. 
The study included 55 participants with normal cognition (NC) and 256 participants with AD. The mean age 
(standard deviation) of participants with NC was 53.1 (20.2), while that of participants with AD was 69.0 (10.4). 
Women comprised 28 participants (50.9%) in those with NC and 146 participants (56.4%) in those with AD.

This study protocol was approved by the Institutional Review Board of Samsung Medical Center (approval 
No. 2017-07-039). We obtained written informed consent from each subject, and all procedures were carried 
out according to the approved guidelines.

Image acquisition. We acquired standardized, three-dimensional, T1 turbo field echo images from all sub-
jects at Samsung Medical Center using the same 3.0 T MRI scanner (Philips Achieva; Philips Healthcare, Ando-
ver, MA, USA) with the following parameters: sagittal slice thickness of 1.0 mm, over contiguous slices with 
50% overlap, no gap, repetition time (TR) of 9.9 ms, echo time (TE) of 4.6 ms, flip angle of 8°, and matrix size 
of 240 × 240 pixels, reconstructed to 480 × 480 over a field of view of 240 mm. So, real scanner resolution of MR 
images has isotropic 1.0 mm voxel size and voxel size of our reconstructed T1 MR images are isotropic 0.5 mm 
voxel size by overlapping between contiguous slices.

We acquired CT images from all subjects at Samsung Medical Center using a Discovery STe PET/CT scan-
ner (GE Medical Systems, Milwaukee, WI, USA) in the three-dimensional scanning mode, which examines 
47, 3.3-mm thick slices spanning the entire  brain15,16. CT images were also acquired using a 16-slice helical CT 
(140 keV, 80 mA, 3.75-mm section width) for attenuation correction. Voxel size of CT images acquired by PET-
CT scanner are 0.5 mm × 0.5 mm × 3.27 mm. The SNR value was checked through Phantom study (3.75 mm slice 
thickness, 120 kVp, 190 mA), and it was conducted by GE Discovery STe PET-CT scanner. The SNR results of our 
phantom study were Water Layer: 0.23 ± 0.04, Acrylic Layer: 25.97 ± 1.34, respectively. The SNR was calculated 
as “SNR = CT Number / SD (noise).

Preprocessing. The two different modalities of brain imaging underwent preprocessing before using the 
segmentation network. First, the CT images in Digital Imaging and Communications in Medicine (DICOM) 
data format were converted to Neuroimaging Informatics Technology Initiative (NIFTI) data format by applying 
dcm2niix (Chris Rorden’s dcm2niiX version v1.0.20171017 [OpenJPEG build] GCC4.4.7 [64-bit Linux]). Then, 
we aligned the 3D CT images to the corresponding T1 MR images using the FMRIB’s Linear Image Registration 
Tool (FLIRT), a tool of the FSL software (https:// fsl. fmrib. ox. ac. uk/ fsl/ fslwi ki; FMRIB Software Library v6.0)17,18. 
Image registration was conducted using rigid body affine transformation. The registration process is fully auto-
matic with parameters of both 6 degrees of freedom and spline interpolation methods.

Table 1.  Demographics of the study participants. Values are mean (SD) or N (%). Statistical analyses 
were performed with Chi-square or ’Student’s t-tests. SD Standard deviation, CN Cognitively normal, AD 
Alzheimer’s disease, MMSE Mini-mental state examination.

CN (n = 55) AD (n = 259) p-value

Age(years) 53.1 (20.2) 69.0 (10.4)  < 0.001

Sex(F) 28 (50.9) 146 (56.4) 0.459

Education (years) 14.5 (2.7) 11.8 (4.8) 0.002

MMSE 28.8 (0.9) 18.6 (5.7)  < 0.001

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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The Brain Extraction Tool (BET)19, another tool of the FSL software, was also a validated means for skull 
stripping in brain CT  images20. After setting up each image to the general brain tissue range, we used BET with 
a fractional intensity (FI) value of equal to 0.01, acquiring the skull-stripped CT images. Every skull-stripped 
CT image was manually checked to assure clear results. Afterwards, intensity normalization and histogram 
equalization were applied to each image. Finally, we downsized the CT slices to 128 × 128 pixels on account of 
GPU performance.

Following preprocessing of CT images, T1 MR images were employed for training the deep learning-based 
CT image segmentation model. To obtain pre-defined anatomical labels, MR images were preprocessed using 
the FreeSurfer software (https:// surfer. nmr. mgh. harva rd. edu)21,22. Considering low contrast in CT images, the 
automatic segmentation of CT images was done only for three parcellations: cerebrospinal fluid (CSF), white 
matter (WM), and gray matter (GM). MR slices were also downsized to half their pixel for the same reason above.

Segmentation. A convolutional neural network (CNN) was implemented to attain the segmentation image 
of brain CT. Among the diverse, state-of-the-art networks, we chose the 2D form of U-Net, which has already 
been proven to be effective in various biomedical segmentation  studies23. Preprocessed 3D CT images were 
sliced into 2D axial slices, and brain-invisible slices were removed beforehand. Similarly, segmented 3D MR 
images were sliced in the same manner. We then attempted to build a CNN segmentation network using the 
refined 2D CT image as an input and simultaneously commensurate MR as an answer label. Figure 1 illustrates 
the schematic diagram of the U-Net framework. Segmentation outputs were obtained through the U-Net archi-
tecture with 10 different model weights via a ten-fold train/test split. During the training process, we fine-tuned 
each resulting model using an adaptive moment estimation (Adam) optimizer, with 1e-6 as the initial learning 
rate and 16 as the batch size. We also applied an early stopping method to prevent overfitting. The quality of 
every segmentation result was manually checked, and for further validation, we computed the dice similarity 
coefficient (DSC), which is defined as

X represents the answer slice region, Y represents the result slice region.
Unfit images due to subject overlap, conversion failure, registration mismatch, and visual rating error were 

removed after each preprocessing stage, leaving a total of 314 subjects for analysis.

DSC =
2|X ∩ Y |

|X| + |Y |

Figure 1.  A scheme of framework. Tensors are indicated as boxes while arrows denote computational 
operations. Number of channers is indicated beneath each box. Input and output of this network are CT slice 
with Label slice pairs and segmented CT images (segCT) slice. The classification conducted by threefold cross-
validation was performed by randomly assigned the subject into three subgroups. BET Brain extraction, ReRU 
rectified linear unit activation, segCT Segmented CT, RLR regularized logistic regression, FA frontal atrophy, PA 
Parietal atrophy, MTAR  medial temporal atrophy, right, MTAL medial temporal atrophy, left, Pos positive, Neg 
negative.

https://surfer.nmr.mgh.harvard.edu
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Visual rating of cortical atrophy. The visual rating of cortical atrophy was performed for the frontal lobe, 
parietal lobe, and medial temporal lobe by rating the brain CT axial images. Frontal atrophy (FA) was assessed 
using the simplified Pasquier scale or global cortical atrophy for the frontal lobe (GCA-F)8. Parietal atrophy (PA) 
was measured using the axial template of the posterior atrophy  scale24. Lastly, medial temporal atrophy (MTA) 
was assessed using the hippocampus and surrounding  CSF25, showing good agreement with Scheltens’ coronal 
visual rating  scale5. FA and PA were evaluated as four-point scales (from 0 to 3), whereas MTA was evaluated 
using a five-point scale (from 0 to 4). More severe atrophies were measured when there was asymmetry for FA 
and PA, while bilateral atrophies were separately measured for MTA. The visual rating was performed by three 
neurologists (Jae-Won Jang, Seongheon Kim, and Yeshin Kim), who were blinded to demographic and clinical 
information. If there were discrepancies among them, a consensus was made after reviewing the cases. The inter-
rater and intra-rater reliability with randomly selected brain CT images from 20% of all images were deemed 
excellent, with values of 0.81 ~ 0.92 and 0.90 ~ 0.94, respectively (Supplementary Table 1).

Feature extraction. The ratio of GM, WM, and ventricular size was extracted from the segmented CT 
images, serving as features for the classification step. Given the difficulty of extracting PA, FA, and MTA from 
CT, we attempted to use the most typical atrophy in AD diagnosis, which is global cortical atrophy (GCA). We 
respectively drew out features in the 3D volume and 2D slice, which are all related to GCA on a certain level. A 
detailed description of the extracted features is provided below:

• The volume ratio: GMR3D (the volume ratio of GM), WMR3D (the volume ratio of WM), GMWMR3D (the 
volume ratio of the sum of GM and WM in the whole-brain volume), Ven3D (the total voxel number of the 
ventricle in the whole-brain volume).

• The area of ratio: GMR2D (the area ratio of GM), WMR2D (the area ratio of WM), GMWMR2D (the area 
ratio of the sum of GM and WM in the particular brain slice, which indicates the visible slice prior to the ven-
tricle when looking at the brain from top to bottom in the axial orientation), Ven2D (the total pixel number 
of the ventricle in the particular brain slice, which indicates the slice with the best-observed ventricle shown 
as a "butterfly" shape).

Atrophy classification. The consolidated pipeline of the classification framework is provided in Fig. 1. Prior 
to full-scale classification, we cut off the current atrophy rating score with multiple degrees to two degrees—posi-
tive and negative. For example, regarding FA and PA, visual rating scale (VRS) scores of 0 and 1 were considered 
negative, whereas VRS scores of 2 and 3 were considered positive. Similarly, regarding MTAs, VRS scores of 0 
and 1 were considered as negative, whereas VRS scores of 2, 3, and 4 were considered as positive.

For the classification phase, we opted to use one of the simplest supervised learning algorithms with a high 
bias, a regularized logistic regression (RLR), considering the data status and the number of extracted features. 
Logistic regression has also been widely recognized for AD-related classification works in  neuroimaging26. The 
RLR model is trained using the extracted features and makes the final prediction regarding atrophy diagnosis in 
different brain positions. Major hyperparameters (e.g., penalization type, regularization strength, optimization 
solver algorithm) were tuned by the random search method in threefold cross validation within a pre-set range. 
The process was thoroughly handled using the Scikit-learn software, a python machine learning  package27. 
Afterwards, we plotted a receiver operating characteristic curve (ROC curve) for the performance evaluation and 
calculated the area under the curve (AUC score). We then selected the optimal cut-off point with the maximum 
value of Youden’s index, which is defined as

Several metrics, including sensitivity (SENS), specificity (SPEC), and classification accuracy (ACC), were 
also calculated at this point.

Results
CT segmentation. In Fig. 2, CT segmentation results from the U-Net concerning both participants with 
AD and NC are illustrated. The presented slices, referred to as CSF and GCA, were closely related to AD diag-
nosis. The DSC was calculated for every subject, and its average was 0.725 ± 0.0443. Although the result is not at 
the highest level, it was not a major barrier to the final classification phase. Furthermore, CT segmentation had 
turned out to be the way we demanded, which was the rough parcellation of the brain into CSF, WM, and GM.

Classification performance. As shown in Table 2 and Fig. 3 the proposed RLR model achieved an AUC 
score of 0.8735 in FA, 0.8821 in PA, 0.8757 in MTAR, and 0.8952 in MTAL. At the maximum value of Youden’s 
Index in each case, the model showed sensitivities of 93.52% in FA, 87.25% in PA, 84.69% in MTAR, and 89.52% 
in MTAL; specificities of 67.27% in FA, 75.94% in PA, 79.63% in MTAR, and 72.32% in MTAL; and accuracies 
of 75.16% in FA, 79.62% in PA, 81.21% in MTAR, and 77.71%. Among all four regions, MTAL performed the 
best in terms of the AUC rate, whereas PA had the AUC lowest rate. In terms of sensitivity, although PA had the 
lowest SPE and AUC rates, it achieved the greatest rate in terms of SENS. Moreover, MTAR demonstrated the 
highest value for SPEC and AUCC.

Analysis on the importance of extracted features. We further investigated how the extracted fea-
tures utilized to train the classification model affected the decision-making process for each atrophy case. In the 
trained RLR models, we normalized the value of feature coefficients congruous to each feature, visualizing them 

Youden’s Index J = Sensitivity+ Specificity− 1
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as a 3D bar plot (Fig. 4). The magnitude of the feature coefficients for eight features (in the order of GMR3D, 
WMR3D, GMWMR3D, Ven3D, GMR2D, WMR2D, GMWMR2D and Ven2D) were 0.148, 0.182, 0.181, 0.0680, 
0.104, 0.124, 0.146, and 0.0477 in FA; 0.0572, 0.0658, 0.0677, 0.0982, 0.240, 0.165, 0.247, and 0.0598 in PA; 0.120, 
0.0958, 0.125, 0.421, 0.0604, 0.0766, 0.0266, and 0.0741 in MTAR; and 0.0801, 0.0928, 0.0948, 0.407, 0.0861, 
0.0181, 0.0480, and 0.173 in MTAL. Results revealed that larger coefficient means showed greater influence on 
final decision making.

FA classification was influenced by across-the-board GCA features from both 3D volume and 2D slice. In 
the case of PA, GCA features from a particular 2D slice greatly affected classification. Meanwhile, MTAs could 
be classified according to ventricular changes in both 3D volume and 2D slice, rather than GCA features as in 
the previous cases.

Discussion
A machine learning-based automated atrophy estimator was developed to aid clinicians in deciding whether 
there was significant atrophy in brain CT. In this study, the proposed RLR model showed good agreement with 
the visual rating scale and high reliability.

Since the Korean national dementia plan started in 2008, approximately 30,000 brain CT scans are being 
taken nationwide annually for the differential diagnosis of dementia, and this number is gradually  increasing12. 
Despite the abundance of brain CT data being accumulated, there has been an unmet need for visual rating due 
to low resolution in images and low reliability in evaluators.

Although automated CT-based segmentation and total intracranial volume quantification have been previ-
ously  reported28, there are similar shortcomings of automated volumetric analysis with brain MRI. In other 
words, brain MRI visual rating requires expertise that cannot be applied in clinical practice for individual subjects 
 directly7. In contrast, once the algorithm for brain CT has been set up, the machine learning-based automated 
atrophy rating can be easily applied to identify atrophy on behalf of the evaluator. Therefore, this method can 
be used not only for the direct assessment of atrophy in individual patients, but also to consistently reproduce 
approximate expert levels of visual ratings in a large number of brain CT scans. This is significant as the manual 
segmentation of the pixels, labeling, and region of interest in an image require experienced readers, is time-
consuming, and is prone to intra-and inter-observer variability.

Over the past years, several automatic and semi-automatic brain segmentation methods have been pro-
posed for both MRI and CT  imaging29–31. The small and complex structure of the brain makes segmentation a 

Figure 2.  Sample of segmentation result (A) Alzheimer’s dementia (B) Normal control. GCA  global cortical 
atrophy, CSF cerebrospinal fluid. Green = white matter, blue = gray matter, red = CSF.

Table 2.  Binary classification result of atrophy rating through regularized logistic regression. FA frontal 
atrophy, PA Parietal atrophy, MTAR  medial temporal atrophy, right, MTAL medial temporal atrophy, left.

Atrophy type AUC 

At maximum value of Youden’s Index for the 
ROC Curve

SENS SPEC ACC 

FA 0.8735 0.9362 0.6727 0.7516

PA 0.8821 0.8725 0.7594 0.7962

MTAR 0.8757 0.8469 0.7963 0.8121

MTAL 0.8952 0.9111 0.7232 0.7771
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challenging issue, especially in CT scans due to much lower SNR and lower spatial resolution as major limita-
tions. Image segmentation can be used for a better visualization of the morphological changes of brain atrophy, 
providing the clinician with a better understanding and assisting them in the diagnostic process. In this study, 
our proposed methodology proved to be efficient and effective on CT-based imaging and can be easily leveraged 
for similar automated brain atrophy grading applications on different imaging modalities.

Although downsizing the matrix of initial acquisition images was performed accounting for GPU perfor-
mance, the process was rapid as a few seconds and effective in getting results that could support clinical decisions. 
Moreover, we tried to reduce noise for brain segmentation and efficient quantitative performance effects through 
the preprocessing phase, which was done with the intensity and histogram normalization of CT images and affine 
transformation by using MRI images of individual subjects. Therefore, it is possible to provide consistent results 
by providing segmented tissue types of GM, CSF, and WM in MRI and CT images.

While the accuracy and reliability of the RLR measures were high for all groups, MTAR achieved the highest 
accuracy rate compared to the MTAL, PA, and FA regions. Contrarily, the FA region was the lowest in three out 
of the four evaluation metrics, which was possibly due to the relative obscurity of FA in AD as compared to MA 
or PA. The proposed RLR model also revealed an accuracy of 80%, since approximately 20% did not fit the visual 
rating of the neurologists. This may be due to the ambiguity of the visual rating of brain CT itself. Furthermore, 
the visual rating was used as a labeling value for machine learning training; however, atrophy rating based on 
brain CT, which showed a relatively low resolution compared to brain MRI, was not easy for a neurologist to 
identify. As our goal was not to measure accurate brain atrophy but to develop algorithms that can more consist-
ently predict atrophy to aid clinical decisions, we believe the more labeled data could enhance accuracy.

Feature contribution and its visualization is an important analysis method in the field of machine learning. 
To identify which atrophy-related region contributed most to the performance of the proposed models, we 
evaluated feature importance based on the coefficient value of each feature. Among the highest ranked features, 
GCA features from both 3D volume and 2D slice were the most important for FA classification, whereas GCA 

Figure 3.  ROC Curve for binary classification of atrophy. FA frontal atrophy, PA Parietal atrophy, MTAR  medial 
temporal atrophy, right, MTAL medial temporal atrophy, left.
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features from only a unique 2D slice greatly affected PA classification. Our proposed model also showed that 
ventricular changes in both 3D volume and 2D slice significantly contributed to the classification of MTAs among 
their other counterparts.

Despite the promising results, the study had limitations. First, the small available training dataset may have 
affected model performance. It is reasonable to expect that a larger CT-based dataset would improve the accu-
racy of the method. In comparison to the MRI-based dataset, it is worth mentioning that MRI images provide 
significantly more detail than the CT-based scans, which have a more uniform feature distribution. This may 
further support the idea that having extra CT-based data for model training will enhance the accuracy rate for 
brain atrophy estimation. As such, exploring deep learning strategies that can generate synthetic medical images, 
such as data augmentation techniques, may be required. Second, a monocentric dataset has been applied in this 
study. All CT scans were acquired at a single institution, and our models did not account for variations in hard-
ware implementation and scanning techniques across institutions. This may bias the results and consequently 
reduce the generalizability of the trained CNN model. Also, SNR values might be changed depending on equip-
ment (slice thickness), protocol (mAs), measurement target or patient (size or organ), so it is difficult to talk 
about it uniformly, but it can be used to show the CT scanner status as SNR of our phantom study. However, the 
availability of large, diverse, annotated datasets for training remains a considerable challenge in developing the 
CNN models. Third, CT images are involved with high radiation exposure to patients. Therefore, they cannot 
be routinely recommended in clinical practice despite of advantages over MRI in terms of price and accessibil-
ity. This study tried to present a useful model for the evaluation of atrophy in brain CT, which has been steadily 
accumulated as government-led early diagnosis program in Korean dementia plan.

In conclusion, an integrated U-Net model for brain atrophy segmentation with an RLR model provided a 
comprehensive clinical tool for the visual rating of brain atrophy. These measures may increase diagnostic and 
predictive information to better evaluate a wide variety of regions in brain atrophy conditions, especially in 
hospitals with limited resources. Moreover, collecting large-scale data sets can help accelerate CT-based rating 
application in clinical medicine, and there is potential to improve these machine learning-based methods. Further 
studies should aim to expand this tool to assist neurologists in real clinical settings.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Figure 4.  Feature importance of visual rating scale. FA frontal atrophy; PA parietal atrophy; MTAR  medial 
temporal atrophy, right; MTAL medial temporal atrophy, left; Ven2D (the area ratio of ventricle); GMWMR2D 
(the area ratio of the sum of gray matter [GM] and white matter [WM]); WMR2D (the area ratio of WM); 
GMR2D (the area ratio of GM); Ven3D (the volume ratio of the ventricle); GMWMR3D (the volume ratio of the 
sum of GM and WM); WMR3D (the volume ratio of WM); GMR3D (the volume ratio of GM).



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14740  | https://doi.org/10.1038/s41598-022-18696-6

www.nature.com/scientificreports/

Received: 12 February 2022; Accepted: 17 August 2022

References
 1. McKhann, G. M. et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on 

Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dementia https:// doi. 
org/ 10. 1016/j. jalz. 2011. 03. 005 (2011).

 2. Wardlaw, J. M. et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurode-
generation. Lancet Neurol. https:// doi. org/ 10. 1016/ S1474- 4422(13) 70124-8 (2013).

 3. Jack, C. R. et al. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 
62(4), 591–600 (2004).

 4. den Heijer, T. et al. A 10-year follow-up of hippocampal volume on magnetic resonance imaging in early dementia and cognitive 
decline. Brain 133(4), 1163–1172 (2010).

 5. Scheltens, P. et al. Atrophy of medial temporal lobes on MRI in ‘probable’ Alzheimer’s disease and normal ageing: diagnostic value 
and neuropsychological correlates. J. Neurol. Neurosurg. Psychiatry https:// doi. org/ 10. 1136/ jnnp. 55. 10. 967 (1992).

 6. Victoroff, J., Mack, W. J., Grafton, S. T., Schreiber, S. S. & Chui, H. C. A method to improve interrater reliability of visual inspection 
of brain MRI scans in dementia. Neurology https:// doi. org/ 10. 1212/ wnl. 44. 12. 2267 (2012).

 7. Harper, L., Barkhof, F., Fox, N. C. & Schott, J. M. Using visual rating to diagnose dementia: A critical evaluation of MRI atrophy 
scales. J. Neurol. Neurosurg. Psychiatry (2015). https:// doi. org/ 10. 1136/ jnnp- 2014- 310090.

 8. Pasquier, F. et al. Inter-and intraobserver reproducibility of cerebral atrophy assessment on mri scans with hemispheric infarcts. 
Eur. Neurol. https:// doi. org/ 10. 1159/ 00011 7270 (1996).

 9. Davies, R. R. et al. Development of an MRI rating scale for multiple brain regions: Comparison with volumetrics and with voxel-
based morphometry. Neuroradiology https:// doi. org/ 10. 1007/ s00234- 009- 0521-z (2009).

 10. Jack, C. R. et al. NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dementia https:// 
doi. org/ 10. 1016/j. jalz. 2018. 02. 018 (2018).

 11. De Leon, M. J., George, A. E., Stylopoulos, L. A., Smith, G. & Miller, D. C. Early marker for alzheimer’s disease: The atrophic hip-
pocampus. The Lancet https:// doi. org/ 10. 1016/ S0140- 6736(89) 90911-2 (1989).

 12. Lee, D. W. & Seong, S. J. Korean national dementia plans: From 1st to 3rd. J. Korean Med. Assoc. https:// doi. org/ 10. 5124/ jkma. 
2018. 61.5. 298 (2018).

 13. Jo, T., Nho, K. & Saykin, A. J. Deep learning in Alzheimer’s disease: Diagnostic classification and prognostic prediction using 
neuroimaging data. 32.

 14. Pellegrini, E. et al. Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: A systematic 
review. Alzheimers Dement. Diagn. Assess. Dis. Monit. 10, 519–535 (2018).

 15. Jang, H. et al. Clinical significance of amyloid β positivity in patients with probable cerebral amyloid angiopathy markers. Eur. J. 
Nucl. Med. Mol. Imaging 46, 1287–1298 (2019).

 16. Kim, S. E. et al. A nomogram for predicting amyloid PET positivity in amnestic mild cognitive impairment. J. Alzheimers Dis. JAD 
66, 681–691 (2018).

 17. Jenkinson, M. & Smith, S. Med Image Anal 2001 Jenkinson. 5, 1–14 (2001).
 18. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and 

motion correction of brain images. Neuroimage 17, 825–841 (2002).
 19. Smith, S. M. Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155 (2002).
 20. Muschelli, J. et al. Validated automatic brain extraction of head CT images. Neuroimage https:// doi. org/ 10. 1016/j. neuro image. 

2015. 03. 074 (2015).
 21. Reuter, M., Rosas, H. D. & Fischl, B. Accurate inverse consistent robust registration. Neuroimage 53, 1181–1196 (2010).
 22. Reuter, M., Schmansky, N. J., Rosas, H. D. & Fischl, B. Within-subject template estimation for unbiased longitudinal image analysis. 

Neuroimage 61, 1402–1418 (2012).
 23. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation.
 24. Koedam, E. L. G. E. et al. Visual assessment of posterior atrophy development of a MRI rating scale. Eur. Radiol. https:// doi. org/ 

10. 1007/ s00330- 011- 2205-4 (2011).
 25. Kim, G. H. et al. T1-weighted axial visual rating scale for an assessment of medial temporal atrophy in Alzheimer’s disease. J. 

Alzheimers Dis. https:// doi. org/ 10. 3233/ JAD- 132333 (2014).
 26. Rathore, S., Habes, M., Iftikhar, M. A., Shacklett, A. & Davatzikos, C. A review on neuroimaging-based classification studies and 

associated feature extraction methods for Alzheimer’s disease and its prodromal stages. Neuroimage 155, 530–548 (2017).
 27. Pedregosa, F. et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
 28. Aguilar, C. et al. Automated CT-based segmentation and quantification of total intracranial volume. Eur. Radiol. https:// doi. org/ 

10. 1007/ s00330- 015- 3747-7 (2015).
 29. Suh, C. H. et al. Development and validation of a deep learning-based automatic brain segmentation and classification algorithm 

for alzheimer disease using 3D T1-weighted volumetric images. Am. J. Neuroradiol. https:// doi. org/ 10. 3174/ ajnr. A6848 (2020).
 30. Fellhauer, I. et al. Comparison of automated brain segmentation using a brain phantom and patients with early Alzheimer’s 

dementia or mild cognitive impairment. Psychiatry Res. Neuroimaging 233, 299–305 (2015).
 31. Yaakub, S. N. et al. On brain atlas choice and automatic segmentation methods: a comparison of MAPER & FreeSurfer using three 

atlas databases. Sci. Rep. 10, 2837 (2020).

Acknowledgements
This research was supported by the “National Institute of Health” research project (2021-ER1006-01). This 
research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health 
Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant 
Number: HI19C1132).

Author contributions
S.W.S. and J.K.S designed this study. D.L.N and S.W.S provided and reviewed the dataset. S.Y.K, J.W.J, P.H.K, 
S.W.P and S.J.K wrote the main manuscript text. S.Y.K, J.H.K, Y.S.K, S.H.K, S.H.M and J.K.S performed the data 
analyses. J.K.S and P.H.K inspected the manuscript critically and took part in the revision of manuscript. All 
authors have read and approved the final manuscript data.

Competing interests 
The authors declare no competing interests.

https://doi.org/10.1016/j.jalz.2011.03.005
https://doi.org/10.1016/j.jalz.2011.03.005
https://doi.org/10.1016/S1474-4422(13)70124-8
https://doi.org/10.1136/jnnp.55.10.967
https://doi.org/10.1212/wnl.44.12.2267
https://doi.org/10.1136/jnnp-2014-310090
https://doi.org/10.1159/000117270
https://doi.org/10.1007/s00234-009-0521-z
https://doi.org/10.1016/j.jalz.2018.02.018
https://doi.org/10.1016/j.jalz.2018.02.018
https://doi.org/10.1016/S0140-6736(89)90911-2
https://doi.org/10.5124/jkma.2018.61.5.298
https://doi.org/10.5124/jkma.2018.61.5.298
https://doi.org/10.1016/j.neuroimage.2015.03.074
https://doi.org/10.1016/j.neuroimage.2015.03.074
https://doi.org/10.1007/s00330-011-2205-4
https://doi.org/10.1007/s00330-011-2205-4
https://doi.org/10.3233/JAD-132333
https://doi.org/10.1007/s00330-015-3747-7
https://doi.org/10.1007/s00330-015-3747-7
https://doi.org/10.3174/ajnr.A6848


9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14740  | https://doi.org/10.1038/s41598-022-18696-6

www.nature.com/scientificreports/

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 18696-6.

Correspondence and requests for materials should be addressed to S.W.S. or J.-K.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-18696-6
https://doi.org/10.1038/s41598-022-18696-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Machine learning-based automatic estimation of cortical atrophy using brain computed tomography images
	Materials and methods
	Subjects. 
	Image acquisition. 
	Preprocessing. 
	Segmentation. 
	Visual rating of cortical atrophy. 
	Feature extraction. 
	Atrophy classification. 

	Results
	CT segmentation. 
	Classification performance. 
	Analysis on the importance of extracted features. 

	Discussion
	References
	Acknowledgements


