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Over the last two decades, gene therapy has been successfully translated to many rare diseases. The number of 
clinical trials is rapidly expanding and some gene therapy products have now received market authorisation in 
the western world. Inherited metabolic diseases (IMD) are orphan diseases frequently associated with a severe 
debilitating phenotype with limited therapeutic perspective. Gene therapy is progressively becoming a disease-
changing therapeutic option for these patients. In this review, we aim to summarise the development of this 
emerging field detailing the main gene therapy strategies, routes of administration, viral and non-viral vectors 
and gene editing tools. We discuss the respective advantages and pitfalls of these gene therapy strategies and 
review their application in IMD, providing examples of clinical trials with lentiviral or adeno-associated viral gene 
therapy vectors in rare diseases. The rapid development of the field and implementation of gene therapy as a 
realistic therapeutic option for various IMD in a short term also require a good knowledge and understanding of 
these technologies from physicians to counsel the patients at best.
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Introduction

Inherited metabolic diseases (IMD) are single gene disorders 
caused by enzymatic defects in metabolic pathways in which 
cumulative incidence is estimated as high as 1/800 (1, 2). 
Standard of care may include diet, enzyme and coenzyme 
replacement, removal of harmful substances, cell and organ 
transplantation and supportive therapies (3). In the past 
20 years, gene therapy has emerged as a disease-changing 
treatment for these disorders (4).
Gene therapy is simple in principle, restoring normal cellular 
function by providing a functional copy of the defective gene 
by the addition of a new copy of the gene or tools to ‘edit’ the 
defective gene and correct the genetic mutation with specific 
vectors (5). Gene therapy had driven fantastic hope in the mid-
1990s when addressing severe combined immunodeficiency 
(SCID) due to deficiency of the enzyme adenosine deaminase 

(ADA-SCID) (6). However, contemporary dramatic adverse 
events in historical clinical trials have tempered this enthusiasm 
when an ornithine transcarbamylase-deficient young adult died 
after a severe immune reaction against the gene therapy vector 
in a clinical trial (7) and leukaemias developed secondary 
to insertional mutagenesis in patients with X-linked SCID 
(X-SCID) (8). Subsequently, the research focused on safer 
delivery vectors and successful results have currently been 
reported for various inherited rare diseases such as Leber’s 
congenital amaurosis (9), X-linked adrenoleukodystrophy 
(10), metachromatic leukodystrophy (11), haemophilia B (12) 
and many other IMDs, leading to first market authorisations in 
Europe and in the USA in 2012 and 2017, respectively (13).
The strategies and delivery technologies developed to 
improve the efficacy and the safety of gene therapy are a 
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breaks in DNA, which is subsequently resolved by cellular 
DNA repair pathways. Two of these repair pathways are often 
exploited to mediate gene correction, addition and deletion 
or disruption: Non-Homologous End Joining (NHEJ) involves 
direct ligation of two DNA termini with intervening small 
sequence insertions and deletions (InDels), and Homology 
Directed Repair (HDR) achieves precise modification of the 
DNA through the introduction of a DSB along with an exogenous 
repair template. CRISPR/Cas9 is emerging as a popular tool 
for both in vivo and ex vivo gene therapy due to the diversity 
of Cas9 orthologues that have been developed and the readily 
customisable aspects of the platform, compared with other 
genome editing methods. Various proof of concepts have been 
developed for IMD in preclinical models (21–23). The main 
pitfalls are primarily the risk of introducing ‘off-target’ mutations 
in genome regions bearing similar sequence identity to the 
target site, which could produce an array of unwanted side 
effects, and recently it has been shown that up to 79% of tested 
human samples have pre-existing antibodies and 46% have 
T-cell responses against popular Cas9 orthologues, raising the 
risk of immune rejection (24). This has important implications if 
the intention is to deliver Cas9 long-term in vivo gene editing, 
although it has less relevance to ex vivo stem-cell therapies 
that are restricted to transient duration before transplantation.

Immunogenicity
A massive obstacle to the translation of gene therapy is the high 
prevalence of immune response against the vectors, either pre-
existing (25) when the patient has been previously exposed 
to the wild-type viral serotype used as gene therapy vector, 
or after exposure to the vector in the case of a re-injection is 
required. Viral vectors can evoke an innate immune response 
via several pathways, such as the sensing of pathogen-
associated molecular patterns on vector particles or in the 
vector genome (26). While adenovirus (Ad) vectors provoke 
a robust innate immune response via complement activation, 
and both Toll-like receptor (TLR) TLR-dependent and TLR-
independent mechanisms, lentiviral vectors cause an increase 
in the expression of several cytokines such as interferon (IFN)-a 
and IFN-β. Immune response against AAV vectors is known to 
be TLR3-independent, while humoral responses against the 
AAV capsid are enhanced by the presence of the complement 
(27). The recognition of these immune responses is not 
always identified during preclinical safety studies (4). Several 
approaches have been proposed to overcome this immune 
response: reducing the vector dose, capsid modifications, 
tissue-targeted gene transfer and immunomodulation (27).
In early onset IMDs, the deficient enzyme is often associated 
with a truncated native protein. The expression of the whole 
functional enzymatic protein can trigger an immune reaction 
against the transgenic protein itself. This has not been 
observed so far but remains a theoretical risk.

field of intense research and interest. This review will outline 
the progress made from early stages to ongoing clinical trials 
by highlighting general principles and emphasising different 
delivery methods.

General considerations
Gene therapy is the transfer or editing of a genetic material to 
cure a disease. Depending on the delivery strategy chosen, 
gene therapy can be performed in vivo or ex vivo with 
integrating (i.e. permanent modification of the host genome; 
e.g. lentiviral) or non-integrating (e.g. adeno-associated viral 
[AAV]) vectors (14).

In vivo or ex vivo gene therapy
In vivo gene therapy refers to the injection of a vector 
encoding the gene of interest or molecular tools for gene 
editing, directly into a tissue or into the systemic circulation 
to generate therapeutic outcomes in specific or multiple 
organs (15). In vivo gene therapy is based on the concept 
of providing an extra functional copy of the defective gene 
to slow or reverse the disease state (16). It often targets 
post-mitotic cells that are no more experiencing division (16). 
The main complications include non-specific targeting (also 
called off-target biodistribution) and immune responses to the 
vector (17).
Ex vivo gene therapy involves manipulation of a target cell 
population outside of the body, often as part of autologous stem 
cell therapies, in which a patient’s own cells are genetically 
modified with gene editing or gene supplementation and then 
engrafted back into the patient (18). Ex vivo therapy enables 
researchers to screen, isolate and expand the edited cells 
before re-administration. With specific protocols, researchers 
can eliminate the off-target cells and produce enough cells for 
transplantation (19). This strategy is limited to dividing cells. 
Some cell types are challenging to culture in vitro or have poor 
engraftment rate. For haematopoietic stem cells, this approach 
requires chemotherapy-based conditioning and its own risks 
(19). Integration means that the transgenic DNA becomes a 
permanent feature of the cell genome, being passed down 
to all future cell progeny. This is particularly attractive for 
treating dividing cells, such as stem cells and mitotically active 
paediatric tissues such as the paediatric liver.

Genome editing
The gene therapy field was recently revolutionised by the 
introduction of genome editing tools, which includes nucleases 
engineered to modify the genome at precise loci. This includes 
zinc finger nucleases (ZFNs) (19), transcription activator-like 
effector nucleases (TALENs) (20), homing endonucleases 
(meganucleases) (16) and Clustered Regularly Interspaced 
Short Palindromic Repeats (CRISPR)/(CRISPR-associated 
system) Cas9 (16). These nucleases generate double-strand 
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Gene therapy in paediatrics
In most IMDs, an early treatment is essential to prevent 
debilitating complications, long-term sequelae and potentially 
death. An early administration can target more progenitor 
cells, which could theoretically enable a better effect for a 
same dose of gene therapy vector and can take advantage 
of an immature immune system. However, in rapidly growing 
organs such as the liver, non-integrative strategies of gene 
delivery means a progressive loss of the delivered transgene 
that will require re-injections, often precluded by a strong 
immune response triggered by the first injection (4).
Earlier, time for development of a promising gene therapy 
product—from the first patient injected in a clinical trial to 
market authorisation—has been slow from 8 to 16  years, 
although it is expected that the next products to be authorised 
might be developed at a quicker pace at present that the 
process has been successfully optimised with the first 
pioneering products (28).

Gene therapy vectors
Various strategies to efficiently deliver nucleic acids to target 
organs have been developed over the last 30 years and are 
summarised with their respective advantages and pitfalls 
(Table 1).

Lentiviral vectors
Lentiviral vectors, such as those based on human 
immunodeficiency virus type 1 (HIV-1), are a class of retrovirus 
that are used widely in gene therapy. Lentiviral vectors reverse-
transcribe their single-stranded RNA genome on cell entry to 
form a double-stranded DNA product that translocates to the 
host nucleus and integrates into the host genome (Figure 1).
Controversies over use of retroviral vectors have existed 
since induction of leukaemia in patients treated for X-SCID 
via ex vivo correction of autologous haematopoietic stem 
cells (HSC) (29). This X-SCID trial used a gamma-retroviral 

vector, which was prone to integrating in the vicinity of 
transcription start sites and enhancer elements (30), 
ultimately causing leukaemia in X-SCID patients. Lentiviral 
vectors are theoretically safer than gamma-retroviruses, 
as their integration patterns is less likely to interfere with 
endogenous transcriptional regulation (31). A key safety 
advance was achieved with development of the ‘self-
inactivating’ (SIN) extremities of the lentiviral genome called 
long terminal repeat (LTR), designed to eliminate cis-acting 
enhancers in the retroviral LTR, the cause of oncogenesis 
in X-SCID patients (32). However, even with use of SIN-
lentiviral technology, genotoxic adverse events have since 
been detected in subsequent lentiviral gene therapy trials 
(33). Lentiviral vectors have been engineered to mitigate this 
problem by reducing the content of native HIV-1 DNA in the 
delivered provirus, thereby eliminating problematic splice 
sites in the vector sequence (6).
In recent years, ex-vivo gene therapy trials involving SIN-
lentiviral correction of HSC have shown strong clinical 
data in treating a range of severe monogenic childhood 
diseases, including X-SCID (34). Now, lentiviral vectors 
are increasingly moving into broader applications in gene 
therapy, including ex vivo manipulation of T cells, brain and 
mesenchymal stem cells and in vivo treatment of retina, 
brain, lung and liver. Recently, it has been shown that 
integration also provides a potential efficacy advantage 
over unintegrated vectors such as AAV (35). Additionally, 
for IMDs caused by large genes that are incompatible with 
AAV packaging capacity, such as carbamoyl-phosphate 
synthase deficiency, lentiviral vectors offer added value in 
their ability to handle larger payloads (36).

Adenoviral vectors
Adenoviruses are non-enveloped double-stranded DNA 
viruses with a large 36  kb genome. They can target both 
dividing and non-dividing cells. Adenoviral serotypes are 
triggering a strong innate immune response (4). Adenoviral 
vectors are non-integrating vectors and their payload remains 
as circular DNA in the cellular nucleus. These vectors 
enable long-term expression and can accommodate large 
transgenes. The strong immunogenicity generated by capsid 
proteins was associated with a dramatic event in a clinical 
trial for OTC deficiency when a young patient died following 
a fulminant immune response and subsequent multiorgan 
failure (7). Other vectors with improved safety profile have 
been generated known as helper-dependent adenoviral 
vectors (HD-Ad) with deletion of most of the coding sequences 
from the adenoviral genome. The improved safety profile 
has shown benefit in preclinical studies and in clinical trials, 
but the acute innate immune response persists. This limits 
applications in IMD but is an advantage for its use in the field 
of cancer or vaccination (4).

Table 1. Main features of gene therapy strategies. 

  Non 
viral Lentivirus Adenovirus

Adeno-
associated 

virus

Derived from 
pathogenic virus No Yes Yes Yes

Size of 
transgene No limit 14kb 7.5kb 4.7kb

Insertion to 
host genome 
(Integration)

No Yes No Rarely

Long-lasting 
gene expression No Yes Yes Yes

Safety issues No Insertional 
mutagenesis

Immune 
response

Limited 
immune 

response

Kb : kilobases
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therapy vectors, particularly with their safety and effectiveness 
in some monogenic disease trials (40). Several successful 
trials have been conducted for a variety of inherited diseases 
since the mid-2000s leading to the first gene therapy product 
receiving market authorisation in the West for lipoprotein 
lipase deficiency in 2012 (13).

Liposomes
Liposomes are spherical vesicles enclosing an aqueous 
space within a synthetic lipid bilayer membrane used as 
non-viral gene therapy vectors (41, 42). Phospholipids and 
sphingolipids are commonly used lipids that allow their natural 
self-assembly (43). Their size varies from 20 nm in diameter 
to a few microns. They are particularly attractive gene therapy 
vector carriers as they can transport large pieces of DNA and 
protect genetic cargo from degradation. Cationic liposomes 
are more popular as they offer almost 100% loading efficiency. 
The negative charges in DNA interact with cationic liposomes 
to form complexes that allow increased DNA uptake (44–46). 
They are biocompatible and have low immunogenic risk and 
no replication risk (47). Their physiochemical and biophysical 
properties can be modified for drug loading and targeting to 
specific cells and tissues, such as they have also been used 
successfully to deliver genes to cells both in vitro and in vivo 
(48). In vivo work has mostly used antibody-based targeting 
strategies with reporter gene cargoes for application in cancer 
(49–51).
Their main challenges are a limited delivery with non-specific 

AAV vectors
AAV is a non-enveloped, single-stranded DNA parvovirus 
with a 4.7  kb genome, which is dependent on co-infection 
with a helper virus (like adenovirus) to replicate and generate 
a viral infection (37). It is composed of the rep and cap genes 
flanked by inverted terminal repeats (ITRs) (4). The rep gene 
encodes four proteins that are required for viral genome 
replication and packaging, while cap expression gives rise 
to the viral capsid proteins which protects the viral genome 
and acts in cell binding and internalisation (37). AAVs are 
uptaken through serotype-specific receptor/co-receptor at 
the surface of the target cell. An AAV receptor common to 
various serotypes facilitate intracellular trafficking (38). The 
transgene persists as episome in the nucleus as AAVs are 
mostly non-integrative but integration can occur at very low 
rate (Figure 1) (4).
Depending on serotypes, 20–80% of the general population 
has pre-existing antibodies against the capsid proteins, 
which is one of the major hurdles for clinical translation. 
These antibodies, even at low titres, are often neutralising 
the transduction of the target cell, especially if the vector 
is delivered in the bloodstream. As there is currently no 
validated immunosuppressive protocol, which has shown 
reasonable efficacy in mitigating this risk, clinical trials are 
recruiting seronegative patients for the AAV capsid used (25, 
39).
Due to the small size of the genome and simple viral life 
cycle, AAV is emerging as one of the most successful gene 

Figure 1. Transduction pathways of lentiviral and adeno-associated viral (AAV) vectors : cellular uptake and in-cell processing.
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composed of phospholipids, sterols and polyethylene glycol 
(80)-conjugated lipids, which protect the mRNA from nuclease 
degradation and immune responses and help in their cellular 
uptake (81). mRNAs encapsulated in LNPs have been trialled 
in animal models of methylmalonic acidaemia (82), acute 
intermittent porphyria (83), ornithine transcarbamylase (84) 
deficiency (85), arginase deficiency (86) and galactosaemia 
(87). Phase I/II clinical trials have been initiated in OTC patients 
to test the safety and efficacy of OTC mRNA formulated in 
lipid nanoparticles (76). These advancements in liposome-
based cargo carriers will undoubtedly provide a platform in 
further development of gene therapy non-viral vector carriers.

Preclinical development
Proof of concept of gene therapy has been achieved in many 
animal models recapitulating the human phenotype of IMDs: 
urea cycle defects, organic acidurias, maple syrup urine 
disease, phenylketonuria, tyrosinaemia type 1, glycogen 
storage disease type Ia, long-chain fatty acid oxidation 
disorders, homozygous familial hypercholesterolaemia, 
lipoprotein lipase deficiency, primary hyperoxaluria type 
I, progressive familial intrahepatic cholestasis, Wilson 
disease (4), Pompe disease (88), Gaucher disease 
(89), mucopolysaccharidosis (90, 91) and mitochondrial 
diseases such as mitochondrial neurogastrointestinal 
encephalomyopathy (92). For example, AAV vectors 
have successfully targeted the four most common urea 
cycle defects: OTC deficiency (93), citrullinaemia 1 (94), 
argininosuccinic aciduria (95) and arginase deficiency (96). 
It is noteworthy that the extrapolation of data for dose finding 
is often reliable from animal studies to clinical trials (28).
While most of these studies are using in vivo gene addition 
with non-integrating AAV vectors or ex vivo gene addition with 
integrative lentiviral vectors, some publications have shown 
proof of concept of in vivo integrative gene addition using a 
double AAV vector systems combining both a locus-specific 
nuclease-based integration system and the transgene to 
insert into the host genome, e.g. ZFNs in lysosomal storage 
diseases such as mucopolysaccharidosis types 1 (97) and 2 
(98) or Piggybac transposase (99) in neonatal mouse model 
of OTC deficiency. Similarly, an innovative and successful 
strategy has been tested using CrispR/Cas9-mediated gene 
editing in the OTC-deficient mouse but highlighting the risk of 
off-target genome modifications (21).

Ongoing clinical trials for IMD
Various clinical trials for IMD are currently planned, ongoing 
or completed, targeting mainly the brain or the liver. A non-
exclusive list is provided in Table 2. Most trials are using either 
ex vivo gamma-retroviral or lentiviral vectors or in vivo AAV 
vectors. Examples illustrating these two main approaches are 
presented as follows.

binding, reduced stability in vivo, limited efficacy caused by 
lysosomal degradation and limited ability to access nuclear 
compartments for DNA cargo (52, 53). Serum compounds can 
also interfere with their structure and promote aggregation, 
which can cause immunogenic responses and toxicity (54, 55).

Exosomes
Exosomes are small vesicles (30–150 nm in size) naturally 
secreted by most cell types at the end of the endocytic 
pathway post-fusion of late endosomes/multivesicular bodies 
(MVBs) with the plasma membrane (56, 57) and represent 
another form of non-viral gene therapy vectors. Exosomes 
play a critical role in cell–cell communication by delivering 
functional proteins and genetic contents such as mRNA and 
miRNA transcripts to the recipient cells (58, 59). Hence, they 
influence both physiological and pathological processes in 
cells (60, 61).
Due to their natural ability to transfer genetic information, 
exosomes present themselves as an attractive target to 
be exploited for therapeutic application (62–64). They are 
biocompatible and are composed of non-viral components that 
reduce their immunogenic risk and ensure their longevity in 
circulation. Their bilayered lipid structure can protect the genetic 
cargo from degradation, and their small size and flexibility can 
facilitate them to cross major biological membranes including 
the blood–brain barrier (65, 66). They can be modified to 
enhance their targeting abilities to specific cells and tissues 
(67). The main challenges include robust and reproducible 
methods for exosomes manufacturing, characterisation and 
efficient cargo loading (68), immunogenicity (69) and a limited 
understanding of exosome biology (57, 70).
However, encouragingly, preclinical studies have shown the 
safety of multiple injections (71). While the use of exosomes in 
IMD remains at its early days, recent studies used engineered 
exosomes loaded with b-glucocerebrosidase (GBA) in vitro 
showing proof of concept with an increase in GBA activity (72, 
73).

Messenger RNA
The use of messenger RNA (mRNA) delivery for gene transfer 
is an appealing strategy as mRNA can be translated rapidly 
into protein once reaching the cytoplasm. mRNA provides 
temporary, half-life-dependent protein expression that allows 
adjustable protein production.
mRNA is often delivered via lipid nanoparticles (74, 75), a 
strategy explored in few IMDs (76, 77). LNPs are liposome-like 
structures encapsulating genetic materials like RNA and DNA 
but are made of single lipid layer resulting in solid/lipophilic 
core (78, 79). They can assume micelle-like structures to 
encapsulate drugs in their non-aqueous core, have high 
delivery rates and better endosomal escape and show low 
lipid accumulation in target organs. Lipid nanoparticles are 
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Table 2. Indicative list of gene therapy clinical trials for inherited metabolic diseases in 2020.
Inherited metabolic diseases 
subgroup Disease Sponsor Phase Status Vector NCT number  

(Clinicaltrials.gov)

Intermediary metabolism

Glycogen storage disease 
1A Ultragenyx I/II R AAV8 NCT035117085

Crigler-Najjar Genethon-Selecta Bio I/II R AAV NCT03466463

Ornithine transcarbamy-
lase deficiency

University of Pennsylvania I T Adeno-
viral NCT00004498

Ultragenyx I/II R AAV8 NCT02991144
Methylmalonic acidaemia Moderna Therapeutics

Moderna Therapeutics
I/II R Non viral NCT03810690

Propionic acidaemia I/II A-NR Non viral NCT04159103

Phenylketonuria Homology Medicines I/II R AAVH-
SC15 NCT03952156

Aromatic L-amino acid 
decarboxylase deficiency

National Taiwan University Hospital I/II T AAV2 NCT01395641

National Taiwan University Hospital II R AAV2 NCT02926066

National Institute of Health I R AAV2 NCT02852213

Lipid metabolism Homozygous Familial 
Hypercholesterolaemia RegenX Bio I/II R AAV NCT02651675

Lysosomal storage diseases

Mucopolysaccharidosis 1

Sangamo Therapeutics I/II H AAV6 NCT02702115

RegenX Bio I R AAV9 NCT03580083

Orchard Therapeutics/San Raffaele-
Telethon Institute for Gene Therapy I/II R LV NCT03488394

Mucopolysaccharidosis 2
Sangamo Therapeutics I/II H AAV6 NCT03041324
RegenX Bio I/II R AAV9 NCT03566043

Mucopolysaccharidosis 3A

Manchester University I/II R LV NCT04201405
Lysogene I/II T AAVrh10 NCT01474343
Lysogene I/II R AAVrh10 NCT03612869

Abeona Therapeutics I/II R AAV9 NCT02716246;
NCT04088734

Mucopolysaccharidosis 3B
Abeona Therapeutics I/II R AAV9 NTC03315182
Uniqure I/II T AAV5 NCT03300453

Mucopolysaccharidosis 6 Fondazione Telethon I/II R AAV8 NCT03173521

Pompe disease

Audentes Therapeutics I/II A-NR AAV8 NCT04174105
Spark Therapeutics I/II A-NR AAV NCT04093349
Florida University I/II T AAV1 NCT00976352
Florida University I R AAV9 NCT02240407

Danon disease Rocket Pharmaceuticals I R AAV9 NCT03882437

Fabry disease
Sangamo Therapeutics I/II R AAV6 NCT04046224
Freeline Therapeutics I/II R AAV NCT04040049
AvroBio I/II R LV NCT03454893

Ceroide lipofuscinosis 6 Amicus Therapeutics I/II A-NR AAV9 NCT02725580
Ceroide lipofuscinosis 3 Amicus Therapeutics I/II R AAV9 NCT03770572

Ceroide lipofuscinosis 2
Cornell University I A-NR AAV.rh10 NCT01161576
Cornell University I A-NR AAV2 NCT00151216
Cornell University I/II A-NR AAV.rh10 NCT01414985

GM1 Gangliosidosis National Human Genome Research 
Institute I/II R AAV9 NCT03952637

Metachromatic leukodys-
trophy

Orchard Therapeutics/San Raffaele-
Telethon Institute for Gene Therapy I/II R LV NTC03392987

Shenzhen University I/II R LV NCT02559830
Gaucher type 1 AvroBio I/II R LV NCT04145037

Peroxisomal disorders X-linked childhood cere-
bral adrenoleukodystrophy

Bluebird Bio II/III A-NR LV NCT01896102

Bluebird Bio III A-NR LV NCT03852498
Shenzhen Second People's Hospital I/II R LV NCT0372755

Information gathered from clinicaltrials.gov accessed on 22/01/2020. A-NR : active-not recruiting; H : on hold ; NR : not recruiting ; R : 
recruiting ; T : terminated
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(102). As a minimal increase of plasma FIX can dramatically 
improve the clinical phenotype, various programmes 
have targeted haemophilia B. A phase I/II trial sponsored 
by Sparks Therapeutics and Pfizer (NCT02484092) has 
used an AAV vector expressing an improved variant of 
FIX cDNA known as Padua variant with a gain-of-function 
activity enabling a 5–10 times increase of FIX activity levels 
under the transcriptional expression of the liver-specific 
hAAT promoter. This vector was administered by a single 
peripheral intravenous injection at a dose of 5 ´ 1011 vector 
genomes per kilogram body weight. Preliminary results 
showed an increase in FIX from <1% at baseline at 1 week 
after infusion, reaching a plateau at 3 months post-injection 
and remaining stable over 1 year with a mean sustained 
FIX activity at 34  ±  18.5%. The annual bleeding rate was 
significantly reduced (from 11.1 to 0.4 events per year; 
p = 0.02) and 8 out of 10 patients managed to stop infusion 
of recombinant FIX. No patient experienced any severe 
adverse event. Only two patients presented asymptomatic 
increase of transaminases, well controlled by an oral course 
of corticosteroids (103). Increase of transaminases has 
been observed in the weeks following liver-targeted AAV 
gene therapy and recognised as a T-cell-mediated immune 
response against the capsid causing apoptosis of transduced 
hepatocytes. This adverse event, which usually happens in 
3 months following the AAV injection, is often well controlled 
by oral corticosteroids but needs to be carefully monitored 
to prevent a loss of the benefit of the gene therapy (4). 
This haemophilia B programme has received breakthrough 
therapy designation by the FDA. A phase III trial is currently 
recruiting led by Pfizer (NCT03861273).

Approved gene therapy products for IMD
Glybera is an AAV1-based vector carrying the lipoprotein 
lipase transgene, which has shown a reduction in acute 
pancreatitis episodes in patients with lipoprotein lipase 
deficiency. This product commercialised by Uniqure was 
the first gene therapy product approved by the European 
Medicine Agency (EMA) in 2012. Priced at US$1.1 million per 
patient, this treatment was administered only to one patient 
and Uniqure decided to withdraw the product from the market 
in 2017 due to economic considerations (38). Strimvelis is 
an ex vivo gene therapy approach using a gamma-retroviral 
vector containing the human adenosine deaminase (ADA) 
gene developed by GlaxoSmithKline to target ADA-SCID 
and priced US$665,000 (4). Luxturna is an AAV-based vector 
carrying the RPE65 gene to treat Leber congenital amaurosis. 
Spark Therapeutics received market authorisation from the 
FDA and the EMA in 2017 and 2018, respectively, becoming 
the first FDA-approved gene therapy product and priced at 
US$425,000 per eye (38).

Information gathered from clinicaltrials.gov accessed on 22 
January 2020.
A-NR, active-not recruiting; H, on hold; NR, not recruiting; R, 
recruiting; T, terminated.

Ex vivo lentiviral gene therapy for cerebral inherited dis-
ease: example of X-linked childhood cerebral adrenoleu-
kodystrophy
X-linked adrenoleukodystrophy is the most common 
peroxisomal disorder caused by mutations in the ABCD1 
(ATP-binding cassette subfamily D member 1 protein) 
gene. This protein enables the uptake of very long-chain 
fatty acids in the peroxisome to undergo degradation. 
In the most severe form with childhood-onset cerebral 
X-linked adrenoleukodystrophy, patients will develop 
normally until the age of 5–7 years when they will present a 
rapidly progressing neuroregression with loss of cognitive, 
motor, visual and auditive skills leading to vegetative state 
and death in less than 5  years. The standard of care is 
currently allogeneic HSC at early stage of the disease, 
enabling an arrest of the cerebral demyelination and 
disease progression. An ex vivo lentiviral vector encoding 
the ABCD1 gene transfecting autologous human CD34+ 
cells was initially developed by Cartier et al. and showed 
stabilisation of the disease in two boys with no HLA-
matched donors with an efficiency similar to HSC (10). 
This was followed by a multicentre, phase II/III clinical 
trial conducted by BlueBird Bio (NCT01896102) with 
a vector Lenti-D similar to the one used in treating the 
first two patients. Preliminary results showed that 88% 
of the 17 patients enrolled had only a minimal residual 
disease at a median follow-up of »30  months. The gene 
therapy showed measurable ALD protein in all patients, a 
polyclonal haematopoietic reconstitution with no evidence 
of preferential integration and clonal outgrowth and no 
graft-versus-host disease (100). This programme has 
been granted breakthrough therapy designation by the 
Food and Drug Administration (FDA) and a phase III trial 
(NCT03852498) has started in 2019 (101). This programme 
illustrates the major clinical benefits of this gene therapy 
approach for neurodegenerative diseases.

In vivo AAV gene therapy for inherited liver disease: ex-
ample of haemophilia B
Haemophilia B is a X-linked inherited severe bleeding 
disorder caused by factor IX (FIX) deficiency with a frequency 
of 1 in 30,000 male live births. The measurable plasma levels 
of FIX stratify the clinical severity: severe (<1%), moderate 
(1–5%) and mild (5–40%). The standard of care relies on 
injections of recombinant FIX, an expensive therapy for 
public healthcare systems with an annual cost of US$300,000 
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Conclusion

Gene therapies have revolutionised the last half century 
from science fiction to the first commercialised products. 
New delivery strategies are constantly in development or 
refinement to achieve the most efficient and safest approach 
enabling with a single injection of gene therapy vector, a 
lifelong cure for severe IMDs. This novel therapy option will 
find its place among other available therapies, alone or in 
combination if necessary. Many open questions remain, 
especially about building an adequate economic model to 
enable affordable gene therapy products for healthcare 
systems and the long-term efficacy and safety of these novel 
therapies. Currently, research is designing novel genotype-
specific molecular therapies that aim to become patient-
specific and personalised gene therapy approaches to correct 
the phenotype of genetic diseases more efficiently.
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