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ABSTRACT

Objective: To carry out exhaustive data-driven computations for the performance of noninvasive vital signs

heart rate (HR), respiratory rate (RR), peripheral oxygen saturation (SpO2), and temperature (Temp), considered

both independently and in all possible combinations, for early detection of sepsis.

Materials and methods: By extracting features interpretable by clinicians, we applied Gradient Boosted Deci-

sion Tree machine learning on a dataset of 2630 patients to build 240 models. Validation was performed on a

geographically distinct dataset. Relative to onset, predictions were clocked as per 16 pairs of monitoring inter-

vals and prediction times, and the outcomes were ranked.

Results: The combination of HR and Temp was found to be a minimal feature set yielding maximal predictabil-

ity with area under receiver operating curve 0.94, sensitivity of 0.85, and specificity of 0.90. Whereas HR and RR

each directly enhance prediction, the effects of SpO2 and Temp are significant only when combined with HR or

RR. In benchmarking relative to standard methods Systemic Inflammatory Response Syndrome (SIRS),

National Early Warning Score (NEWS), and quick-Sequential Organ Failure Assessment (qSOFA), Vital-SEP out-

performed all 3 of them.

Conclusion: It can be concluded that using intensive care unit data even 2 vital signs are adequate to predict sep-

sis upto 6 h in advance with promising accuracy comparable to standard scoring methods and other sepsis pre-

dictive tools reported in literature. Vital-SEP can be used for fast-track prediction especially in limited resource

hospital settings where laboratory based hematologic or biochemical assays may be unavailable, inaccurate, or

entail clinically inordinate delays. A prospective study is essential to determine the clinical impact of the pro-

posed sepsis prediction model and evaluate other outcomes such as mortality and duration of hospital stay.
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Lay Summary

Early detection of sepsis is a highly recognized need in healthcare to reduce mortality and improve patient outcomes. In this

study, we built and evaluated machine learning models for 240 different combinations of 4 vital signs: heart rate, respiratory

rate, peripheral oxygen saturation, and temperature and systematically ranked these vital sign combinations with regard to

2 performance parameters: (1) area under receiver operating curve and 2) prediction times. By using second-order derived

features (eg, comparing the hourly differences, cumulative differences, variance, and rate of change in the vital signs meas-

urements), we achieved an area under the curve of 0.94, sensitivity of 82%, specificity of 85% and show that combining just

heart rate with temperature predicts sepsis 6 h in advance with accuracy comparable to other sepsis predictive tools

reported in literature. This lays the foundation for being able to predict progression to sepsis using noninvasive wearable

sensors in limited resource settings.

BACKGROUND AND SIGNIFICANCE

Infectious diseases are showing trends toward significantly amplified

severity, with possible causes attributed to antimicrobial resistance,

mutated variants, impaired immune responses, advanced age, and

other clinical factors. Such infectious diseases put intensive care unit

(ICU) patients at increased risk of unnoticed progression to sepsis,

ultimately leading to avoidable increases in morbidity and mortal-

ity.1,2

Sepsis is life-threatening in many bacterial, fungal, and viral

infections. Computational methods have helped to glean insights

into the pathophysiology of sepsis.3 Signs of multiorgan system

injury occur in approximately 30–50% of those presenting with sep-

sis.4 The mortality rate increases by 4–8% with every hour of delay

in diagnosis, therefore the early recognition of sepsis is pivotal in

preventing mortality.5,6 Currently, sepsis risk assessment is done

using rule-based scoring systems such as the Systemic Inflammatory

Response Syndrome (SIRS),7 quick-Sequential Organ Failure Assess-

ment (qSOFA),8 and National Early Warning Score (NEWS).9

Whereas qSOFA requires laboratory variables through a blood

draw, SIRS and NEWS require manual beside assessments.

There is a growing body of work in machine learning techniques

for sepsis prediction,10–17 many of which are analyzed by Giacobbe

et al18 and Tayefi et al19 (see Supplementary Table ST-0). Almost all

of them use either laboratory, EMR, or clinical data in addition to

vital signs. They require features to be extracted from biochemical

parameters, electronic medical records (demographic data and medi-

cations), physician and nursing notes, etc. The machine learning

techniques used range from Gradient Boosting, Logistic regression,

and Long short-term memory to Bayesian networks. In recent years,

Lauritsen et al,20 Yuan et al21 have added features from image data

and comorbid history as well.

There is an increasing need for techniques that rely solely on

noninvasive modalities. This will enable a paradigm shift from post-

symptomatic manifold invasive investigations to presymptomatic

early detection and shorten the timing for sepsis prediction particu-

larly for patients in resource-limited hospital settings.

OBJECTIVES

Our aim was to study vital parameters, heart rate (HR), respiratory

rate (RR), peripheral oxygen saturation (SpO2), and temperature

(Temp), individually and in all possible permutations of dual, triple,

and quadruple cardinalities, for their effectiveness as early indicators

of impending sepsis in adult patients aged 18 years and above and

who are admitted to the ICU. The ultimate objective was to come

up with the minimal set of vitals that could rely on lightweight

sensors for fast-track monitoring, automated periodic execution of

sepsis prediction engine, generation of early warning alerts, and

expand the time period available for preemptive therapeutic inter-

ventions.

MATERIALS AND METHODS

Study design and datasets
An overview of our study design is presented in Figure 1. The study

began by acquiring 2 large-scale independent datasets from the

widely accepted Physionet database.22 These datasets have been

compiled from the MIMIC-III database by the 2019 Physionet Com-

puting in Cardiology Challenge23 and made publicly available. The

data have been collected over a period of 10 years (2009–2019) and

is from ICUs of 2 major hospitals: (1) Beth Israel Deaconess Medical

Center (Hospital system A) in which 91.2% of the patients were

nonseptic while 8.8% had sepsis in the ICU, and (2) Emory Univer-

sity Hospital (Hospital system B) in which 94.29% were nonseptic

while 5.71% had sepsis in the ICU (Supplementary Figure SF-1).

Since our machine learning models considered data starting 12 h

before sepsis onset, the main inclusion criteria was the availability of

12 consecutive hourly vital signs measurements. The outliers were

removed and patients who had more than 2 consecutive missing

data points were excluded from the study. If 2 or less of their consec-

utive measurements were missing, we employed causal imputation

through the last observation carried forward (LOCF) filling techni-

que.24 LOCF is easy to implement and understand, and given that

the missing entries in data belonging to the same patient are rela-

tively less, LOCF will not change the direction of our findings. Fur-

thermore, class imbalance was reduced through random

undersampling as recommended in literature,17,25 so as to match the

cases and controls without incurring selection bias.

The data preprocessing (Supplementary Figure SF-1) described

above yielded 1130 sepsis and 1500 control patients from Hospital

A and 695 sepsis and 9000 control patients from Hospital B. Table 1

(presented in Results section) shows the demographic details of

patients in the 2 sepsis and 2 control groups and demonstrates a bal-

anced age and sex distributions. Hospital A data were selected for

model building, and Hospital B data for independent unbiased gen-

eralizability validation (without any additional tuning). Considering

that determining exact onset time of sepsis is very difficult in clinical

practice,26 we have followed the criteria used by most of the existing

works23 and are based on the Sepsis-3 guidelines.27 This is best esti-

mated to be the earlier of (1) first clinical suspicion of infection (as

indicated by ordering of blood cultures and/or administering IV

antibiotics) and (2) 2-point increase in the patient’s Sequential
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Organ Failure Assessment (SOFA) score within 24 h. Setting the

“onset” for nonsepsis controls—referred to as case-control align-

ment, is a well-debated issue in the literature. Our choice of the data

sampling window for nonsepsis controls was guided by the discus-

sion presented in prior literature.26,28 We applied relative onset

matching in which data sampling windows for the controls were

chosen relative to the start of ICU admission since they present the

hardest case for differentiation between sepsis and controls. Subse-

quently controls are likely to become more stable with interventions

and the differentiation between the control and sepsis group will be

more and more distinct making the prediction task easier as a result

of which machine learning algorithms might show higher than

actual AUCs.

Out of 40 clinical variables available in these datasets, the 4 vital

parameters (HR, RR, SpO2, Temp), recorded as time-stamped

nurse-verified physiological measurements, were extracted and

downsampled to hourly data points by finding their medians to

yield a time series of 26 300 data points per sensor. The 4 vital

parameters were then considered both individually (4) and in all

possible permutations of dual (6), triple (4), and quad (1) cardin-

alities, resulting in 15 different vital parameter configurations.

Next, relative to the time of onset of sepsis, we considered 2 time

intervals of direct relevance to the patient:

• Monitoring Window (W): The minimum number of hours of

vital sign data needed to determine sepsis. This window should

be as short as possible to make a real-time determination of sep-

sis and simplify the amount of data needed for the algorithm to

perform. We chose to experiment with 4 different monitoring

windows, of 3-, 4-, 5-, and 6-h durations.
• Lead Time (L): It is the interval between the end of the monitor-

ing window and time of onset of sepsis. The Lead Time should

be adequate to transfer the patient to ICU and to initiate the

medical interventions required to reduce mortality, such as,

administration of antibiotics and intravenous fluids. Based on

this, we chose to experiment with 4 different lead times of 3-, 4-,

5-, and 6-h lengths.

Permutation of the 4 monitoring windows and 4 lead times

yields 16 timing tuples (W, L).

Machine learning classifier
Our choice of the machine learning algorithm was guided by 2 desir-

able attributes. First, it must be nimble to be ultimately installed as

an app on portable devices (eg, smartphones) as may be the case in

resource-limited hospital settings, which imposes tight constraints

on computational complexity and bandwidth. Second, to increase

acceptability by physicians, it should be amenable to clinical inter-

pretation. We used an expressive classifier known as Gradient

Figure 1. Overview of the Study Design starting with selection of patient datasets (Hospital A data with 1130 sepsis and 1500 control patients), 15 vital parameter

configurations, setting of 16 timing tuples, feature engineering, building of machine learning models, and ending with external validation through an independ-

ent dataset (Hospital B patients).

Table 1. Demographics of patients in sepsis and control groups

showing balanced age and sex distributions

Demographic Factors Hospital A Hospital B

Sepsis Controls Sepsis Controls

Patients (N) 1130 1500 695 9000

Age (years)

Range 18–88 18–89 17–100 15–100

Mean (SD) 63 (16) 63 (16) 61 (17) 61 (17)

Gender distribution

Female 435 (38%) 586 (39%) 295 (42%) 4209 (47%)

Male 695 (62%) 914 (61%) 400 (58%) 4791 (53%)

ICU Stay (h)

Mean (SD) 85 (58) 37 (12) 89 (63) 38 (15)

ICU: intensive care unit.
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Boosted Decision Tree (or XGBoost).17 Multiplexing the data in

accordance with the 15 vital parameter configurations and slicing

the data to fit the 16 timing tuples required us to build 240 Vital-

SEP XGBoost models. The steps involved in building Vital-SEP

XGBoost models are Feature Engineering, Training, and Testing.

Feature engineering

Feature engineering gave us a lot of scope for innovation and

improved performance. In addition to features that intuitively cap-

tured severity trends in the vital parameters, both most recent and

cumulative, we experimented with second-order derived and aggre-

gate features (see Figure 2). These features are:

• b: Baseline vital signs values at the start of the monitoring win-

dow.
• db: Incremental deltas in vital signs values between consecutive

hours.
• Db: Cumulative change in vital signs values (representing the

physiological deterioration versus improvement) from the base-

line.
• Db/Dt: First derivatives from the baseline.
• r2: Variance observed in the vital signs values.

An Illustrative example of the above feature extraction is pre-

sented in Supplementary Table ST-16.

The above features were computed for all timing tuples and vital

parameter configurations, summing up to 672 features (of which

192 are unique considering overlapping intervals), which were then

vectorized into 240 feature vectors per patient, resulting in more

than half a million feature vectors for the dataset.

Figure 2B illustrates, taking HR and Temp derived features as

examples, how Vital-SEP achieves differentiation between sepsis

and nonsepsis through innovative feature engineering. Whereas

derived feature (Db/DT) in HR is effective in separating out bottom

10% nonsepsis from sepsis, derived feature (Db/DT) in Temp is

effective in separating out top 10 percentile of sepsis from nonsepsis.

Model building and testing

The curated Hospital A dataset containing 1130 sepsis patients and

1500 nonsepsis controls, after being subjected to feature extraction,

the next step was to build/train the 240 Vital-SEP XGBoost models

representing the different combinations of vitals, monitoring win-

dow (W) and lead times (L).

Vital-SEP Algorithm Pseudocode is presented in Supplementary

Figure SF-4. Eighty percent of the training data (Hospital A) was

used for building the XGBoost model with 5-fold cross-validation.

Prediction was set up as a binary classification task, predicting sepsis

versus no sepsis. GridSearchCV was employed to select hyper-

parameter values to maximize the area under the ROC curve (AUC).

Figure 2. (A) Vital-SEP’s innovative Feature Engineering resulting in half a million feature vectors for the dataset; (B) The Differentiating Effect of Derived Feature

Engineering.
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The remaining 20% data were used for the first-level performance

evaluation.

Relative comparison of the impact of features using

SHapley additive exPlanations
To examine the individual impact of vital parameters and features

derived from them, we employed a widely used tool called SHap-

ley Additive exPlanations (SHAP).29 A Shapley value denotes how

much a feature in the context of its interaction with other features

contributes to model prediction. The results of this analysis are

presented in Figure 3. The top 20 features are rank ordered

according to their relative level of contribution to Vital-SEP pre-

diction.

Among all these features, the change in HR between baseline

and second hour of the monitoring window (HR: Db2) had the high-

est influence on Vital-SEP. The higher the change in HR values—

higher the probability of predicting sepsis over nonsepsis. Next to

HR was Temp. Higher temperatures took positive SHAP values

indicating sepsis while lower temperatures took negative SHAP indi-

cating no sepsis. Another interesting observation is that sepsis pre-

diction probability was higher with higher baseline temperature and

lower temperature variance. Next in order, decreased baseline SpO2

(SpO2:b) and increased baseline RR (Resp:b) clearly indicate higher

propensity toward sepsis.

Validation method
To assess the reliability of Vital-SEP across healthcare systems, an

entirely independent patient dataset from Hospital B was used. Hos-

pital B dataset contained 695 sepsis and 9000 nonsepsis patients.

The trained Vital-SEP models were tested on this external dataset

without any additional tuning.

RESULTS

The demographic and vital sign characteristics of both datasets are

presented in Tables 1 and 2.

Maximizing prediction accuracy through synergistic

interplay of vital parameters
For each of the 240 Vital-SEP models, the sepsis prediction performance

was evaluated in terms of Precision, Recall, F1 score, and area under

receiver operating characteristic curve (AUROC, or further abbreviated

as AUC), shown in Supplementary Tables ST-1 to ST-15 and Supple-

mentary Figure SF-2. From each of the Supplementary Tables ST-1 to

ST-15, the mean and standard deviation (SD) of the AUC across all tim-

ing tuples were computed, as presented in Table 3 and illustrated in Fig-

ure 4. In the same tables, the timing tuple which maximizes the AUC

was highlighted and all such best-performing timing tuples (WAUC,

LAUC) were consolidated in Table 4 and illustrated in Figure 4.

Figure 5 shows, for each vital parameter configuration, the highest

AUC achieved among all of the timing tuples for that configuration.

Starting with single parameters, HR gives an AUC of 0.82 (95% CI,

0.73–0.83), dips to 0.8 for SpO2 and 0.79 for Temp, rises back to

AUC 0.83 (95% CI, 0.78–0.87) for RR. For dual vitals pairs, [HR þ
SpO2] yielded 0.87, [HR þ Temp] yielded AUC of 0.90 (95% CI,

0.83–0.93), and then it dips a bit. Continuing with triple vitals sets,

[HR þ RR þ Temp] starts off at AUC of 0.93 (95% CI, 0.89–0.96)

and other combinations are pretty close. Using all the 4 vitals (quad

configuration), we obtained an AUC of 0.94 (95% CI, 0.90–0.96)

with sensitivity and specificity of 0.85 and 0.90, respectively.

Stretching the lead time between prediction and sepsis

onset
In hospital settings, it is desirable that the lead time offset between

prediction and sepsis onset be adequate enough to account for the

Figure 3. SHapley Additive exPlanations (SHAP) plot comparing the top 20 features that have an impact on performance of Vital-SEP. The features are stacked in

descending order of their effect on predictability. Negative or low SHAP values indicate no sepsis, whereas positive or high SHAP values indicate sepsis. The list-

ing on the right shows the features classified and rank ordered (ranks listed in parenthesis).
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time required for transfer to ICU and subsequent therapeutic inter-

vention. For each of the 4 lead times, we determined the minimal

Vital Parameter configurations that exhibit sufficient prediction

accuracy. The best of these results are described below.

Figure 6 shows the increase in lead time with number of vital

parameters. A lead time of 3 h is obtained by just monitoring the

RR. Adding a second vital sign (temperature) to RR improves the

lead time to 4 h and additionally reduces the monitoring window

duration from 6 to 4 h. The triple vital signs configuration of

HRþTempþSpO2 increases the lead time to 5 h. A steeper increase

is observed for the triple vital signs configuration of RRþTempþHR

which gives a 2-h jump in lead time taking it to 6 h. When a fourth

vital is added, the lead time reaches/stays at its upper limit of 6 h

along with a point increment in AUC.

Performance validation of vital-SEP on hospital B data-

set
Table 5 and Supplementary Figure SF-3 present a one-to-one compari-

son of Vital-SEP performance on the 2 datasets A and B. The results

were very similar, and for most vital parameter configurations coin-

ciding as well. Just as observed for Hospital A, the quad configuration

for Hospital B also yielded the highest AUC of 0.94 (95% CI, 0.92–

0.95) with a specificity of 96% and sensitivity of 78%.

Comparison with standard sepsis risk assessment

methods
In order to benchmark Vital-SEP, we compared its performance to

standard risk assessment methods used for predicting sepsis namely,

SIRS, NEWS, and qSOFA methods.32,33 The AUC, sensitivity, and

specificity of sepsis prediction at various lead times are presented in

Table 6 and illustrated in Figure 7.

Vital-SEP maintains a much higher AUC hovering around 0.86–

0.94 throughout the prediction time range of 3–6 h prior to sepsis

onset. For the same prediction times, NEWS has lower AUC of

0.79–0.80, and SIRS and qSOFA are even lower at 0.64–0.70. Nota-

bly, the 6-h prediction AUC (0.93) using Vital-SEP is better than

even the onset-AUC for all 3 standard methods (NEWS 0.79, SIRS

0.70, and qSOfA 0.66). At 6 h prior to onset, while the sensitivities

of SIRS, NEWS, and qSOFA are comparable to Vital-SEP, their spe-

cificities are noticeably lower compared to Vital-SEP.

DISCUSSION

In this article, we carried out one of the first exhaustive performance

evaluations of various combinations of vital parameters for early

sepsis prediction, and externally validated all findings in patients

from a separate center. We focused on using the 4 vital signs HR,

RR, SpO2, and Temp which are easily obtainable from noninvasive

finger clip photoplethysmography (PPG) sensors. We built Gradient

Boosted Decision Tree machine learning models for each of the sin-

gle, dual, triple, and quad combinations and compared their sensi-

tivity, specificity, and AUCs for different prediction times. While

most existing papers take a set of physiological and/or biochemical

parameters and evaluate their combined performance in toto, we

take a significant step forward by analyzing each and every combi-

nation (total 240) of vital parameters and lead times so as to suit dif-

ferent clinical settings and availability of monitoring devices.

We were able to arrive at the best-performing vital parameter set

in each class: Among single parameters, RR with AUC 0.83 per-

formed the best. Among dual vitals pairs, [HR þ Temp] and [RR þ
Temp] yielded the highest results with an AUC of 0.90. A surprising

role for body temperature seemed to emerge. By itself the AUC of

temperature was low (0.79) and the lead time was 4 h, but in combi-

nation with HR (HRþTemp), it had an amplifying effect, as is evi-

dent from the high AUC (0.9) and lead time of 6 h. A similar

observation can be made for SpO2 as well. Whereas SpO2 individu-

ally had an AUC of 0.8, when combined with RR, increased the

Table 2. Summary of recorded vital parameters in the 4 patient

groups: Values are aggregated over all the patients in each group,

and represented as the mean and standard deviation (shown in

parenthesis)

Hospital A Hospital B

Sepsis Controls Sepsis Controls

Heart rate: mean (standard deviation) beats/min

High 114 (20) 103 (16) 115 (19) 101 (19)

Low 69 (14) 70 (11) 68 (14) 69 (13)

Range 20–223 25–167 36–211 20–186

Baseline 88 (14) 85 (12) 88 (14) 82 (14)

Respiratory rate in breaths/min

High 31 (7) 26 (6) 29 (9) 25 (6)

Low 11 (3) 11 (3) 11 (4) 12 (3)

Range 1–67 1–67 1–100 1–100

Baseline 20 (4) 18 (3) 18 (4) 18 (3)

Temperature in �C

High 38.1 (0.8) 37.8 (0.7) 38.1 (0.8) 37.4 (0.7)

Low 36.0 (0.8) 36.0 (0.7) 35.8 (0.9) 36.1 (0.6)

Range 26.7–40.6 30.6–41.6 30.9–41.4 30.0–50.0

Baseline 37.1 (0.6) 37.1 (0.5) 37.0 (0.6) 36.8 (0.5)

Blood oxygen saturation in %

High 99 (0) 99 (0) 99 (0) 99 (0)

Low 89 (7) 92 (5) 87 (9) 91 (6)

Range 22–100 25–100 20–100 20–100

Baseline 97 (1) 97 (1) 97 (1) 97 (1)

The high and the low together with the range show the extent of variation

of each vital parameter. The baseline represents the recorded values at the

start of the monitoring window.

Table 3. Vital Parameter configurations and their AUC (mean and

SD across all timing tuples)

Vital parameter configuration AUC (mean 6 SD)

HR 0.79 6 (0.02)

Temp 0.75 6 (0.03)

RR 0.80 6 (0.01)

SpO2 0.75 6 (0.02)

HRþTemp 0.84 6 (0.04)

RRþTemp 0.85 6 (0.03)

SpO2þRR 0.86 6 (0.02)

HRþRR 0.87 6 (0.02)

HRþSpO2 0.84 6 (0.02)

SpO2þTemp 0.81 6 (0.03)

HRþRRþTemp 0.89 6 (0.03)

SpO2þTempþRR 0.86 6 (0.03)

HRþSpO2þTemp 0.86 6 (0.03)

HRþSpO2þRR 0.87 6 (0.02)

HRþRRþTempþSpO2 0.87 6 (0.03)

Highlighted rows represent the highest mean within each cardinality.

HR: heart rate; RR: respiratory rate; SpO2: peripheral oxygen saturation;

Temp: temperature.
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AUC to 0.89 and lead time to 5 h. When just the SpO2 and Temp

were combined, there was no satisfactory increase in lead time.

There is also a direct relationship between Vital Parameters cardin-

ality and lead times. The additional hourly improvement in lead

time is evident as we progress incrementally from using 1 vital sign

to using all 4.

In Vital-SEP, among the clinical parameters, the superiority of

HR and RR when used either individually or in combination with

other vitals, can be attributed to their acute state reactivity, being

more sensitive to the pathophysiological changes such as hyperin-

flammation, dysregulated coagulation, and hypotension that pre-

cede sepsis by a few hours.34 The autonomic nervous systems that

regulate HR and RR are tightly coupled with the metabolic demands

of all vital organs, being exquisitely responsive to the sepsis induced

changes in cellular metabolism and microcirculation. Furthermore,

HR and RR variations are also mostly nonspecific with regard to

causative factors of sepsis, as well as the organ systems involved.35

Hence they seem to perform uniformly well for all patient datasets.

Among the triple vitals sets, [HR þ RR þ Temp] performed the best

with AUC of 0.93. Using all the 4 vitals (quad configuration), we

obtained an AUC of 0.94 with sensitivity and specificity of 0.85 and

0.90, respectively. The above results also reveal a monotonic trend.

Starting with HR as a single vital, as additional vitals RR, Temp,

and SpO2 were added, we observed progressive improvements in

AUC by almost 15%.

The highest AUROC of 0.94 for 6-h prediction achieved by Vital-

SEP compares well with 0.88 achieved by Bedoya et al16 who use

patient demographics, comorbid history, medications, and laboratory

data in addition to vital signs. Mao et al,36 who used systolic blood

pressure and diastolic blood pressure (in addition to the 4 vitals used

in this paper), achieved an AUROC of 0.92. However, in most hospi-

tal ICUs, blood pressure measurements are dependent on manual or

automatic inflatable cuffs, both of which require nursing staff and are

prone to human errors. This makes it less likely to be monitored

hourly particularly in resource constrained settings where invasive

mechanisms like arterial lines are also not a possibility. Whereas the

other 4 vitals can be measured from finger-clip PPG sensors. In terms

of lead time, Vital-SEP’s best-performing model achieved 6 h. Though

Delahanty et al,13 achieve a higher prediction time of 24 h, they

require the use of features extracted from biochemical and demo-

graphic data including medications, as well as, nursing notes.

These results constitute a significant contribution to the existing

literature on the effectiveness of vital parameters for sepsis prediction.

The innovative feature engineering of Vital-SEP is a novel contribu-

tion to the machine learning methods for sepsis detection. This lays

the foundation for being able to predict progression to sepsis using

noninvasive wearable sensors in limited resource settings. Since the

training and validation datasets in our study were from 2 different

hospitals and 2 different regions, there is guarded optimism that by

extending the training dataset to the Electronic Health Records (EHR)

from other hospitals, Vital-SEP can be made suitable for hospitals in

diverse regions and populations. After satisfactory prospective studies

Figure 4. The mean and standard deviation of the AUC across all timing tuples computed for each vital parameter combination.

Table 4. Vital Parameter configurations and their timing tuples

(WAUC, LAUC) that maximize AUC

Vital parameter configuration Timing tuple that maximizes AUC

Single vital WAUC (Hrs.) LAUC (Hrs.) AUCmax

HR 5 5 0.82

Temp 4 4 0.79

RR 6 3 0.83

SpO2 4 3 0.80

Dual Vitals

HRþTemp 4 6 0.90

RRþTemp 4 4 0.90

SpO2þRR 3 5 0.89

HRþRR 4 5 0.89

HRþSpO2 4 3 0.87

SpO2þTemp 4 3 0.86

Triple Vitals

HRþRRþTemp 4 6 0.93

SpO2þTempþRR 4 6 0.91

HRþSpO2þTemp 4 5 0.91

HRþSpO2þRR 4 6 0.9

Quad Vitals

HRþRRþTempþSpO2 4 6 0.94

Highlighted rows represent the local maxima of AUCmax within each car-

dinality.

HR: heart rate; RR: respiratory rate; SpO2: peripheral oxygen saturation;

Temp: temperature.
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and clinical trials, Vital-SEP can be integrated into patient manage-

ment in the ICUs of hospitals. ICU patients are monitored with a

wearable PPG cum temperature sensor (there are many available in

the market but need to be certified as medical grade), which transmit

the vitals to the Vital-SEP app installed on the ICU EHR server. A pos-

itive prediction of sepsis triggers advance warnings and alarms which

are transmitted to the physician’s console who can initiate therapeutic

intervention.

Limitations
Our study is not without limitations. Our method assumes uninter-

rupted hourly measurements in the monitoring window. Also, in

make-shift limited resource settings, there are possibilities of errors

due to nonstandard devices being used for clinical monitoring which

may confound the algorithm. Although it would be desirable to

incorporate automatic error correction mechanisms, even the com-

mercially available wearable sensors37 can monitor vital signs with

sufficient accuracy to provide an uninterrupted stream of hourly

measurements in the monitoring window. There is also scope for fur-

ther minimizing the false negatives so as to improve the clinical out-

comes of all patients at risk for developing sepsis, even as the low

false-positive rate of Vital-SEP will conserve hospital resources and

manpower.

Since this is a retrospective study, clinical outcomes such as mor-

tality, duration of hospital stay and other quality improvement

parameters could not be measured. Our study in this article

addresses the limited problem space of predicting sepsis in patients

who are already admitted to the ICU. Therefore future studies with

data from ward and emergency department patients will be required

before implementation in non-ICU settings.

Figure 5. Barplot showing the AUCmax of all Vital Parameter configurations. Also shown in the line tracing are the lead times that result in maximizing AUC for

that Vital Parameter configuration.

Figure 6. The gain in lead time and the reduction in the monitoring window as we increment the vital parameter cardinality from 1 to 4.
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CONCLUSION

It can be concluded that using Vital-SEP, even 2 vital signs are

adequate to predict sepsis upto 6 h prior to clinical diagnosis with

promising accuracy comparable to standard scoring methods and

other sepsis predictive tools reported in literature. It relies on a mini-

mal set of vital parameters that can be captured from wearable sen-

sors automatically and noninvasively in the background, and these

can be installed even in resource-limited hospitals.38–40 Cases that

would otherwise be missed due to delays laboratory testing, or lack

of obvious clinical symptoms, or infrequent manual assessment of

vital signs (such as in isolation wards), would also be detected at the

nascent stage. In order to ascertain the clinical applicability of Vital-

SEP and evaluate outcomes and quality improvement, the next step

would be a prospective study.
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Single Vitals

HR 0.78 [0.73–0.83] 0.88 [0.87–0.90] .02

Temp 0.78 [0.72–0.83] 0.70 [0.67–0.73] .32

RR 0.82 [0.78–0.87] 0.84 [0.82–0.86] .80

SpO2 0.74 [0.69–0.78] 0.76 [0.74–0.78] .65

Dual Vitals

HRþTemp 0.88 [0.84–0.93] 0.84 [0.82–0.86] .61

RRþTemp 0.87 [0.83–0.92] 0.82 [0.79–0.85] .38

SpO2þRR 0.85 [0.81–0.89] 0.88 [0.86–0.89] .62

HRþRR 0.85 [0.81–0.89] 0.93 [0.91–0.94] .04

HR þ SpO2 0.87 [0.83–0.91] 0.90 [0.88–0.91] .53

SpO2þTemp 0.83 [0.78–0.88] 0.83 [0.81–0.86] .98

Triple Vitals

HRþRRþTemp 0.93 [0.89–0.96] 0.92 [0.91–0.94] .95

SpO2þTempþRR 0.91 [0.87–0.95] 0.91 [0.89–0.93] .90

HRþSpO2þTemp 0.92 [0.89–0.96] 0.91 [0.90–0.93] .89

HRþSpO2þRR 0.89 [0.86–0.93] 0.94 [0.92–0.95] .14

Quad Vitals

HRþRRþTempþSpO2 0.93 [0.90–0.96] 0.94 [0.92–0.95] .91

Except for the 2 highlighted rows, all others have no statistically significant difference. P values were computed via permutation test.30,31

HR: heart rate; RR: respiratory rate; SpO2: peripheral oxygen saturation; Temp: temperature.

Table 6. Performance comparison of Vital-SEP with standard sepsis risk assessment methods SIRS, NEWS, qSOFA, in terms of Area under

Receiver Operating Characteristics (AUC), Sensitivity, and Specificity

Measure Prediction Time VitalSEP SIRS NEWS qSOFA

AUC [95% CI] At onset of sepsis Intended only for

Advance prediction

0.70 [0.66–0.73] 0.79 [0.76–0.82] 0.66 [0.62–0.70]

3 h prior onset 0.91 [0.90–0.96] 0.69 [0.65–0.74] 0.79 [0.75–0.83] 0.66 [0.61–0.71]

4 h prior onset 0.86 [0.82–0.90] 0.68 [0.64–0.73] 0.80 [0.76–0.83] 0.66 [0.61–0.71]

5 h prior onset 0.91 [0.87–0.95] 0.68 [0.64–0.73] 0.79 [0.75–0.83] 0.64 [0.59–0.68]

6 h prior onset 0.94 [0.90–0.96] 0.68 [0.64–0.73] 0.79 [0.75–0.83] 0.66 [0.61–0.71]

Sensitivity At onset of sepsis 0.48 0.69 0.83

3 h prior onset 0.83 0.85 0.86 0.84

4 h prior onset 0.91 0.85 0.87 0.85

5 h prior onset 0.80 0.85 0.87 0.82

6 h prior onset 0.83 0.82 0.87 0.83

Specificity At onset of sepsis 0.79 0.71 0.41

3 h prior onset 0.90 0.52 0.40 0.39

4 h prior onset 0.67 0.52 0.41 0.39

5 h prior onset 0.87 0.47 0.40 0.39

6 h prior onset 0.89 0.52 0.41 0.39

NEWS: National Early Warning Score; qSOFA: quick-Sequential Organ Failure Assessment; SIRS: Systemic Inflammatory Response Syndrome.
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