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A single unified model for fitting 
simple to complex receptor 
response data
Peter Buchwald

The fitting of complex receptor-response data where fractional response and occupancy do not 
match is challenging. They encompass important cases including (a) the presence of “receptor 
reserve” and/or partial agonism, (b) multiple responses assessed at different vantage points along a 
pathway, (c) responses that are different along diverging downstream pathways (biased agonism), 
and (d) constitutive activity. For these, simple models such as the well-known Clark or Hill equations 
cannot be used. Those that can, such as the operational (Black&Leff) model, do not provide a unified 
approach, have multiple nonintuitive parameters that are challenging to fit in well-defined manner, 
have difficulties incorporating binding data, and cannot be reduced or connected to simpler forms. We 
have recently introduced a quantitative receptor model (SABRE) that includes parameters for Signal 
Amplification (γ), Binding affinity (Kd), Receptor activation Efficacy (ε), and constitutive activity (εR0). 
It provides a single equation to fit complex cases within a full two-state framework with the possibility 
of incorporating receptor occupancy data (i.e., experimental Kds). Simpler cases can be fit by using 
consecutively reduced forms obtained by constraining parameters to specific values, e.g., εR0 = 0: no 
constitutive activity, γ = 1: no amplification (Emax-type fitting), and ε = 1: no partial agonism (Clark 
equation). Here, a Hill-type extension is introduced (n ≠ 1), and simulated and experimental receptor-
response data from simple to increasingly complex cases are fitted within the unified framework of 
SABRE with differently constrained parameters.

Abbreviations
GPCR	� G-protein coupled receptors
SABRE	� Present model (with parameters for Signal Amplification, Binding affinity, and Receptor activation 

Efficacy)

Receptors1,2 lie at the core of pharmacology and our current mechanism of drug action theories3–5. It is now well 
understood that xenobiotics can generate physiological effects depending on (1) the amount of active compound 
that actually reaches some receptor or, in more general terms, an “effect” compartment and (2a) the strength 
of the interaction and (2b) the relevance of the structural changes produced at this site. Whereas, the former 
are determined by processes related to the pharmacokinetic (PK) phase (including absorption, distribution, 
metabolism, and elimination; ADME), the latter are determined by processes related to the pharmacodynamic 
(PD) phase (including the ability to bind and activate a receptor, i.e., affinity and efficacy, respectively). Regard-
ing the latter, our sole focus here, it is now well recognized that in order to accommodate phenomena such as 
partial agonism and receptor reserve, where fractional responses lag behind or are ahead of fractional occupancy, 
receptor models have to be two-state models in which ligand-occupied receptor states are not necessarily active 
(response-generating) and vice versa, active receptor states are not necessarily ligand occupied. Associating such 
two-state models with quantitative receptor models to establish general concentration–response (or, more gener-
ally, dose- or exposure–response) relationships is crucial, as “exposure–response information is at the heart of 
any determination of the safety and effectiveness of drugs”6 and quality pharmacological analysis should always 
include rigorous quantitative analyses and the calculation and reporting of IC50, EC50, Kd, and other such values.

Well-known important cases where fractional response and occupancy are not aligned and challeng-
ing to fit include (a) the presence of “receptor reserve” (“spare receptors”)7 and/or partial agonism (often in 
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combination)8,9, (b) multiple responses assessed at different vantage points along a signaling pathway, (c) 
responses that are different along distinct divergent downstream pathways originating from the same receptor 
(biased agonism, functional selectivity), and (d) constitutive activity. A set of illustrative examples are included 
in Fig. 1 showing the concentration-dependency of occupancy and response (top row) as well as the correspond-
ing response versus occupancy curves (bottom row). In cases D–F, the response curves (red) are left-shifted 
compared to occupancy (blue) due to signal amplification; cases where they are right-shifted are less common 
and are usually indications of an occupancy threshold issue (i.e., receptor concentration not being negligible 
compared to that of the ligand)10.

For the more complex cases (such as those in Fig. 1C–F), the well-known and straightforward Clark equation 

and its Hill-type extension

cannot be used as they assume responses proportional with occupancy; hence, do not allow separation between 
fractional response, fresp = E/Emax, and occupancy, foccup = [LRoccup]/[LRmax] (Fig. 1A,B). They do not include para-
metrization for efficacy, only for occupancy via Kd, the classic equilibrium dissociation constant characterizing 
receptor binding, which is defined in terms of the concentrations of the species involved (see Fig. 2, bottom row) 
and hence measured in units of concentrations: 

In most of these more complex cases, one can use the more cumbersome operational (Black & Leff) model 
(Eq. 4)17 or its variations for fitting response data because it has an additional efficacy type parameter (τ):

However, this model in its strict two-parameter version cannot connect response to occupancy because it 
cannot incorporate experimental binding affinities since its KD parameter is a fitted one that is not related to 
the experimental dissociation constant, Kd. The discrepancy is especially serious for full or close to full ago-
nists, where τ needs to have large values16. Related to this, an important limitation of the operational model is 
that most of the time, it is difficult to fit in a non-ambiguous manner, i.e., to obtain well-defined parameters. If 
just functional data are available (i.e., a single concentration–response curve), only the so-called transduction 

(1)E/Emax = fresp =
[L]

[L]+ Kd

(2)E/Emax = fresp =
[L]n

[L]n + Kn
d

(3)Kd =
[L][R]

[LR∗]

(4)E/Emax = fresp =
τ [L]

(τ + 1)[L]+ KD

Figure 1.   Relationship between fractional response (fresp = E/Emax) and occupancy (foccup = [LRoccup]/[LRmax]) for 
various increasingly complex assumptions (A–F) as shown by the titles on top and discussed in detail in the text. 
Top row: receptor response (red) and occupancy (blue) as a function of ligand concentration on typical semilog 
scales (fresp and foccup as a function of log C = log [L]). For the simplest cases (A-B), they overlap, and the red line 
is not visible. Bottom row: corresponding response versus occupancy curves (fresp as a function of foccup). Note 
that in some of the more complex cases, the fractional response can be both ahead and behind the fractional 
occupancy even for the same compound (red and blue arrows indicating deviations from the unity line in E 
and F). While these are simulated data, experimental data illustrating such cases are also available (see, e.g., 
references11–14 and discussions in15,16).
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Figure 2.   The present SABRE receptor model in its most general full two-state form with Hill-type extension 
(top) and its consecutively nested simplifications down to the Clark equation (bottom). For each case, the 
corresponding quantitative form connecting fractional response (fresp = E/Emax) to ligand concentration [L] is 
shown at left and a schematic illustration of receptor binding and activation at right.
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coefficient (τ/KD) and not KD and τ independently can be estimated precisely due to identifiability issues during 
regression18,19.

To overcome these limitations, we have recently introduced a quantitative receptor model (SABRE) that can 
fit all these cases of increasing complexity with a unified equation using parameters for Signal Amplification (γ), 
Binding affinity (Kd), and Receptor activation Efficacy (ε) (plus constitutive activity, εR0, if needed)15,16. Its most 
general form that also includes a Hill coefficient (n), which will be derived here, is:

As explicit incorporation of a signal amplification parameter is a main novelty, the model was designated 
SABRE as highlighted by the capitalization above. Not only is SABRE using parameters that are more intuitive 
and easier to interpret than those of the operational model or the del Castillo-Katz minimal two-state model, 
but, contrary to those, it can fit both simple and complex cases with the same equation (Eq. 5) with differently 
constrained parameters. It can be collapsed into consecutive simplified forms by fixing its parameters as special 
values (Fig. 2), and these can and should be used on their own when adequate. By introducing independent 
parametrization for the (post-receptor) signal amplification, SABRE allows a more clear conceptualization of 
receptor signaling as separate processes of binding, activation, and signal transduction (amplification) that can 
now be characterized and quantified via their own distinct parameters: Kd, ε, and γ, respectively (Fig. 2).

Here, receptor response data of increasing complexity were fitted with SABRE using different levels of param-
eter constraining to illustrate the advantage of a unified model that allows nested simplifications (Fig. 2). Main 
details of model parametrization (including its Hill-type extension) are summarized in the Method section below 
followed by illustrative fittings of simulated and experimental response versus occupancy data in the Results 
section. These range from the simplest case, Emax-type response only data, to complex multiple responses and 
biased agonism examples.

Methods
Model concepts.  The present model maintains the main assumptions of the two-state receptor theory, e.g., 
that ligand-bound (occupied) and active receptor states do not fully correspond but introduces a slightly differ-
ent and more intuitive parametrization—a detailed discussion is included in Ref.16. Briefly, binding of the ligand 
is assumed to alter the likelihood of activation: receptors can be active or inactive in both their ligand-free and 
ligand-bound forms (Fig. 2, top right); however, the corresponding probabilities (i.e., times spent in the respec-
tive conformations) can be quite different. Hence, ligand-free (R) and ligand-bound (LR) states are considered 
as an equilibrium ensemble of active (*) and inactive conformations present: R ⇌ R* and LR ⇌ LR*, respectively 
(not excluding the possibility that multiple, possibly overlapping active states might exist). In general, ligand-free 
receptors are overwhelmingly in their inactive conformation, R. In cases where there is no constitutive activity, 
they are entirely so. Binding of an agonist, which is governed by the affinity parameter Kd, shifts the equilib-
rium toward the active state. The ability of a bound ligand to do so is characterized by an (intrinsic) efficacy 
parameter, ε. For receptors with constitutive activity, a basal receptor efficacy, εR0, is used to account for baseline 
activation even in absence of a ligand. The signal (response) generated by the active receptor (R* or LR*) can 
be amplified downstream, and this is characterized by a pathway-specific gain parameter γ. Hence, the model 
uses four parameters: Kd, the equilibrium dissociation constant characterizing binding affinity; ε, the efficacy 
characterizing the ability of bound ligand to activate the receptor (0 ≤ ε ≤ 1); εR0, a basal receptor efficacy charac-
terizing constitutive activity (0 ≤ εR0 ≤ 1); and γ, a gain (amplification) parameter characterizing the nonlinearity 
of (post-activation) signal transduction (1 ≤ γ). To accommodate responses that are more (or less) abrupt than 
those corresponding to a straightforward law of mass action, an additional a Hill-coefficient parameter, n, is 
also introduced here. Corresponding equations, schematics, and all successive nested simplifications leading to 
special cases are summarized in Fig. 2.

Parametrization.  Occupancy (binding) parametrization, is achieved via a Kd parameter similar to that of 
the original simple definition (Eq. 3), but with some modifications. SABRE differentiates between active and 
inactive receptor states (denoted by an asterisk, i.e., R* vs R and LR* vs LR), but considers ligand-bound and 
ligand-free states as an ensemble of conformations, so that Kd represents an average binding constant for these 
ensembles of active and inactive forms that the ligand effectively sees. Hence, Kd is defined in terms of the overall 
concentrations of occupied and unoccupied (ligand-free) receptors (Fig. 2A)

Accordingly, SABRE does not distinguish between binding affinities for the active and inactive states (as 
done by other two-state models, e.g., Kd and Kd/α;16). It uses a single, ensemble-averaged Kd that is a macro-
scopic equilibrium constant and, hence, experimentally measurable in equilibrium binding assays that assess 
total binding to the receptor. While this deviates from the assumptions of other models, the validity of such a 
single, experimentally measurable binding constant is nicely supported by previous works quantifying binding 
via both static (Kd) and kinetic (koff/kon) methods in parallel with multiple downstream effects that found the 
experimental binding constants derived by these two methods to be in very close agreement (e.g., for the M3 
muscarinic receptor12 and for the μ-opioid receptor20).

(5)E/Emax =
εγ [L]n + εR0γK

n
d

(εγ − ε + 1)[L]n + (εR0γ − εR0 + 1)Kn
d

(6)Kd =
[L]

[

Rfree
]

[

Roccup
] =

[L]([R]+ [R∗])

([LR]+ [LR∗])
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Efficacy parametrization here is achieved via an ε parameter that represents the fraction of ligand-bound 
receptors that are active15,16:

Hence, ε is a unitless parameter in the 0 to 1 range, and represents an intrinsic efficacy measured immediately 
post-receptor. Note, however, that it is not an equilibrium constant such as Kε = [LR*]/[LR]). Constitutively active 
receptors are incorporated into the formalism of SABRE via a baseline receptor efficacy (εR0) that is defined along 
similar lines, but for ligand-free receptors (i.e., the fraction of ligand-free receptors that are active):

While ε is a ligand characteristic, εR0 is a receptor characteristic. With these definitions, inverse agonists that 
reduce the signaling output below that of the basal state will have ε < εR0. Full agonists have ε = 1; partial agonists 
that generate a response but cannot reach the maximum one even at concentrations that saturate all receptor 
sites have εR0 < ε < 1, and neutral antagonists have ε = εR0.

Finally, the present model explicitly incorporates pathway-specific signal transduction (amplification) via a 
separate gain parameter γ. Signal amplification has to be built into receptor models to account for cases where 
almost maximal responses can be achieved at relatively small fractional occupancies, i.e., cases that were tradi-
tionally designated as having “receptor reserve” or “spare receptors”. In SABRE, the fraction of active receptors

is linked to the fractional response, fresp = E/Emax, via a hyperbolic function. Such functions provide convenient 
ways to incorporate signal amplification cascades and have been shown to exist in response vs occupancy data. 
However, in SABRE not fact itself, but its odds-ratio type transform

serves as input (see Ref.15 for details):

With this definition, γ represents a unitless amplification (gain) factor (γ ≥ 1). After some transformations, 
this results in the final form of the full four-parameter model linking fractional response, fresp = E/Emax, to ligand 
concentration [L]:

For cases with no constitutive activity (εR0 = 0; no active unbound receptor, R*), this reduces to the three-
parameter minimal two-state model previously introduced15 (third row of Fig. 2) and the simplified equation:

A detailed derivation of these equations, including its generalization for a Hill-type extension, is included in 
Supporting Information, Appendix 1. A better interpretation of these parameters can be gleaned from a slightly 
rearranged form of this three-parameter equation, which corresponds to a case with Hill coefficient slope of 
unity (n = 1):

From here, it is clear that half-maximal response (EC50) is observed at Kobs = Kd/(εγ–ε + 1) and the maximum 
(fractional) effect achievable by a given ligand is fresp,max = εγ/(εγ–ε + 1). For full agonists at the receptor (ε = 1), 
Kobs = Kd/γ; therefore, the gain γ is a straightforward multiplication factor causing a left shift of the sigmoid 
response function by γ units on a semi-log scale. By explicitly separating the parametrization of pathway-specific 
amplification (γ) from that of ligand-specific receptor activation (ε), SABRE more clearly outlines than other 
models the intrinsic efficacy concept, which proved to be somewhat elusive in pharmacology21,22.

Hill‑type extension (cooperative binding).  As a final step, a Hill-type parametrization can also be intro-
duced via a Hill slope, n, to allow either more (n > 1) or less (n < 1) abrupt concentration-dependent responses:

(7)ε =
[LR∗]

[LRtot ]
=

[LR∗]

[LR]+ [LR∗]

(8)εR0 =
[R∗]

[Rtot ]
=

[R∗]

[R]+ [R∗]

(9)fact =
[R∗]+ [LR∗]

[Rtot ]
=

[R∗]+ [LR∗]

[R]+ [R∗]+ [LR]+ [LR∗]
=

εR0Kd + ε[L]

[L]+ Kd

(10)� =
fact

1− fact

(11)fresp = E/Emax
=

�

�+ γ−1
;� =

fact

1− fact

(12)E/Emax =
εγ [L]+ εR0γKd

(εγ − ε + 1)[L]+ (εR0γ − εR0 + 1)Kd

(13)E/Emax =
εγ [L]

(εγ − ε + 1)[L]+ Kd

(14)E/Emax =
εγ

(εγ − ε + 1)

[L]

[L]+ Kd
(εγ−ε+1)
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This function, originally introduced by Hill based on empirical considerations23, provides a versatile math-
ematical function often used in pharmacological24,25 and other applications26. It shows analogy with the logistic 
function, one of the most widely used sigmoid functional forms, as it is equivalent with a logarithmic logis-
tic function, y = f(x) = Rmax/(1 + βe–nlnx)27. In fact, the classic sigmoid shapes obtained in typical semi-log scale 
graphs (such as those shown in Fig. 1) are those of the logistic function. The IUPHAR recommendation is to 
use “Hill equation” for the relationship between ligand concentration and effect (such as Eq. 15 here), whereas 
“Hill–Langmuir equation” should be used for relationship between ligand concentration and occupancy27. Hill 
slopes different from unity are typically indications of interacting binding sites with positive (n > 1) or negative 
(n < 1) cooperativity28. The Clark equation (Eq. 1), as well as the analogous Michaelis–Menten equation, represent 
a special case (n = 1) of the Hill equation—a nice example of how more complex models can be collapsed into 
simplified forms for special cases of their parameters.

Following a detailed derivation (see Supporting Information, Appendix 1), the Hill-type extension of the 
general form of the present SABRE model that includes constitutive activity is a straightforward generalization 
of Eq. 12 introducing the Hill-coefficients as exponents of the concentration terms:

In case of no constitutive activity, this simplifies to the Hill-type extension of Eq. 13:

Consecutive simplifications.  An important feature of the present model is that, contrary to previous 
quantitative receptor models such as those based on the operational model, its general form (Eq.  5) can be 
reduced to consecutively nested simplified forms for special cases of its parameters (Fig. 2), and these can be 
used on their own when adequate. Hence, the very same model can be used to fit data of various complexity 
levels using different sets of constrained parameters. First, by setting n = 1, it reproduces the simpler form of 
SABRE as introduced before16, just as setting n = 1 in the Hill equation (Eq. 2 or 15) reproduces the Clark equa-
tion (Eq. 1) as its simpler form.

The way the Hill equation can be reduced to the Clark equation by constraining one of its parameters to a 
special value (n = 1) has been a long-known example in quantitative pharmacology. With SABRE, one can do 
the same and more, as one can continue with multiple consecutive simplifications of its parameters. Cases with 
no constitutive activity (no R* form) can be obtained by constraining εR0 to 0 leading to the three-parameter 
minimal two-state SABRE model that was the first form introduced15:

Further, if there is no amplification (or if it cannot be reliably evaluated due to lack of independently assessed 
occupancy/binding data), γ should be constrained to 1, and the model collapses further into the simple two-
parameter Emax model of partial agonism (Fig. 2):

Finally, if there is no partial agonism (i.e., all occupied receptors are active), ε can be constrained to 1, and 
this leads to the simple one-parameter Clark equation (Fig. 2, bottom row):

Regarding these consecutively nested simplified forms, it is important to always use the simplest one (i.e., the 
one with the largest number of fixed parameters) that still provides adequate fit to limit the number of adjustable 
parameters29–32. Adequate fitting requires the availability of 5–10 (well-distributed) data points for each adjustable 
parameter5,33,34; hence, reliable fitting of the full model can only be accomplished if sufficiently large number of 
data points are available. Because of its separate amplification parameter, SABRE uses one more parameter than 
the operational model, e.g., three (Kd, ε, γ) versus two (Kd, τ) for the case of no constitutive activity (Eq. 19 vs. 4) 
or four (Kd, ε, γ, εR0; Eq. 18) versus three (e.g., Kd, ε, χ; Eq. 22) for cases with constitutive activity—if comparing 
with the Slack and Hall version of the extended operational model shown below35–37:

(15)E/Emax =
[L]n

[L]n + Kn
d

(16)E/Emax =
εγ [L]n + εR0γK

n
d

(εγ − ε + 1)[L]n + (εR0γ − εR0 + 1)Kn
d

(17)E/Emax
=

εγ [L]n

(εγ − ε + 1)[L]n + Kn
d
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1
d
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d
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(19)E/Emax =
εγ [L]+ 0γKd

(εγ − ε + 1)[L]+ (0γ − 0+ 1)Kd
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εγ [L]

(εγ − ε + 1)[L]+ Kd
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ε1[L]
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=

ε[L]
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However, the need for one extra parameter is more than compensated for by (1) the more intuitive nature of 
the present parameters (due to their more clear connection to receptor binding, activation efficacy, and signal 
amplification), and (2) the ability to use simplified forms with constrained parameters so that fewer need fitting. 
Contrary to the operational model and its variations, SABRE can be reduced to simplified forms for special cases 
of its parameters, and these can and should be used on their own when adequate or when there are not enough 
data to support full parametrization.

Implementation and data fitting.  All data are normalized and have no baseline (i.e., in the 0–100% 
range). Data fittings were performed in GraphPad Prism (GraphPad, La Jolla, CA, USA, RRID:SCR_002798). 
Fitting with the present model were done with a custom implementation corresponding to the general Eq. 5, 
which is available for download (Supporting Information) and with parameters constrained as indicated for each 
case. Simulated data were generated with the same model in Prism using the “Simulate XY data” algorithm with 
5% random error). Experimental data used for illustrations of model fit are reproduced from previous publica-
tions as indicated in the corresponding figures.

Results and discussion
In systems with signal amplification, ligands of different efficacies (e.g., full, partial, and possibly inverse agonist) 
can produce complex concentration–response functions leading to complicated connections between fractional 
response (fresp) and occupancy (foccup) (Fig. 1) that can be fit only by multi-parameter models. So far, no single 
quantitative receptor model could fit simple as well as complex cases within a unified framework. Here, it is 
shown how this can be done with the present model, which allows consecutive nested simplifications, using a 
set of examples of increasing complexity. Simulated as well as experimental data were fitted with the same gen-
eral equation (Eq. 5), but with different levels of parameter constraining. To avoid excessive parametrization, 
all cases assume n = 1, i.e., no Hill-type extension (except for one specific illustration in Fig. 4), as well as εR0 = 0 
(no constitutive activity).

Response only data (Emax model with possible Hill‑type extension).  As the simplest first case, let 
us consider the fitting of plain response data to determine EC50 (Kobs) values for agonists of different potencies in 
a given assay system. EC50 is the half-maximal (or median) effective concentration (or dose, ED50), which is the 
concentration (dose) of an agonist that produces 50% of the maximum possible activity of that agonist27. Such 
EC50 determinations are routinely done in pharmacology using either the one-parameter Clark equation (if only 
full agonists are present) or the two-parameter Emax equation (if partial agonists are also present). These models 
are widely used, familiar to those performing such nonlinear regression-based fit, and implemented in a variety 
of software packages, e.g., “log(agonist) vs. normalized response” and “log(agonist) vs. response (three param-
eters)” models in GraphPad Prism. The same fit can be obtained with SABRE (Eq. 5) by constraining all but one 
(Kd) or two (Kd, ε) of its parameters. An illustrative example using simulated data for three different hypothetical 
agonists is shown in Fig. 3. Fit with SABRE reproduced perfectly both the log Kd values (which here correspond 
to log EC50s; − 6, − 7, and − 8) and maximum fractional response (efficacy) values (100%, 90%, and 60%) used to 
generate the data. To have realistic data with some scatter, a 5% random error was allowed. Hence by restricting 
its parameters, SABRE can be reduced to reproduce simpler forms that can be used on their own, something that 
cannot be done with models based on the operational model.

If response data are either more or less abrupt than predicted by the standard law of mass action (unity Hill 
slope, n = 1), the Hill coefficient of Eq. 5 also needs to be released resulting in three-parameter fit (Kd, ε, n). An 
illustration of this is shown in Fig. 4 with data generated as in Fig. 3 but with Hill slopes of 2.0 and 0.66. In most 
cases, n should be constrained to the same value for all compounds assessed in the same assay; here, this was 
not done to illustrate the effect of both n > 1 and n < 1.

Connecting response to independently measured occupancy data.  Next, as a more complex case, 
let us consider fitting of the same type of response data (EC50), but with integration of occupancy (Kd) data 
obtained from a different, independent assay in the same system. As an example, the same simulated response 
data as above was used (Fig. 3; log EC50s of − 6, − 7, and − 8), but with an additional set of Kds (logKds of − 
5.2, − 6.6, and − 6.7). Fit with SABRE can be considered consistent if adequate fit can be obtained with all Kds 
restricted to their experimental value and a single amplification parameter γ characterizing the system (path-
way) as a whole. The corresponding fit for the present data is shown in Fig. 5A. Very good fit could be obtained 
with only four adjustable parameters (3ε + 1γ): > 98% of variability could be accounted for with a well-defined 
gain parameter: r2 = 0.984, γ = 21.1 ± 4.7. While this was done here with simulated data customized to illustrate 
such fit, examples of experimental data that can be fit with SABRE using a unified amplification parameter are 
also available. For example, contraction of isolated rat aorta data obtained for imidazoline type α-adrenoceptor 
agonists11, which are used as textbook illustration for possible mismatch between fresp and foccup

38, could be fitted 
very well with SABRE with the assumption of a single gain (amplification) parameter for data from five com-
pounds (γ = 11.9 ± 2.0; r2 = 0.996; see Fig. 9 and Table S1 in Ref. 16).

Further, within the framework of SABRE one can not only fit such concentration-dependency data (Fig. 5A), 
but also directly link fractional response, fresp, to fractional occupancy, foccup

16 (Fig. 5B). By using foccup to replace 
[L] (see Supporting Information, Appendix 1),

(22)E/Emax =
χ(KD + ε[L])

(KD + [L])+ χ(KD + ε[L])
;χ =

[Rtot ]

Kε
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one gets the corresponding function that can be used for direct fitting:

Typically, binding data are used to generate Kd estimates (usually via a Cheng-Prusoff correction39). If these 
Kds are then used to calculate occupancy (foccup) at the [L] values were response data (fresp) are available, fit with 
the above equation provides the same parameters as obtained from direct fit of the concentration–response data. 
Illustration for the present data is provided in Fig. 5B. While models based on the two-parameter operational 
model (Eq. 4) can be used to fit the response data (with some known problems fitting full and close to full ago-
nists), they have difficulties connecting the response to independently determined binding data (Kd) as done 
here with SABRE. One exception is a three-parameter “special edition” extension of the operational model “with 
given Kd values” introduced by Rajagopal and Onaran for bias quantification that uses experimental Kd values 
as its KD

19,40. In this model, KDs are not fitted, but replaced with experimental ones to constrain the regression. 
To achieve this, an additional scaling factor α (rmax) needs to be introduced in Eq. 4 to allow a scalable Emax:

The three parameters of this model, however, can be linked directly to those of the present model (see Sup-
porting Information, Appendix 2) so that parameters obtained from fitting SABRE can be used to derive those 
of this model (Kd, ε, γ → KD, τ, α):

(23)foccup =

[

LRoccup

]

[LRmax]
=

[L]

[L]+ Kd
→ [L] = Kd

foccup
(

1− foccup
)

(24)fresp =
εγ foccup

ε(γ − 1)foccup + 1
=

γ

γ − 1

foccup

foccup +
1

ε(γ−1)

(25)E/Emax = fresp = α
τ [L]

(τ + 1)[L]+ KD

Figure 3.   Fit of response only (EC50) data (full and partial agonists) with the present SABRE model. Simulated 
data (symbols) for three different compounds were generated in GraphPad Prism (“Simulate XY data” algorithm 
with 5% random error) and then fitted with SABRE (lines) using the constrained version as shown (Eq. 5; εR0 = 0, 
γ = 1, n = 1). This is equivalent with fit with the Emax model, e.g., the widely used “log(agonist) vs. response (three 
parameters)” model, and results in exactly the same parameters (assuming a 0 baseline).
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Conversely, the parameters of this “special edition” operational model can be transformed into those of 
SABRE using (Appendix 2):

This highlights again an important advantage of the present model, namely that it clearly separates the ability 
of the ligand to activate the receptor (ε) from the pathway-specific (post-receptor) signal amplification (γ), while 
these two are intermixed in the τ “transducer ratio” (“coupling efficiency”) parameter of the operational model 
and its different variants [i.e., τ = ε(γ–1) here; Eq. 26]. Hence, from the perspective of the present framework, the 
τ parameter of the operational model mixes together ligand- and pathway-specific effects separated into ε and γ 
here (see Appendix 2). Note also that this “special edition” operational model (Eq. 25) is somewhat unusual as 
it formally allows an Emax larger than 100% by having α = γ/(γ–1) > 1.

Responses assessed at different vantage points.  Next, let us consider the case of multiple responses 
measured at different downstream vantage points along the same pathway. This is of particular relevance for 
G-protein coupled receptors (GPCRs), known to involve signaling cascades with multiple second messengers. A 
set of such data generated within the framework of the present assumptions is shown in Fig. 6; they were chosen 
so as to illustrate a possible nonintuitive case (shift in the order of potencies) resulting from the intermingling of 
the effects caused by different efficacies at the receptor on one hand and increasing downstream signal amplifica-
tion on the other. Simulated responses were generated for three hypothetical compounds of different affinities 
(log Kd of − 6, − 7, and − 5) and efficacies (ε of 0.5, 0.1, and 1.0) at three consecutive readout points of increasing 
amplifications (γ of 1, 20, and 500). At all three points, responses are shown as a function of both concentration 
(fresp vs log C) and occupancy (fresp vs foccup) (Fig. 6). Despite the unusual nature of the data, SABRE can provide 
integrative fit with a unified set of parameters (np = 9; 2 × 3 for the binding affinities and efficacies of the three 

(26)KD = Kd; τ = ε(γ − 1); α =
γ

γ − 1

(27)Kd = KD; ε = τ(α − 1); γ =
α

α − 1

Figure 4.   Fit of response only (EC50) data for cases with non-unity Hill slopes. Simulated data (symbols) 
generated as before (Fig. 3) but with n ≠ 1 and then fitted with SABRE (lines) using the constrained version as 
shown (Eq. 5; εR0 = 0, γ = 1). To illustrate the effect of releasing n, fit with constrained unity slopes are also shown 
(n = 1, dashed lines)—note that fit is considerably improved, but EC50s are essentially unaffected.
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Figure 5.   Fit of independently measured response (EC50) and occupancy (Kd) data with the present SABRE 
model. (A) Concentration–response data that are the same as in Fig. 3, but were fitted here with incorporation 
of an additional set of Kds. The corresponding parameters were restricted as shown (log Kds of − 6.7, − 6.6, and 
− 5.2; indicated on the x axis), and only one γ and three εs were fitted (np = 4). (B) Direct fit of corresponding 
response versus occupancy data. Same data as A, but fitting done directly with Eq. 23 linking fresp to foccup. If foccup 
is calculated from Kd, the exact same parameters are obtained in B as from fit of the concentration–response 
data in A.
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agonists plus 3 for the amplifications of the three readout assays), not conceivable with operational model-based 
approaches that could only provide separate sets of KDs and τs for each individual response (i.e., np = 18; 2 × 3 
parameters of the three agonists for each of the 3 readout assays).

A further illustration is provided by fitting of a set of experimental data obtained from such consecutive 
responses (Fig. 7). They were measured at two consecutive vantage points after M3 muscarinic receptor activation 
by agonists such as carbachol, oxotremorine, oxotremorine-M, and methacholine: the stimulation of GTP bind-
ing to Gα subunits and the subsequent increase in intracellular calcium levels12. Receptor occupancy estimates 
are from log Kd values obtained from equilibrium competition experiments with N-methyl-[3H]scopolamine in 
the same work12. Unified fit of nd = 72 data points for both responses from four compounds using SABRE with a 
single set of ε efficacies (one for each compound) and two gain parameters γ (one for each response) as adjust-
able parameters (np = 6) resulted in reasonable amplifications estimates (γ of 2.31 ± 0.42 and 10,243 ± 1,351 for 
the GTP and Ca readouts, respectively) and good overall fit (accounting for 97.8% of the variability in the data, 
r2 = 0.978) (Fig. 7). Because of a very strong (~ 10,000-fold) amplification in the second (Ca response) pathway, 
efficacy estimates are mainly defined by the first (GTP binding) response—obtained values and standard errors 
are summarized in Fig. 7. Such fittings can be considered consistent only if the unified single set of efficacies can 
provide acceptable fit at all the response levels considered for each compound including a full agonist. Neverthe-
less, unlike any other previous model, SABRE has the potential to connect response data assessed at different 
vantage points k (Ek/Ek,max) to affinities (log Kd) and intrinsic efficacies (ε) for multiple compounds as long as 
reasonable overall fit can be obtained with unified gain parameters (γk).

Biased agonism.  Finally, let us consider the application of the present model for quantification of biased 
agonism. It has been recognized since at least the 1990s that some receptors can engage multiple downstream 

Figure 6.   Multiple response data at different vantage points generated within the framework of the present 
SABRE model. Simulated data (symbols) for three different compounds were generated with the parameter 
values as shown (three compounds with log Kds of − 6, − 7, and − 5 and εs of 0.5, 0.1, and 1.0 at three different 
readouts with γs of 1, 20, and 500) and 5% random error; lines indicate corresponding model fits obtained with 
SABRE using a unified set of parameters (np = 9). Responses at the three different readout levels are shown as a 
function of both concentration (fresp vs log C; middle column) and occupancy (fresp vs foccup; rightmost column). 
Data were chosen so as to illustrate a possible nonintuitive shift in the order of potencies that can result from 
the strong downstream amplification of the response caused by a weak agonist: compound 2 (red; ε = 0.1) that 
generates the weakest response right after the receptor (assay 1, top) becomes the most potent one in assay 3 
(bottom).
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signaling pathways simultaneously and activate them differentially in different tissues (e.g.,41,42). For such recep-
tors, and in particular for GPCRs known to couple to several G proteins as well as β-arrestins, it is conceivable 
that certain ligands can show differences in their ability to activate these pathways—a phenomenon designated 
as biased agonism (stimulus bias, functional selectivity, or ligand directed signaling)22,40,43–52. For this to exist, 
there have to be (1) different active states of the receptor (i.e., R*, R#, etc.) that can preferentially initiate distinct 
downstream signals, (2) coupling proteins that differentially recognize these different active receptor states (e.g., 
G proteins, GPCR kinases, and β-arrestins), and (3) agonists capable to differentially stabilize these active states. 
Structural evidence is beginning to accumulate in support of this53.

An illustration of such data generated within the framework of the present assumptions for two divergent 
pathways involving different signal amplifications and three hypothetical compounds of different efficacies is 
shown in Fig. 8. Corresponding data are shown as typical concentration–response curves (fresp vs log C), response 
versus occupancy ones (fresp vs foccup), and a typical bias plot used in such cases (i.e., relative response plot of fresp1 
vs fresp2

44,54). Data were generated for two different pathways (P1, P2) originating from the same receptor, but 
having different amplifications (γP1 = 4 and γP2 = 20) and three hypothetical compounds having different affinities 
(log Kds of − 6, − 7, and − 5) and efficacies ε. Two compounds (1 and 3) had the same efficacy for both pathways 
(ε1,P1 = ε1,P2 = 0.5 and ε3,P1 = ε3,P2 = 1.0), while one (2) had a higher efficacy for pathway 1 (ε2,P1 = 0.5, ε2,P2 = 0.1) 
generating a biased response as most evident in the bias plot of Fig. 8 (bottom row, center).

Because of the intermix of effects related to binding, receptor activation, and signal amplification, quan-
tifying signaling bias is difficult, and it may not be achievable in many cases19,55. Current bias quantification 
methods typically rely on calculating ΔΔlog(τ/KD) or ΔΔlog(Emax/EC50) versus a selected reference compound, 
e.g., a logarithmic bias factor is obtained as (log(Emax,P1,L/EC50,P1,L)–log(Emax,P2,L/EC50,P2,L)) − ((log(Emax,P1,Lref/
EC50,P1,Lref)–log(Emax,P2,Lref/EC50,P2,Lref))19,49. This originated, in fact, from the concept of ratio of equiactive molar 
ratios, later termed intrinsic relative activity (RAi) introduced by Ehlert and co-workers, which is the ratio of 
τ/KD fractions with the operational model and becomes that of Emax/EC50s for a Hill slope of 1, i.e., (Emax,L/EC50,L) 
/ (Emax,Lref/EC50,Lref)56,57. Because SABRE explicitly separates pathway amplification from ligand efficacy, it might 
allow a conceptually different approach, as discussed briefly before16. If data can be fitted with sufficiently well-
defined gain parameters (γPk, one for each pathway Pk), then pathway-specific differences in amplification can 
be separated from those in ligand-specific efficacies, and these εs can serve as cleaner indicators of bias, possibly 
even without predefined reference agonists. If receptor occupancy (Kd) data are available, and SABRE can fit the 
data for each pathway adequately, one can calculate ligand efficacies for each pathway separately and compare 
them for indication of bias. If fitting can be done so that full or close to full agonists (ε = 1) are identified for each 
pathway, ligands that have efficacy ratios (εPk/εPl) significantly different from 1 can be considered as being biased 
agonists. Otherwise, εγ products need to be compared. There are methods to estimate efficacies with two-state 
models58; nevertheless, because SABRE is the first model that explicitly uses separate parameters for efficacy (ε) 
and amplification (γ), it can untangle these connections in a manner not possible either with direct empirical 
comparisons (e.g., Emax/EC50) or with fitting of previous models, which intermingled these two effects within 
the same parameter (e.g., τ, χ).

To illustrate the process of bias detection with the present model, fit was done on recent experimental data 
obtained at the angiotensin II type 1 receptor (AT1R): two responses (Gq-mediated inositol monophosphate 

Figure 7.   Fit of experimental response data obtained at different readout points with the present SABRE 
model. Data are for four muscarinic agonists with two different responses measured after M3 receptor activation 
(stimulation of GTP binding to Gα subunits /darker symbols/ and subsequent increase in intracellular Ca levels 
/lighter symbols/) and binding constants measured in equilibrium competition experiments with N-methyl-
[3H]scopolamine (data after12). Experimental data are for carbachol (Cpd1, blue), oxotremorine-M (Cpd2, red), 
oxotremorine (Cpd3, green), and methacholine (Cpd4, purple). Fitting of nd = 72 total data points with SABRE 
(lines) was done using the experimental Kd values (indicated on the x axis) and optimizing only np = 6 adjustable 
parameters: two γs (one for each pathway) and four εs (one for each test compound) as shown.
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increases and β-arrestin2 endocytosis) generated with three agonists (angiotensin II, TRV023, and TRV026)53. 
Occupancies were calculated from experimental Kd values measured in the same work in equilibrium competi-
tion radioligand binding assays with [3H]-olmesartan. Fitting of nd = 3 × (7 + 8) = 45 total data points could be 
done with only np = 8 adjustable parameters (two γ gain parameters, one for each pathway, and six ε efficacy 
parameters, two for each of the three test compounds). Note that currently, such simultaneous fit with the Prism 
implementation of SABRE is limited to eight data sets (i.e., two pathways and four compounds). It resulted 
in good fit (r2 = 0.983) with consistent and well-defined gain parameters for both pathways (γP1 = 6.33 ± 2.01 
and γP2 = 9.80 ± 3.97). Obtained efficacies (Fig. 9) indicate angiotensin II (AngII, Cpd1) as a balanced full ago-
nists (ε1,P1 = ε1,P2 = 1.0), but TRV026 and TRV023 as strong β-arrestin biased partial agonists that have signifi-
cantly different efficacies for the two pathways (ε2,P1 = 0.165 ± 0.048, ε2,P2 = 0.013 ± 0.007; ε3,P1 = 0.276 ± 0.075, 
ε3,P2 = 0.017 ± 0.008). These indicate about 15-fold differences in efficacies (12.6 ± 7.2 and 16.5 ± 9.2 for TRV026 
and TRV023, respectively), a bit less, but in general overall agreement with the approximately 100-fold bias 
suggested by the bias factors calculated in the original work from ΔΔ(Emax/EC50)53. Because both activities were 
measured at the same ligand concentrations, a bias plot showing one response as a function of the other could 
also be constructed here easily, it is shown together with other graphs comparing fractional responses and 
occupancies in Fig. 9.

If binding data are lacking (no experimental Kds), which is the case for most biased agonism studies published 
so far, one can still use the present approach, but with fitted Kds. This should be done by enforcing a single unified 
Kd for each ligand to minimize the number of adjustable parameters np. Nevertheless, even with this restric-
tion, due to the more limited amount and nature of data, it typically becomes difficult to obtain well-defined 
parameters and a clear bias quantification. For example, for the data of Fig. 9, the fitting becomes ambiguous and 
none of the amplification or efficacy parameters can be obtained with well-defined values. The efficacy ratios for 
TRV026 and TRV023 remain about the same as before, but the standard errors are much wider than the values 
themselves (13.9 ± 15,285 and 17.6 ± 19,365). This is not surprising as the number of data points per adjustable 
parameters, nd/np, here is only 4.1 (45/11) compared to 5.6 (45/8) before, which was much closer to the desired 
range of 5–10 needed for adequate fitting5,33,34. Accordingly, to improve the quantitative assessment of multiple 
responses and biased agonism, it is suggested to include experimental assessment of binding in the same system 
where response is measured whenever possible.

Finally, if needed, within the framework of SABRE one can directly fit bias plot44,54 (i.e., relative response) 
data that show one response as a function of another at the same ligand concentration (e.g., Figs. 8D and 9E). 
The function directly connecting fractional responses fresp,P1 and fresp,P2 generated along different pathways Pk at 
the same ligand concentrations [L] (hence, at the same foccup) can be expressed as16:

Figure 8.   Illustration of biased agonism with response data for two different downstream pathways originating 
from the same receptor (A) generated with the assumption of the present SABRE model. Simulated data 
(symbols) for three hypothetical compounds were generated as before (Fig. 6) using the parameter values shown 
(CpdTst2 having two different efficacies ε for pathways P1 and P2 as highlighted in yellow; see text for details). 
Data for two pathways involving different signal amplifications (γP1 = 4 left and γP2 = 20 right) are shown as 
classic semi-log concentration–response curves (fresp vs log C; B1, B2), fractional response versus occupancy 
curves (fresp vs foccup; C1, C2), and a bias plot (fresp1 vs fresp2; D).
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Figure 9.   Fit of experimental response data obtained from divergent pathways with the present SABRE 
model. Data are for two responses measured along different downstream pathways (Gq-mediated inositol 
monophosphate increases and β-arrestin2 endocytosis) at the angiotensin II type 1 receptor (AT1R) (data after 
53). Experimental data are for three agonists (angiotensin II, Cpd1, blue), TRV023 (Cpd2, red), and TRV026 
(Cpd3, green) as indicated. (A) Fractional response versus log concentration data shown in a single composite 
graph. Fitting of nd = 45 total data points with SABRE was done using the experimental Kd values and optimizing 
only np = 8 adjustable parameters (2 γs + 3 × 2 εs) as shown. (B) Same response versus log concentration data, 
but shown in two separate graphs, one for each response. (C) Fractional occupancy versus log concentration 
data. The concentration dependency shown was calculated from the experimental Kd values with standard 
Hill-Langmuir equation. (D) Fractional response vs occupancy data. Same data as in A, just shown as a function 
of calculated fractional receptor occupancy, not log concentration. (E) Bias (relative response) plot showing 
one fractional response as a function of the other. Compound 1 (AngII) is a balanced (nonbiased) agonist, the 
curvature is due to the slightly different amplifications for the two responses. Cpd2 and 3 are significantly biased 
and they elicit a stronger response along pathway 1 (β-arrestin) than pathway 2 (Gq).
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Accordingly, pathways that have different amplifications (γP1 ≠ γP2) lead to relative response plots that are 
curvilinear even for balanced ligands Li that do not show bias (i.e., εi,P1 = εi,P2):

While Kds are not needed for this type of comparison, quantitative fitting (Eq. 28) is likely to be ambiguous 
due to lack of sufficient data points per adjustable parameter. For example, for the case shown in Fig. 9, nd/np is 
only 21/8 = 2.6 resulting in very badly defined ε ratios. Nevertheless, bias plots can still be useful as they might 
allow identification of differences among ligands that are less evident in concentration–response or response vs 
occupancy plots (e.g., Fig. 8). However, both responses might be difficult to obtain at the same ligand concentra-
tion [L] and strong curvatures might confound assessments, especially in cases where pathways have considerably 
different amplifications.

Conclusion
In conclusion, SABRE is a general two-state ensemble receptor model incorporating a corresponding quantita-
tive form that can fit complex fractional response versus occupancy data. Contrary to previous models, it not 
only has more intuitive parameters that can be related directly to binding affinity (Kd), activation efficacy (ε), 
and signal amplification/gain (γ), but it can incorporate experimental Kd values. Notably, it provides a unified 
framework to fit both complex and simple receptor data, as by constraining its parameters, the general equation 
(Eq. 5) can be converted into consecutively nested simplified models all the way down to the one-parameter 
Clark equation (Fig. 2).

Data availability
Data used for illustrations of model fit are either simulated data generated as described or reproduced from 
previous publications as indicated in the corresponding figures. The datasets generated and/or analyzed and a 
GraphPad Prism file with the implementation of the model discussed here are available from the corresponding 
author upon reasonable requests.
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