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Cystic fibrosis (CF), a fatal genetic disorder predominant in the Caucasian population,
is caused by mutations in the cystic fibrosis transmembrane conductance regulator
(Cftr) gene. The most common mutation is the deletion of phenylalanine from the
position-508 (F508del-CFTR), resulting in a misfolded-CFTR protein, which is unable
to fold, traffic and retain its plasma membrane (PM) localization. The resulting CFTR
dysfunction, dysregulates variety of key cellular mechanisms such as chloride ion
transport, airway surface liquid (ASL) homeostasis, mucociliary-clearance, inflammatory-
oxidative signaling, and proteostasis that includes ubiquitin-proteasome system (UPS)
and autophagy. A collective dysregulation of these key homoeostatic mechanisms
contributes to the development of chronic obstructive cystic fibrosis lung disease,
instead of the classical belief focused exclusively on ion-transport defect. Hence,
therapeutic intervention(s) aimed at rescuing chronic CF lung disease needs to correct
underlying defect that mediates homeostatic dysfunctions and not just chloride ion
transport. Since targeting all the myriad defects individually could be quite challenging,
it will be prudent to identify a process which controls almost all disease-promoting
processes in the CF airways including underlying CFTR dysfunction. There is emerging
experimental and clinical evidence that supports the notion that impaired cellular
proteostasis and autophagy plays a central role in regulating pathogenesis of chronic
CF lung disease. Thus, correcting the underlying proteostasis and autophagy defect
in controlling CF pulmonary disease, primarily via correcting the protein processing
defect of F508del-CFTR protein has emerged as a novel intervention strategy. Hence,
we discuss here both the rationale and significant therapeutic utility of emerging
proteostasis and autophagy modulating drugs/compounds in controlling chronic CF
lung disease, where targeted delivery is a critical factor-influencing efficacy.

Keywords: proteostasis, autophagy, cystic fibrosis, CFTR, ROS, protein-misfolding

INTRODUCTION

Cystic fibrosis (CF) is one of the most common fatal autosomal recessive disorders (Zhang et al.,
2018), with emerging treatment options that have prolonged survival but limited success in
diminishing overall mortality. Specially, subjects with homozygous F508-del (phenylalanine-508)
mutation that suffer from the most serious form of ailment, lack effective treatment options
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that can warrant cure or normal survival. Briefly, chronic airway
disease is a major contributor of the morbidity and mortality in
CF subjects (Cantin et al., 2015; Mall, 2016), and accessibility of
several novel and more potent therapeutic options has allowed
substantially improved survival. Majority of these therapeutic
strategies are aimed at controlling symptomatic CF-lung disease,
while some of the newer strategies are designed to target the
primary or “root” cause of the disease, which is the mutation(s)
in the cystic fibrosis transmembrane conductance regulator (Cftr)
gene (Esposito et al., 2016; Hudock and Clancy, 2017; Maiuri
et al., 2017; Zhang et al., 2018). There are about 1700 known
mutations affecting the generation (Class I), structure (Class
II) or channel function (Class III–V) of the CFTR protein, and
about 88% of these comprise of mutations that cause the protein
misfolding defects (Class II) (C.F. Foundation, 2018). People with
these mutations on both the copies of their Cftr gene demonstrate
the classical manifestations of CF lung disease, such as a thick
and sticky mucus, mucin hypersecretion, elevated inflammatory-
oxidative stress and/or persistent bacterial infections, which
collectively result in severe airway obstruction (Bodas and Vij,
2010; Bodas et al., 2018a). Evidence from newer animal models of
CF and some clinical data indicate that symptoms of lung disease
are present at very early age, or even at birth, thus proposing
the concept of congenital origin of CF lung disease (Stoltz et al.,
2015). With progressing age, persistent exacerbations primarily
caused by Pseudomonas aeruginosa (Pa) and the ensuing IL-8
mediated persistent neutrophilic inflammation are the hallmark
of clinical CF lung disease and a major contributor to irreversible
lung damage as well as CF-related fatalities (Bodas and Vij, 2010;
Ferrari et al., 2017; Bodas et al., 2018a).

In general, all the cellular processes that work to maintain a
robust protein repertoire in the cell are collectively called the
proteostasis network (PN) (Klaips et al., 2018). This complex
molecular system tightly regulates the fate of a protein inside
the cell, starting from its synthesis, folding, and maintenance
of the folded functional state, to transport (trafficking), and
eventual degradation. A vast amount of cellular energy is
utilized to maintain the protein degradation machinery to get
rid of misfolded, damaged, non-functional or even functional
proteins that are no longer required by the cells. The main
protein degradation or cellular clearance mechanisms include
the ubiquitin-proteasome system (UPS) and the “autophagy-
lysosomal pathway” (Korovila et al., 2017). The primary
difference between proteasome and autophagy mechanisms is
the type of cargo they can process as their starting material.
The proteasome can only process proteins, while large protein
aggregates, lipids and even damaged organelles can be processed
and degraded by the autophagy pathway. Recent evidence
suggests a strong inter-relationship between the proteasome and
autophagy pathways (Bustamante et al., 2018) and thus it is not
surprising that any disturbance in any of these mechanisms can
form the basis of accumulation of aberrant proteins eventually
leading to severe pathological conditions such as those seen in
aging-related neurodegenerative diseases (Daniele et al., 2018;
Klaips et al., 2018), proteinopathies (Chaudhuri and Paul, 2006;
Hidvegi et al., 2015; Hartl, 2017), and genetic or environmentally
induced chronic respiratory diseases such as CF (Lukacs and

Verkman, 2012; Fraser-Pitt and O’Neil, 2015) and COPD (Tran
et al., 2015; Bodas and Vij, 2017; Bodas et al., 2017; Vij, 2017),
respectively. The deletion of phenylalanine-508 (F508-del) is the
most common (about 80%) Cftr gene mutation associated with
CF, which results in a misfolded CFTR protein that is unable
to reach the plasma membrane (PM) (Lukacs et al., 1993; De
Stefano et al., 2014). This results in the absence of mature CFTR
ion-channel on the PM, leading to CFTR dysfunction, classically
described as a chloride ion transport defect (Welsh et al., 1993). In
addition, there is substantial evidence supporting the critical role
of membrane-resident CFTR in regulating innate and adaptive
immune responses in CF (Teichgraber et al., 2008; Vij et al., 2009;
Bodas and Vij, 2010; Grassme et al., 2017; Svedin et al., 2017).
Furthermore, a burgeoning number of studies now ascertain the
crucial role of mature CFTR in regulating important cellular
homeostatic processes such as proteostasis and autophagy, with
a common consensus that autophagy is potentially inherently
defective in CF (Gomes-Alves et al., 2010; Luciani et al., 2010,
2011; Bodas et al., 2012; Valle and Vij, 2012; Villella et al., 2013a).
The genesis of defective autophagy in CF seems to be an inherent
defect, as primary CF cells have diminished levels of several
autophagy proteins (Abdulrahman et al., 2011, 2013), although
the precise mechanism(s) are still unclear. Some interesting
studies indicate the possible contribution of micro RNA’s (Tazi
et al., 2016) and DNA methylation (Tazi and Amer, 2015), as both
could regulate the expression of autophagy proteins in CF cells.
Nonetheless, it is well documented that the absence of membrane
CFTR leads to ROS-mediated SUMOylation of transglutaminase
2 (TG2), which prevents its ubiquitination and subsequent
degradation by the proteasome, leading to its intracellular
accumulation. This results in the crosslinking of Beclin-1
(BECN1), an important protein required for autophagosome
formation, leading to defective autophagy, and accumulation
of SQSTM1 (p62) (Luciani et al., 2010; Bodas et al., 2017),
which favors aggregation of BECN1 and other autophagy related
proteins into p62+HDAC6+ aggresome bodies (Figure 1). The
misfolded F508del-CFTR is also sequestered into aggresome
bodies, as the accumulation of p62 leads to inhibition of both
protein (proteasome) and aggresome clearance. This aggresome
trapping of F508del-CFTR prevents its proper trafficking to
the PM that contributes to the initiation and progression of
inflammatory-oxidative stress responses in the CF lungs (Luciani
et al., 2010).

This suggests that future strategies for managing and
treating CF will need to be focused on correcting the
underlying proteostasis/autophagy impairment, mainly via
rescuing F508del-CFTR to the PM, which would simultaneously
control the inflammatory-oxidative stress response in the airways
of CF subjects. Lately, proteostasis-modulators and autophagy-
inducers have shown encouraging results in pre-clinical studies
in correcting both the F508del-CFTR trafficking to the PM
(CFTR-corrector) (De Stefano et al., 2014; Tosco et al., 2016;
Vu et al., 2017; Hutt et al., 2018; Stincardini et al., 2018; Zhang
et al., 2018), as well as dampening the inflammatory-oxidative
stress responses (anti-oxidant/anti-inflammatory) (Romani et al.,
2017; Stincardini et al., 2018), although these strategies were not
very efficient in restoring other rare class II CFTR mutations
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FIGURE 1 | Mechanism of cysteamine mediated autophagy induction and F508del-CFTR rescue. (Left panel) The absence of a functional CFTR at the plasma
membrane (PM) leads to elevated reactive oxygen species (ROS) levels which cause activation of transglutaminase-2 (TG2). An active TG2 mediates cross-linking of
crucial autophagy proteins such as Beclin1 (BECN1), ATG14, and AMBRA1 into Ub+/p62+/HDAC6+ aggresome bodies, render BECN1 and other autophagy
proteins unavailable for the formation of autophagosome and thus blocking the subsequent autophagy flux process. Moreover, an accumulation of p62 could lead to
aggresome sequestration of newly synthesized F508-delCFTR, thereby preventing its PM translocation. Additionally, accumulation of damaged mitochondria leads
to more ROS production, further promoting TG2-mediated BECN1 crosslinking and autophagy inhibition. Further, the ROS mediated translocation of acid
sphingomyelinase (ASM) from cytoplasm to PM, leads to increased conversion of sphingomyelin to ceramide, which is a deleterious sphingolipid implicated in CF
pathogenesis. (Right Panel) The treatment of CF cells or mice with the autophagy inducing antioxidant drug, cysteamine, which is also an inhibitor of TG2, leads to
prevention of BECN1 crosslinking. This results in dislodging of aggresome components resulting in availability of BECN1 and other key autophagy proteins to form
the autophagosome, thus allowing the autophagy process to function and leading to the clearance of autophagic cargo. Moreover, decreased p62 levels due to a
functional autophagy flux will possibly allow the newly synthesized F508-delCFTR to reach the PM and restore partial CFTR function, even though some of previously
aggresome sequestered F508-delCFTR may be degraded by the active autophagy process. In addition to cysteamine, treatment with epigallocatechin-gallate
(EGCG) at the time of cysteamine removal, potentiates the long-term stability of the PM-rescued F508-delCFTR, due to its inhibitory effect on protein kinase CK2,
which would otherwise promote peripheral/PM degradation of F508-delCFTR. Additionally, a functional autophagy process means that the toxic aggregated proteins
and other damaged organelles such as mitochondria are homeostatically degraded, thus decreasing overall ROS levels. Finally, cysteamine blocks the translocation
of ASM from cytoplasm to the PM, thus reducing the conversion of sphingosine to ceramide, and preventing ceramide-mediated inflammatory-apoptotic signaling in
CF cells and/or lungs.

(Awatade et al., 2018). Moreover, it is not known if rare CFTR
mutations also lead to a autophagy defect, and thus many
other CFTR modulators have been clinically tested to evaluate
their efficacy in restoring the PM stability and function of
different CFTR mutants (Lopes-Pacheco, 2016). This strategy is
currently being developed as a personalized CF management
plan and holds potential for CF patients with all classes of
CFTR mutations (Lopes-Pacheco, 2016; Paranjape and Mogayzel,
2018). As an example, for people with the G551D mutation, the
orally bioavailable potentiator drug, VX770, shows substantial
promise as an inducer of mutant CFTR channel activity, and
thus is FDA approved for clinical application in CF patients
(Accurso et al., 2010). However, since about 80% of CF patients
worldwide possesses the F508del-CFTR defect (Lopes-Pacheco,

2016), drugs that correct its PM trafficking, stability, and function
have emerged as promising therapeutic pipeline for clinical
validation in CF subjects. Since the single corrector drugs
showed minimal clinical benefit, successful efforts have been
made to develop combinatorial therapy for CF. In fact, several
CFTR-corrector compounds have been clinically evaluated and
few have even reached the CF patients in combination with
CFTR-potentiator drugs Orkambi R©, Symdeko R© (Birault et al.,
2013; Wainwright et al., 2015; Mayer, 2016), although their
present costs are humongous (Mayer, 2016; Bulloch et al.,
2017). Additionally, a recent study tested a triple combination
of pharmacological chaperones (VX809+MCG1516A+RDR1)
and demonstrated better CFTR functional correction than
VX809 alone (Carlile et al., 2018), thus providing potentially
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promising future therapeutics for CF subjects. Similarly, another
triple combination therapy was tested using VX-659-tezacaftor-
ivacaftor (Davies et al., 2018), and is currently in Phase III clinical
trials (Sala and Jain, 2018).

Another important aspect of current CF drugs is the challenge
of drug-delivery and/or in vivo bioavailability due to the
notoriously thick and sticky mucus layer (Brockman et al.,
2017; Vij, 2017). Considerable pre-clinical research is ongoing
to address these crucial issues, and there has been some success
in designing novel drug-delivery systems that achieve targeted
drug-delivery and long-term bioavailability in the CF lungs (Vij
et al., 2010; Vij, 2011, 2017; van Rijt et al., 2014). Although
scientists and clinicians have come a long way on significantly
improving the median survival age of CF patients to reach
adulthood (∼40–50 years) (West and Flume, 2018), the disease is
still incurable and numerous precious lives are lost at a very early
age. Thus, continued basic and translational research is essential
to develop a better armamentarium of preventive/therapeutic
strategies to further improve patient survival and possibly find
a cure to this life-restricting and life-taking genetic disease. The
current perspective compiles some recent studies that have the
potential to translate into emerging therapeutic strategies for
CF subjects, with the focus on drugs/compounds that correct
the underlying disease-promoting defect in proteostasis and
autophagy, including the protein-processing defect in F508del-
CFTR protein.

AUTOPHAGY INDUCERS AS EMERGING
CF THERAPEUTICS

One of the foremost cellular proteostatic mechanism that
regulates protein-processing is the catabolic autophagy process.
There is a plethora of evidence in recent studies that a partial
(in chronic obstructive pulmonary disease, COPD) (Cantin,
2016; Bodas et al., 2017; Vij, 2017; Shi et al., 2018) or
complete loss (in CF) (Luciani et al., 2010; Cantin, 2016)
of functional CFTR protein from the PM leads to reactive
oxygen species (ROS)-mediated autophagy impairment. This
results in the accumulation of misfolded CFTR in perinuclear
aggresome bodies, which eventually promotes the development
of the lung disease. In CF, the accumulation of misfolded
F508del-CFTR leads to ROS mediated autophagy impairment
that results in increased inflammatory-oxidative stress (Luciani
et al., 2010) in the CF airways. Moreover, a non-functional
CFTR also contributes to defective bacterial uptake, killing,
and clearance (Brockman et al., 2017; Ferrari et al., 2017;
Pehote et al., 2017; Shrestha et al., 2017), which contributes to
persistent exacerbations and inflammation, eventually resulting
in irreversible damage of the pulmonary architecture. Lately,
some pre-clinical and clinical trials demonstrate the utility
of autophagy inducing therapeutic compounds in controlling
pathogenesis and progression of CF lung disease (Villella et al.,
2013b; Junkins et al., 2014; Esposito et al., 2016; Romani et al.,
2017; Stincardini et al., 2018), that have shown promise in Phase-
I/II trials but none have hitherto reached the bedside yet (De
Stefano et al., 2014; Devereux et al., 2015, 2016). As discussed

before (Yang et al., 2013; Vu et al., 2017), some other autophagy
inducing drugs are also tested as potential CF drug candidates
but these may not reach the patients due to the high doses
required for the treatment as well as an evidence of many off-
target side effects (Yang et al., 2013; Vu et al., 2017). Thus,
we highlight here the leading proteostasis/autophagy-modulating
compounds/drugs, which can allow bedside translation as
emerging CF drug candidates.

CYSTEAMINE: A MULTI-PRONGED
DRUG FOR CF

Cysteamine is an FDA-approved drug for nephropathic cystinosis
and has been very effectively used for over 25 years (Besouw
et al., 2013; Fraser-Pitt et al., 2018). Chemically, cysteamine is
an endogenously present, water soluble aminothiol, generated
as a consequence of coenzyme A metabolism (Fraser-Pitt et al.,
2018). It is commercially available as Cystagon R© and Procysbi R©

and can be administered orally, although with well documented
side effects (Cherqui, 2012; Veys et al., 2016). Over the years,
cysteamine was introduced as a potential CF drug and henceforth
several studies have been conducted to evaluate its efficacy in
controlling CF lung disease (Besouw et al., 2013; Charrier et al.,
2014; Devereux et al., 2015, 2016; Brockman et al., 2017; Shrestha
et al., 2017). Mechanistically, cysteamine is a TG2 inhibitor,
which dislodges the aggresome assembly, which is sequestering
key autophagy proteins and F508del-CFTR, thereby restoring
autophagy and decreasing p62 levels (Figure 1). This allows
forward trafficking of misfolded F508del-CFTR to the Golgi and
PM, thus reinstating its chloride channel function. Moreover,
decreased p62 levels might also prevent sequestration of newly
synthesized aggregation-prone F508del-CFTR protein (Luciani
et al., 2010) into aggresome bodies, thus allowing its trafficking
towards the PM. Additionally, knockdown of p62 also mimics
the F508del-CFTR rescuing effect of cysteamine, thus confirming
the crucial role of p62 in regulating the levels of F508del-
CFTR on the PM. Recently, we demonstrated that cysteamine
blocked translocation of acid sphingomyelinase (ASM) enzyme
to the PM, thus blocking the conversion of sphingomyelin
to ceramide, a pathogenic bioactive lipid implicated in CF
lung disease (Figure 1; Bodas et al., 2018b). This study adds
another novel mechanism of cysteamine action in controlling
inflammatory-apoptotic signaling in CF lung disease, although
further pre-clinical and clinical studies are warranted to verify
these mechanisms. Nonetheless, it is encouraging that cysteamine
is being developed as a delayed-release capsule form (Lynovex R©)
(Charrier et al., 2014) and has undergone preliminary clinical
studies in CF subjects. A relatively recent small single arm,
phase 1/2a open label study was conducted to evaluate the
tolerance and pharmacokinetics of cysteamine in CF patients
(Devereux et al., 2016). The results indicated that although some
adverse reactions were observed in CF patients who were given
oral cysteamine, these were similar to the side effects seen in
cystinosis subjects (Devereux et al., 2016). Overall, cysteamine
was well tolerated and entered the bronchial secretions at
concentrations higher than plasma (Devereux et al., 2016). In
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addition, a recent promising study in mice and human CF
subjects was conducted using cysteamine and epigallocatechin-
gallate (EGCG) as a combinatorial drug strategy (Tosco et al.,
2016). The beneficial effects of this approach were attributed to
autophagy-induction mediated restoration of F508del-CFTR to
the PM by cysteamine, followed by enhanced stability of the
PM-resident CFTR protein via inhibition of protein kinase CK2,
by EGCG. Intriguingly, we and others recently described that
cysteamine can be utilized as a multi-pronged CF-drug candidate,
as its abilities are not restricted to just correcting the CFTR-
dependent chloride ion transport defect. In fact, cysteamine
possesses a diverse repertoire of beneficial properties such as anti-
oxidant (Bodas et al., 2016, 2018b; Govindaraju et al., 2017; Vij
et al., 2018), anti-inflammatory (Ferrari et al., 2017), autophagy-
inducer (Esposito et al., 2016; Tosco et al., 2016; Ferrari et al.,
2017), bactericidal (Charrier et al., 2014; Ferrari et al., 2017;
Shrestha et al., 2017), mucolytic and anti-biofilm (Charrier
et al., 2014; Brockman et al., 2017), which are all necessary
to control acute or recurring exacerbations and CF pulmonary
disease progression. Even though cysteamine is a strong CF-drug
candidate, it’s utility is possibly restricted to patients with only the
F508del-CFTR mutation, as it was not very effective in other types
of CFTR mutations such as R560S-CFTR (Awatade et al., 2018)
that warrants further evaluation. Moreover, in spite of all the
beneficial properties, the main caveats in the use of cysteamine
is its poor bioavailability and the requirement of a high dose
which is difficult to achieve in vivo (Vu et al., 2017). Thus,
novel attempts have been made to improve the bioavailability
of cysteamine, as well as to decrease the effective dose, such
as by conjugating it with a [3-fatty acid (docosahexaenoic acid,
DHA)], which also has its own autophagy inducing properties
via the AMPK pathway (Vu et al., 2017). This conjugate could
effectively rescue F508del-CFTR to the PM at a substantially
lower concentration, thus warranting its further evaluation in a
clinical setting. In another report, nine “prodrugs” of -glutamyl-
cysteamine were tested in cultured kidney cells, to overcome
its major disadvantages (Frost et al., 2016). These prodrugs
could undertake successful delivery of cysteamine into kidney
epithelial cells with improved bioavailability and low toxicity
(Frost et al., 2016). This approach seems promising and needs
further evaluation in pre-clinical CF models.

We have previously demonstrated the utility of
nanotechnology in the development of novel drug delivery
systems aimed at sustained and targeted delivery to the CF
airways (Vij et al., 2010; Vij, 2011, 2017; Brockman et al., 2017).
Using a similar approach, we recently proposed the application
of dendrimer technology in designing a novel drug-delivery
system to improve cysteamine’s bioavailability and specificity.
We developed a dendrimer-cysteamine conjugate formulation
(PAMAM-DENCYS), and tested its ability to induce trafficking
of F508del-CFTR to the PM in CF cells (Brockman et al., 2017).
Although this was an pre-clinical early stage investigation,
we were able to demonstrate key therapeutic signatures such
as rescue of F508del-CFTR from the aggresome bodies and
it’s trafficking to the PM, as well as control of Pa infection
and growth, and mucolytic potential (Brockman et al., 2017).
Therefore, this novel PAMAM-DENCYS conjugate has a potential

for further development as an emerging CF therapeutic strategy,
as it corrects the proteostasis and autophagy impairment, which
is the central disease-promoting mechanism in pathogenesis of
chronic CF lung disease.

GSNO AND GSNOR INHIBITORS

Another interesting strategy to correct the proteostasis and
autophagy defect in CF is through nitric oxide (NO)-
augmentation, which facilitates the rescue of misfolded F508del-
CFTR protein to the PM. Some previous reports propose the
use of NO-donors (such as S-nitrosoglutathione, GSNO) or the
inhibitors of GSNO-reductase (GSNOR), in controlling airway
inflammation in experimental allergic asthma (Blonder et al.,
2014) and CF models (Zaman et al., 2006, 2014, 2016; Rafeeq and
Murad, 2017). In the lungs, NO and its reservoir, GSNO, play a
very crucial role in the maintaining airway smooth muscle tone
and controlling inflammation (Que et al., 2009; Sun et al., 2011).
The levels of GSNO are tightly regulated by GSNOR, the enzyme
which degrades GSNO (Sun et al., 2011). In fact, GSNO levels
are diminished, with a concomitant increase in GSNOR levels,

FIGURE 2 | Mechanisms of GSNOR-inhibitors mediated rescue of
F508del-CFTR to the PM. Molecular chaperones such as Hsp70Hsp90
organizing protein (HOP) regulate CFTR biogenesis and proper trafficking to
the PM. In the ER, association of HOP with F508del-CFTR leads to its
degradation via the ER-associated proteasomal pathway. S-nitrosoglutathione
(GSNO), a cellular nitric oxide (NO) donor, modulates the function of HOP by
its S-nitrosation. In the absence of a functional CFTR, cellular GSNO levels are
low, which results in decreased S-nitrosation of HOP, which promotes
proteasome mediated degradation of F508del-CFTR. The cellular levels of
GSNO are tightly regulated by the enzyme, GSNO-reductase (GSNOR), which
mediates the catabolism of GSNO. Pharmacological inhibition of GSNOR
using N6022 or N91115 increases GSNO levels that leads to increased
S-nitrosation of HOP. It is believed that an increase in HOP S-nitrosation
hampers its association with F508del-CFTR, thereby allowing the forward
trafficking and maturation of F508del-CFTR. Moreover, recent studies from
our group also indicate that GSNO augmentation using N6022 can control the
elevated ROS levels and thus correct the ROS-mediated autophagy flux
impairment in CF.
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in both asthmatic and CF lungs (Que et al., 2009; Sun et al.,
2011; Zaman et al., 2016), indicating that altered NO signaling
contributes to asthma and CF pathogenesis. Mechanistically,
the GSNO-mediated S-nitrosylation and subsequent degradation
of Hsp70/Hsp90 organizing protein (HOP) favors the forward
trafficking of CFTR to the PM (Figure 2; Odunuga et al.,
2004; Marozkina et al., 2010). The findings that GSNO could
increase the expression, maturation and function of both WT
and F508del-CFTR in human bronchial epithelial cells led to
clinical testing of a GSNOR-inhibitor, N91115 (Cavosonstat,
Nivalis Therapeutics) (C.F. Foundation, 2015; Donaldson et al.,
2017). The study reported that N91115 was well tolerated over
a 28 day period, with no dose-limiting toxicities and no safety
issues (Donaldson et al., 2017), albeit the study was discontinued
in the Phase 2 stage as no improvement in lung function was
observed in CF subjects. We recently reported that apart from
its CFTR rescuing property, GSNO augmentation by using either
GSNO or a GSNOR-inhibitor (N6022) effectively diminished CS-
induced inflammatory-oxidative stress and also corrected the
autophagy impairment (Bodas et al., 2017), thus targeting the
underlying cause of CFTR dysfunction and resulting CF lung
disease pathogenesis and progression. In fact, N6022 has been
tested in clinical trials on CF patients with somewhat encouraging
outcomes (C.F. Foundation, 2014; Rafeeq and Murad, 2017).
The autophagy inducing property of GSNO or N6022 could be
attributed to its rescue of CFTR to the PM (Zaman et al., 2016;
Bodas et al., 2017), or other mechanisms such as its inhibitory
effect on mTOR (Montagna et al., 2016), or its anti-oxidant
function (Rauhala et al., 1998; Khan et al., 2011; Bodas et al.,
2017). The in vivo application of N6022 could be restricted
because of its low bioavailability, due to the presence of the
highly polar imidazole group (Sun et al., 2011). Thus, GSNO-
augmentation has the potential to be further tested in CF, where
modifications in dosing and concurrent development of airway-
delivery methodology can allow successful clinical outcomes.

POTENTIAL APPLICATION OF FISETIN
AS A NUTRACEUTICAL FOR CF

A plant derived nutraceutical, Fisetin (3,3′,4′,7-tetra
hydroxyflavone), demonstrates the potential to be a future
CF drug candidate (Pal et al., 2016). Ongoing, experimental and
clinical research is investigating the preventive and therapeutic
properties of Fisetin in chronic inflammatory conditions
(Pal et al., 2016), neurological diseases and various types of
cancers (Pal et al., 2016). Previous studies have described
Fisetin as a potent anti-oxidant (Khan et al., 2013; Pal et al.,
2016; Govindaraju et al., 2017), anti-inflammatory (Khan
et al., 2013; Pal et al., 2016), bactericidal (Pehote et al., 2017)
and also an inhibitor of PI3K/AKT/mTOR signaling pathway
(Adhami et al., 2012), which regulates key cellular processes
including autophagy, and is discussed below in this article. In
the context of inflammatory pulmonary diseases, Fisetin has
demonstrated its therapeutic potential in murine models of
allergic airway inflammation (Goh et al., 2012; Brown et al.,
2016), and lipopolysaccharide (LPS) induced acute lung injury in

rats, through its NFκB-targeted anti-inflammatory mechanism
of action (Feng et al., 2016). Moreover, our recent report
using cigarette smoke (CS)-extract and Pa model in murine
macrophages, demonstrates the efficacy of Fisetin in correcting
the CS-induced defect in bacterial clearance via transcription
factor-EB (TFEB)-mediated autophagy-induction, and/or by
restoring expression of mature (WT)-CFTR (Pehote et al.,
2017). Additionally, similar to cysteamine, Fisetin also reveals
direct bactericidal activity against Pa bacteria, a predominant
CF-pathogen, by hitherto unknown mechanism(s) (Pehote et al.,
2017). In another parallel study, using CS-exposure of retinal
pigment epithelial cells (RPE) as an in vitro model of age-related
macular degeneration (AMD), Fisetin successfully corrected
the CS-induced autophagy-flux impairment and reduced the
perinuclear accumulation of aggresome bodies, plausibly by
controlling CS-induced ROS-activation (Govindaraju et al.,
2017). Since CF lung disease is also characterized by chronic
inflammatory-oxidative stress, persistent bacterial infections and
autophagy impairment, proof of concept in vitro data warrants
evaluation of the efficacy of Fisetin in pre-clinical CF-lung
disease models. Although, it should be noted that similar to
other promising autophagy-inducing drug candidates, the utility
of Fisetin is hampered by its poor aqueous solubility (Bothiraja
et al., 2014) and low oral bioavailability (Seguin et al., 2013), and
thus attempts have been underway to improve its in vivo efficacy
by the use of nanotechnology-based airway-delivery approaches
(Ragelle et al., 2012; Kadari et al., 2017; Mehta et al., 2018).

A THYMIC PEPTIDE TO CORRECT THE
BASIC CF-DEFECT

Recent studies have highlighted the potential of Thymosin
α-1 (Tα1), a thymic peptide with broad immune-modulatory
properties, in correcting the basic CF-defect, i.e., the restoration
of misfolded F508del-CFTR to the PM (Romani et al.,
2017; Garaci, 2018; Rubin, 2018; Stincardini et al., 2018).
Mechanistically, activation of indoleamine 2, 3-dioxygenase
(IDO1), and the resulting decrease in inflammation, along with
autophagy-induction are proposed as the key means of Tα1-
mediated F508del-CFTR rescue (Romani et al., 2017) (Figure 3).
Tα1 was shown to rescue F508del-CFTR to the PM at a clinically
achievable dose, and this was attributed to its activity as a
proteostasis modulator. Tα1 act’s on multiple steps of F508del-
CFTR recycling such as the Rab GTPase’s, the deubiquitinating
enzyme USP36, and the ubiquitin-binding protein, p62, which
is involved in the aggresome sequestration of F508del-CFTR
(Romani et al., 2017). In Tα1 treated cells, the F508del-CFTR co-
localized with Rab9, which is the marker of recycling endosome.
Moreover, the co-localization of F508del-CFTR with Rab5 (early
endosome marker) and Rab7 (late endosome marker) was
diminished by Tα1 treatment. Thus, Tα1 reduces the endocytic
recycling of F508del-CFTR into early endosomes and also
prevents its transport into late endosomes and/or lysosomes,
thereby promoting its forward recycling to the PM (Romani et al.,
2017). Although Tα1 has a good clinical safety profile and is
already available commercially as ZADAXIN R© for the treatment
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FIGURE 3 | Thymosin-α-1 acts on multiple-targets to rescue F508del-CFTR.
Thymosin α-1 (Tα1) is a thymic peptide, which acts on multiple cellular
pathways in the CFTR recycling and maturation process to restore the
misfolded F508del-CFTR to the plasma membrane (PM). First, Tα1 can
induce autophagy via activation of indoleamine 2, 3-dioxygenase (IDO-1), and
reduction of p62 levels, thereby resulting in the rescue of F508del-CFTR to the
PM. Additionally, Tα1 activates deubiquitinating enzyme USP36, which in turn
prevents the ubiquitination and subsequent degradation of F508del-CFTR,
thus improving its PM stability. Moreover, in Tα1 treated cells, F508del-CFTR
is found to be associated with Rab9 GTPase (recycling endosome marker),
which promotes recycling of F508del-CFTR to the PM. This happens in
parallel to a decrease in co-localization of F508del-CFTR with Rab 5 (early
endosome marker) and Rab7 (late endosome marker) GTPases, in Tα1
treated cells.

of several inflammatory and/or infectious diseases, such as viral
infections, immunodeficiency diseases, HIV/AIDS and cancers
(Romani et al., 2017), it remains to be investigated whether it
possesses other important anti-CF attributes such as bactericidal
and mucolytic. Moreover, some recent studies report that Tα1
failed to rescue CFTR in epithelial cells and primary bronchial
epithelial cells from CF patients (Matthes et al., 2018; Tomati
et al., 2018), although these effects may be due to the incorrect
solvent used by these investigators (Garaci, 2018). Thus, the
recent claims that Tα1 could be a potential “single-molecule”
drug for preventing/treating chronic CF-lung disease seems to be
a far shot that requires further in-depth studies in pre-clinical and
clinical CF settings.

PI3K/AKT/mTOR INHIBITORS AS
EMERGING CF DRUGS

The mammalian target of rapamycin (mTOR) is a member of
the phosphatidylinositol 3-kinase (PI3K)-related kinase family of
proteins that has long been implicated in regulating key cellular
processes such as cell growth (Yu and Cui, 2016), survival (Yu
and Cui, 2016), motility (Holroyd and Michie, 2018), metabolic
pathways (Yu and Cui, 2016) and autophagy (Kim and Guan,

2015; Rabanal-Ruiz et al., 2017). The PI3K/AKT/mTOR signaling
pathway is altered in several disease states such as cancer
(Conciatori et al., 2018; Guri et al., 2018), immune system-related
diseases (Guri et al., 2018; Jung et al., 2018), idiopathic pulmonary
fibrosis (IPF) (Lawrence and Nho, 2018), COPD (Houssaini
et al., 2018; Wang et al., 2018) and lymphangioleiomyomatosis
(LAM) (Gao et al., 2018). Since mTOR is considered to be the
master regulator of the autophagy pathway, its inhibitors have
been investigated for their therapeutic potential in different types
of cancers, and autophagy-induction is one of the proposed
mechanisms of action (Saxton and Sabatini, 2017; Paquette
et al., 2018). Moreover, in fibroblasts, higher than normal mTOR
activity and the resulting autophagy-defect has been associated
with pathogenesis of IPF (Lawrence and Nho, 2018), a fatal
chronic restrictive lung disease. Additionally, elevated mTOR
signaling mediated autophagy impairment was recently observed
in lung cells and tissues isolated from COPD subjects, while
the same conceptual evidence was also derived from transgenic
mice with constitutive or conditional over-activation of mTOR
(Houssaini et al., 2018). Interestingly, lung cell senescence and
development of emphysema was found to be associated with
elevated mTOR activity in these mice, as the effects could be
ameliorated by rapamycin (an mTOR inhibitor) (Houssaini et al.,
2018). It is also noteworthy that mTOR inhibition has been
beneficial in the clearance of protein aggregates (aggresomes)
in neurogenerative diseases (Heras-Sandoval et al., 2014), thus
further confirming the crucial role of mTOR in regulating the
autophagy process. Rapamycin mediated mTOR inhibition has
been shown to reduce lung inflammatory responses in a CF
mouse model (Abdulrahman et al., 2011), along with improved
CFTR function (Luciani et al., 2011; Tazi and Amer, 2015).
These studies confirmed that restoration of autophagy using
Rapamycin, which is commercially available as Sirolimus, could
benefit CF patients, although it has several limitations in clinical
practice (Emoto et al., 2013; Li et al., 2014). Sirolimus has low oral
bioavailability (Brasttström C. et al., 2000), poor water solubility
(Kim et al., 2011), a huge pharmacokinetic variability among
patients (Emoto et al., 2013), adverse side effects (Bee et al., 2018),
and off-target effects (Arriola et al., 2016; Lamming, 2016; Haeri
et al., 2017), which are due to its inhibition of both mTORC1
and mTORC2 (Arriola et al., 2016). The primary side effects
of sirolimus include hyperglycemia, hyperlipidemia, insulin
resistance and increase in new onset of type 2 diabetes (Emoto
et al., 2013; Bee et al., 2018). In a national cohort study, the
lung function response to rapamycin treatment and its associated
side effects in women with progressive lung disease due to
LAM was investigated (Bee et al., 2018). It was observed that
although side effects were common, but they were manageable
over several years, and improvements in lung function were
evident. Overall, a low dose rapamycin was associated with
fewer side effects with no difference in the beneficial effects
(Bee et al., 2018), thus warranting its further clinical evaluation
in CF. Moreover, several studies have been conducted to
devise ways to enhance the bioavailability and improve in vivo
delivery of sirolimus (Kim et al., 2011; Haeri et al., 2017).
Considering the central role of impaired-autophagy and resulting
aggresome-pathology in CF, it seems worthwhile to test the
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efficacy of mTOR inhibitors in CF models. In accord with
this idea, CFBE41o- cells demonstrated upregulated mTOR
activity, and the resulting autophagy impairment was found
to be associated with accumulation of F508del-CFTR into
peri-nuclear aggresome bodies (Reilly et al., 2017). Moreover,
the inhibition of PI3K/AKT/mTOR pathway by six different
compounds enhanced CFTR-membrane stability and expression
(Reilly et al., 2017). The study identified MK-2206 as the most
potent CFTR rescuing compound, which functions through
targeting Bcl-2-associated athanogene 3 (BAG3), a regulator of
autophagy and aggresome clearance (Reilly et al., 2017). Thus,
the efficacy of pharmacological PI3K/AKT/mTOR inhibitors
warrants further evaluation as potential therapeutic candidates
for chronic CF lung disease, based on their ability to rectify the
disease-promoting proteostasis and autophagy defect, including
the correction of underlying CFTR dysfunction.

HDAC INHIBITORS AS PROTEOSTASIS
MODULATORS IN CF

Inhibition of histone deacetylases (HDAC) has been evaluated as
a potential therapeutic strategy for several protein folding and
other chronic inflammatory diseases such as neurodegenerative
diseases (Benito et al., 2015; Rabal et al., 2016), chronic kidney
disease (Liu and Zhuang, 2015), inflammatory bowel disease
(Felice et al., 2015), cancer (Falkenberg and Johnstone, 2014;
West and Johnstone, 2014; De Souza and Chatterji, 2015),
graft-versus-host disease (Choi et al., 2014, 2017), rheumatoid
arthritis (Oh et al., 2017) and CF (Hutt et al., 2010, 2011; Bodas
et al., 2018a). Pharmacological studies of suberanilohydroxamic
acid (SAHA, Vorinostat), a broad inhibitor of class I and II
HDAC enzymes (Bubna, 2015), in different types of cancers
indicate that SAHA is well tolerated and demonstrates good oral
bioavailability (43%) (Kelly et al., 2005). Moreover, the major
adverse effects of SAHA administration such as fatigue, diarrhea,
dehydration, etc., where more prominent in the intravenous
treatment route, rather than the oral treatment regime, and
the more severe indications such as thrombocytopenia, were
resolved upon discontinuation of treatment (O’Connor et al.,
2006; Bubna, 2015). Additionally, SAHA is also an FDA approved
drug for cutaneous T-cell lymphoma (Bubna, 2015). Thus, at
least in patient-based studies targeting cancer, SAHA was safely
administered over a prolonged period, with minimal toxicity and
consistent anti-HDAC activity, thereby indicating its potential
tolerance as a CF drug candidate. In CF, the pharmacological
inhibition of HDACs, especially using SAHA seems encouraging
as this provides twofold benefit of controlling the inflammation
(Hull et al., 2016; Xu et al., 2017) and also function as a
proteostasis regulator (Bouchecareilh et al., 2012; Han et al.,
2015) to facilitate rescue and trafficking of F508del-CFTR to
the PM (CFTR-corrector) (Bodas et al., 2018a). Indeed, we
recently verified the potential utility of SAHA in rescuing
the F508del-CFTR to the PM by delaying its degradation,
thus confirming its potential as a CFTR-corrector (Bodas
et al., 2018a). Additionally, SAHA treatment was also effective
in controlling Pa-LPS induced inflammation and neutrophil

activation in a pre-clinical CF murine model, which was possibly
via induction of regulatory T cells (Bodas et al., 2018a).
Intriguingly, this observation was CFTR-independent, as the
inflammation quenching function of SAHA was evident even
in Cftr−/− mice. This indicates that SAHA could provide a
potential therapeutic benefit in CF irrespective of its ability
to rescue mutant CFTR. An ostensibly contrasting study
demonstrates the failure of SAHA to restore F508del-CFTR,
albeit the cells and the dose of SAHA used in those reports
are dissimilar to our studies, which possibly explains the
disparity in the results (Bergougnoux et al., 2017). Moreover,
in two other studies SAHA was able to increase forskolin-
induced chloride secretion in cell lines expressing CFTR but
failed to demonstrate the same effect in primary epithelial cells
from CF patients (Sondo et al., 2011; Van Goor et al., 2011).
Nonetheless, proteostasis regulators such as SAHA and specific
HDAC 6/7 inhibitors, such as tubacin (Cebotaru et al., 2008)
have been evaluated in rescuing misfolded F508del-CFTR from
proteasomal degradation and aggresome-accumulation. Further
pre-clinical studies are necessary to evaluate the therapeutic
efficacy of specific HDAC inhibitors, which might be coupled
with novel drug-delivery systems (Mohamed et al., 2012; Tran
et al., 2014) to further enhance their in vivo efficacy and
bioavailability in CF lungs.

Briefly, as a proof of concept in support of proposed
strategy adapting proteostasis and autophagy for rescuing
the CF lung disease, recent study demonstrates that VX-
809 mediated CFTR rescue is proteostasis-dependent but
autophagy-independent (Pesce et al., 2018), where potent
autophagy augmentation will allow synergistic effects on
both mutant-CFTR rescue and other components (Romani
et al., 2017; Stincardini et al., 2018) of CF lung disease
pathogenesis as discussed in detail above (De Stefano et al.,
2014; Tosco et al., 2016; Vu et al., 2017; Hutt et al., 2018;
Stincardini et al., 2018; Zhang et al., 2018). In this study
investigators, attempted to augment autophagy using torin-
1 (Pesce et al., 2018) but its effects are missed due to lack
of serum-starvation and appropriate experimental conditions.
Nonetheless, extensive body of experimental evidence from
our group and other’s suggest that adapting proteostasis
and autophagy has significant potential in correcting the
underlying causes of CF lung disease pathogenesis and will allow
development of next generation of potent novel therapeutics as
summarized below.

PERSPECTIVE

The absence of a functional membrane CFTR is the primary
etiology of chronic lung disease development in CF patients,
which progresses due to numerous pathological complications
such as mucus-overproduction, elevated oxidative stress,
chronic infections and sustained NFκB-mediated inflammation,
eventually leading to early-life fatality, if left untreated.
Although huge strides have been made in the development of
novel “breakthrough” drug combinations such as Orkambi R©,
Symdeko R© etc., to rectify the core CF-defect, their widespread

Frontiers in Pharmacology | www.frontiersin.org 8 February 2019 | Volume 10 | Article 20

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00020 January 31, 2019 Time: 13:41 # 9

Bodas and Vij Adapting Proteostasis/Autophagy in Cystic Fibrosis

therapeutic advantage has been restricted due to somewhat
low efficacy in maintaining sustained CFTR-activation as
well as controlling other components of CF lung disease
such as chronic inflammatory-oxidative stress responses and
exacerbations. Therefore, alternative therapeutic methodologies
using novel drugs and/or drug-delivery systems need to be
concurrently developed, which can fill the gap of an affordable
yet potent and effective CF treatment strategy capable of rescuing
overall CF lung disease. Since, significant experimental and pre-
clinical evidence suggests the key central role of proteostasis
and autophagy processes in regulating most of the disease-
causing pathogenic features in the CF airways, this warrants
further clinical evaluation and development of proteostasis
and autophagy modulating drugs, as an emerging therapeutic
approach for CF lung disease. Finally, since CF subjects
possesses numerous types of CFTR mutations, genotyping of
the patient before deciding on the proteostasis and autophagy
modulating drug(s), will allow evaluating the therapeutic

advantage for the patient as a part of emerging Precision
Medicine Initiative.
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