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ABSTRACT
Large carnivores are important for maintaining ecosystem integrity and attract much
research and conservation interest. For most carnivore species, estimating population
density or abundance is challenging because they do not have unique markings for
individual identification. This hinders status assessments for many threatened species,
and calls for testing new methodological approaches. We examined past efforts to
assess the population status of the endangered dhole (Cuon alpinus), and explored the
application of a suite of recently developed models for estimating their populations
using camera-trap data from India’s Western Ghats. We compared the performance
of Site-Based Abundance (SBA), Space-to-Event (STE), and Time-to-Event (TTE)
models against current knowledge of their population size in the area. We also applied
two of these models (TTE and STE) to the co-occurring leopard (Panthera pardus),
for which density estimates were available from Spatially Explicit Capture–Recapture
(SECR) models, so as to simultaneously validate the accuracy of estimates for one
marked and one unmarked species. Our review of literature (n= 38) showed that
most assessments of dhole populations involved crude indices (relative abundance
index; RAI) or estimates of occupancy and area of suitable habitat; very few studies
attempted to estimate populations. Based on empirical data from our field surveys,
the TTE and SBA models overestimated dhole population size beyond ecologically
plausible limits, but the STE model produced reliable estimates for both the species.
Our findings suggest that it is difficult to estimate population sizes of unmarked species
whenmodel assumptions are not fullymet and data are sparse, which are commonplace
for most ecological surveys in the tropics. Based on our assessment, we propose that
practitioners who have access to photo-encounter data on dholes across Asia test old
and new analytical approaches to increase the overall knowledge-base on the species,
and contribute towards conservation monitoring of this endangered carnivore.
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INTRODUCTION
Mammalian large carnivores are ecologically important, socio-culturally valued, and
generally attract substantial conservation funds and resources for their protection (Treves &
Karanth, 2003; Dickman, Macdonald & Macdonald, 2011). Reliable estimates of population
size, while being crucial indicators of their status in the wild, remain difficult to obtain,
particularly for species that are threatened with various degrees of extinction (Kelly et
al., 2012; Dröge et al., 2020). For carnivores that typically occur at low densities and are
distributed across large geographical regions, designing and executing scale-appropriate
surveys to obtain such numbers also presents many challenges (Royle, Stanley & Lukacs,
2008; Boitani, Ciucci & Mortelliti, 2012). Inherently low populations of these species often
yield sparse data, further constrained by logistical and administrative limitations (Murphy
et al., 2018a; Van der Weyde et al., 2021). These issues can hamper and compromise the
implementation of successful conservation monitoring and species recovery efforts.

Non-invasive sampling for population estimation has gained substantial traction among
wildlife scientists and managers due to the ethical concerns with invasive capture-handling
of carnivores, as well as the rapid development of less intrusive methods, including
but not limited to indirect sign surveys coupled with occupancy-based models, genetic
sampling, and camera-trap surveys (Kelly et al., 2012). While most of these methods are
readily applicable to species with individually identifiable morphological traits (stripes,
spots, rosettes, or other pelage patterns), recent methodological advances have allowed
for exploring potential approaches to estimate populations of partially-marked or fully
unmarked carnivore species (Burgar et al., 2018; Forsyth, Ramsey & Woodford, 2019; Rich
et al., 2019). Nonetheless, some key challenges remain with genetic methods (Mumma
et al., 2015; Murphy et al., 2018b) and camera-trap sampling (Gilbert et al., 2021) that
practitioners need to be cognizant of before their application to species without natural
markings. This is especially relevant for endangered carnivores, where under- or over-
estimation of populations can result in erroneous conservation interventions (Johansson et
al., 2020).

The Asiatic wild dog or dhole (Cuon alpinus) is among the top carnivores of Asia’s
tropical forest systems (Kamler et al., 2015). The social canid, currently on the IUCN Red
List’s Endangered category, is found across central Asia, the Indian subcontinent and
Southeast Asia (Kao et al., 2020). Dholes were once distributed across large parts of Asia;
their range is purported to have seen drastic contraction of nearly 80% in the last 100 years
(Wolf & Ripple, 2017). Although the spatial extent of their current distribution is fairly
expansive, most dhole populations are restricted to protected forest habitats (Karanth
et al., 2009; Jenks et al., 2012; Thinley et al., 2021). While circumstantial evidence points
to population declines in recent decades, literature on reliable population estimates to
substantiate these assertions is virtually non-existent (Srivathsa et al., 2020a). This may be
attributed to the fact that dholes do not have unique pelage patterns, precluding the ability
to generate population estimates from camera-trap surveys—which has otherwise been
commonplace for many species in the tropics—using standard mark–recapture methods
(Pollock et al., 1990; Nichols, 1992; Royle et al., 2014). Dhole population status in the wild
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has mostly been determined based on distribution assessments across various landscapes
(Srivathsa et al., 2014; Kamler et al., 2015), except for some relatively recent studies that
have sought to apply dedicated population models to estimate their population size and
densities (Selvan et al., 2014; Ngoprasert, Gale & Tyre, 2019; Srivathsa et al., 2021).

Despite the ecological importance and conservation significance of dholes, attempts
to estimate their population status in the wild remain woefully sparse. In this study, we
had two broad objectives: (1) provide a synthesis of field and analytical methods that
have been applied to determine the status of dhole populations in the wild—ranging from
crude abundance indices to more sophisticated model-based estimators; and (2) apply a
suite of recently developed estimation methods to dhole photo-encounter data obtained
from camera-trap surveys in India’s Western Ghats. Finally, we deliberate on the current
state of knowledge regarding dhole populations across the species’ distribution range, and
provide recommendations for future research so as to optimize information gained from
both, studies focused on dholes, as well as surveys where dhole data are generated as a
by-product.

MATERIAL AND METHODS
Previous approaches to assess dhole population status
We used the terms ‘‘dhole +Cuon alpinus + population abundance + density + distribution
+ occupancy + relative abundance’’ on Google Scholar and searched for journal articles
which either focused exclusively on dholes or those that included any approaches to assess
dhole status as part of a largermammalian assemblage from southAsia. Previous approaches
to estimate dhole populations broadly fit into four categories—relative abundance indices
(RAIs), distribution and occupancy, site-based abundance estimators (i.e., population size
estimated from occupancy-based models), or capture–recapture based estimators. For
our synthesis, we only included those studies where one or more metrics reflecting dhole
population status were available, either as RAIs, probability of occupancy or percentage
distribution, abundance, or density estimates. Given the general paucity of dhole population
studies, the first 30 search pages were adequate for undertaking a thorough review on the
subject; although, some journal articles that were not indexed on the search engine or part
of the initial search list were added at a later stage. We also included the IUCN Red List
species evaluation (Kamler et al., 2015) to our synthesis as it contained dhole abundance
estimates for one prominent landscape within the species’ distribution range. None of the
studies used more than one analytical approach. We summarised the results from each of
these categories to map the geographical spread of past studies (Fig. 1), and understand
the utility of these estimates for management and conservation of dholes.

Empirical study in India
Study area and design
Radhanagari Wildlife Sanctuary covers an area of 351 km2 and is located in the northern
Western Ghats region of Maharashtra state, India (Fig. 2). The vegetation is dominated
by tropical semi-evergreen and moist deciduous forests, interspersed by agriculture and
two large reservoirs that supply water to the Kolhapur district. There are 20 villages inside
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Figure 1 Spatial locations of studies pertaining to population assessments of the dhole across the
species’ distribution range. Spatial locations of studies pertaining to population assessments of the dhole
across the species’ distribution range (n = 38). The sizes of circles reflect the relative sizes of the study ar-
eas. All three panels include all study areas, but the point locations have been separated out based on the
methodology used (RAI, occupancy/distribution, site-based abundance, or spatial capture–recapture) for
ease of interpretation.

Full-size DOI: 10.7717/peerj.12905/fig-1

the sanctuary, and 20 more villages that border the sanctuary on all sides. The sanctuary is
part of the larger Western Ghats landscape, a serially-listed UNESCO World Heritage site
and an important Protected Area for the conservation of threatened fauna which include
the leopard (Panthera pardus), dhole, sloth bear (Melursus ursinus), gaur (Bos gaurus), and
sambar deer (Rusa unicolor).

We overlaid a grid-array of 80 cells of square geometry across the study area, with each
cell measuring four km2. Grid-cells with <20% forest cover (n= 16) were excluded from
the study as they were considered unsuitable for supporting resident populations of the
focal large mammals. This grid array was used to guide our surveys with the aim of placing
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Figure 2 Study area map showing Radhanagari Wildlife Sanctuary. Study area map showing Radhana-
gari Wildlife Sanctuary (351 km2), with the surrounding forest–non-forest habitat matrix, large water
reservoirs, locations of camera traps and villages. Camera trap surveys were conducted in April–May 2019.
Inset shows location of the study area within the larger Western Ghats landscape in India.

Full-size DOI: 10.7717/peerj.12905/fig-2

multiple camera stations within the home range of a dhole pack (∼25–202 km2; Acharya,
2007). Camera traps were set up at 34 locations; most cells had one camera-trap station
(a pair of camera traps placed facing each other), and three cells had two camera-trap
stations. Camera traps were placed based on information from sign survey data collected
during a previous study in the landscape (Punjabi et al., 2017), knowledge of field staff,
and our observations of animal signs during deployment. Practical difficulties did not
allow for some areas to be sampled, but every effort was made to cover as much of the
Protected Area as possible. At each station, a pair of camera-traps were placed at a height
of 45–50 cm from the ground, facing each other at a distance of 1.5–2 m on either side of
a forest road or trail. The average inter-station distance was 2 km (range = 0.8–5.8 km).
Camera-traps were kept operational throughout the day (24-hr) for 16–18 days in ‘blocks’
(following Royle et al., 2009). Each camera trap was set to take one picture, followed by a
10-second video for every trigger event. The study was conducted in three ‘blocks’ (i.e.,
not all locations had active cameras at the same time) from April to May 2019. Of the 34
locations, cameras from seven locations were lost due to theft, and the data could not be
retrieved from these sites. The entire study was conducted in a short span of less than two
months to reduce potential violation of the closure assumption. Camera coverage of the
study region was limited (27 stations), as camera theft and time constraints were major
impediments during the study.
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The camera-trap data were curated on program Camera Base (Version 1.7) and capture
histories of animal detections were extracted and compiled for each camera-trap station.
Although assigning individual identities was not possible for dholes, some packs could
be identified based on group size and number of adult/young members in the group
when photo-captured on spatially adjacent camera-sites; these packs were assigned unique
identities. The surveys also generated photo-captures of leopards. Since individual leopards
could be uniquely identified based on the rosette marks on their pelage, they were assigned
individual identities. The statistical models we intended to apply to dhole data are relatively
new (described in detail below). We therefore estimated leopard population size and
density using more established methods (Spatially Explicit Capture–Recapture ‘SECR’
models using Bayesian and Likelihood-based frameworks; see Borchers & Efford, 2008;
Royle et al., 2009) as a ‘control’–in some sense. We then fitted a set of models to both, the
dhole encounter data and leopard encounter data, whilst comparing the leopard estimates
from these models to the SECR-based estimates.

Statistical methods to estimate dhole population size
Direct counts
Wildlife managers sometimes rely on direct counts of species to make inferences on
population size (Gese, 2001). But these counts can be problematic because they do not
account for imperfect detection, double counting, and other sources of variation in the
sampling/observation process, all of which are commonplace in ecological studies. Where
species can be individually identified, practitioners sometimes use the minimum number
of unique individuals as a crude measure of population size. The statistical unreliability of
such counts notwithstanding, we calculated the minimum number of dholes for the sole
purpose of making comparisons with other estimator-based numbers. We were able to
identify three unique dhole packs with reasonable confidence; we calculated the minimum
number of dholes in the region as counts of individuals from these three packs. Likewise,
for leopards, we summed all the identified individuals. We use these minimum counts
solely for the purpose of reasonably making an educated guess about the population size
of the two species.

Spatially-explicit capture recapture (SECR)
The use of SECRmodels has gained wide traction for estimating wildlife populations, given
their relative advantages in estimation of density over conventional non-spatial capture–
recapture models. Both, likelihood and Bayesian formulations of these models use spatial
information in the capture data and also circumvent the issues with post-hoc calculation
of sampled area for deriving density estimates (Borchers & Efford, 2008; Efford, Borchers
& Byrom, 2009; Royle et al., 2009). Since the basic SECR model requires all individuals to
be identified with certainty, we used this approach only for the leopard data to estimate
abundance and density. For the SECR-Likelihood models, we used package secr in R
(Version 4.1.1, R Development Core Team). For the SECR-Bayesian model, we used the
package SPACECAP (Gopalaswamy et al., 2012), implemented in R. Additional model
details and specifications are provided in Supplementary Information 1.
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Site-based abundance models
Site-based abundance models have piqued the interest of ecologists for estimating
animal populations, particularly for species that do not have individually identifiable
morphological traits (see Gilbert et al., 2021). The Royle-Nichols model (Royle & Nichols,
2003) was developed to derive abundance estimates from detection/non-detection data,
while theN-mixturemodel relies on count data of animals for estimating abundance (Royle,
2004). Both models assume sampling sites are spatially independent, which is generally
a difficult assumption to meet in practice. Advances in these methodological approaches
include Bayesian implementations of beta-binomial mixture models which factor in spatial
correlation of count data (Martin et al., 2011), and detection/non-detection data (Chandler
& Royle, 2013; Ramsey, Caley & Robley, 2015).

Since count data were more informative, we used the Martin et al. (2011) approach
for dholes (the leopard dataset did not meet the data–format requirements). The model
assumes that the number of individuals at a site follows a Poisson distribution with
λ representing the average number of individuals per site. The subset of ‘observed’ or
detected individuals C is assumed to follow a binomial distribution of size N, with a
detection probability p. Since individual detections are not independent, p is modeled as a
beta distribution. Mathematically, these may be expressed as:

Ni ∼Poisson (λ)
Cij ∼binomial (Ni, pij)
pij ∼beta (α, β)
Here, i is the location, j is the occasion, α and β are the shape parameters of the

beta distribution. Further, ρ (correlation coefficient: magnitude of non-independence of
detections, i.e., autocorrelation) and p_ab (detection probability) are derived parameters
calculated as ρ = 1/(α+β+1) and p_ab= α/(α+β). We specified priors for N to follow a
gamma distribution, and tested for three scenarios–fully uninformed prior (gamma(0.01,
0.01)), partially informed prior (gamma (5, 3)) and a constrained prior (gamma (20,
15)). All models were run on JAGS implemented through R, with 10,000 iterations, five
Markov chains, a burn-in of 2000, and the thinning rate set to one. We checked for model
convergence through visual inspection of trace plots and the R-hat value (R-hat value
closer to 1 indicates convergence; Gelman & Hill, 2006). The full R code is provided in
Supplementary File 2.

Time-to-Event (TTE) and Space-to-Event (STE) models
Moeller, Lukacs & Horne (2018) developed models for estimating abundances of unmarked
animals from photo-encounter data using the camera-trapping rate and area of the
camera viewshed. The TTE model is based on the timing of captures, but requires
independent estimates of animal movement rate. The STE model is not sensitive to
movement rates, as it substitutes space for time. Both models require the data to meet
certain basic assumptions such as geographic and demographic closure, random placement
of traps, and independence in animal observations. But we note that these models have
been applied to studies where surveys were conducted with non-random placement of
the camera trap, focusing on territorial species (e.g., Loonam et al., 2021). These models
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require measurements of area of the camera viewshed, which we calculated post-hoc using
approximatemeasurements taken in the field. The area of a quadrilateral or a trapeziumwas
calculated for both camera viewsheds at a station, within which the detection probability
was assumed to be one (perfect detection). We note that this assumption may not always
hold true as detection probability may vary due to different factors (e.g., distance from the
camera-trap). But the development of TTE and STE models being relatively recent, their
current formulations do not allow for modelling imperfect detection at each site (Moeller,
Lukacs & Horne, 2018). However, for a short distance from the camera-trap, if the animal
enters the viewshed, the detection may be assumed to be perfect (Moeller, Lukacs & Horne,
2018). Since the area was calculated for both cameras at a station, we used the larger of
the two viewshed areas (henceforth ‘largest area’) for the analysis. We also considered two
additional scenarios whereby we increased this largest area by 10% and 20% to assess the
effect of increased viewshed area on estimates from the TTE and STE models. We did
so because the viewshed area could be potentially larger, as there were two camera units
placed on opposite sides of a trail at each station.

For the TTE model, we used three hourly movement rates for leopards from three
telemetry studies in India and Africa. For the dhole, we used three hourly movement rates
from two studies, one in India and the other in Thailand (Supplementary File 2) to set
the sampling period. The sampling occasions for all TTE models were considered to be
one-hour periods, which contained sampling periods based on the hourly movement rate
for each species. For each camera station, we sampled every two hours, beginning from
the start to the end of the study period. For the STE model, we set the sampling frequency
and sampling length as one second each, for both the species. In other words, any photo-
encounter of a leopard or dhole during one second was considered as an independent
detection. This was more computationally intensive, but ensured that sampling was
instantaneous. Both the TTE and STE models were run under three different viewshed
area scenarios as explained earlier—- largest area, largest area+10%, largest area+20%.
All analyses were implemented in R (Version 4.1.1, R Development Core Team) through
RStudio (Version 1.4.1717) using the package ‘‘spaceNtime’’ (Moeller, Lukacs & Horne,
2018). The R code is provided in Supplementary File 2.

RESULTS
Current knowledge of range wide dhole population status
Through our literature searches, we found a total of 38 studies that used one of the four
broad categories (RAIs, distribution and occupancy, site-based abundance, or capture-
recapture) to assess dhole population (Supplementary File 3). Of these, 17 studies (45%)
used RAIs, while 17 studies (45%) used distribution and occupancy. Three studies (8%)
used site-based abundance estimators, and only one study used capture–recapture based
models (Fig. 2).

Study area sizes in reviewed literature ranged from 80 to 509,400 km2. RAIs were
generally calculated for 100 trap nights, except one study that used 1000 trap nights. RAIs
for dhole varied from 0.008 to 7.41 across the 17 studies. Of the 17 other studies that dealt
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with distribution models, 14 used probability of occupancy or percentage occurrence as
a metric, whereas three studies used MaxEnt models to calculate habitat suitability (area)
for dholes. Estimates of reported occupancy probabilities (means) varied from 0.12 to
0.95, while suitable habitat area varied from 7% to 72% depending on the study area size.
Of the three studies that used site-based abundance approaches, one estimated 207–304
individuals across a 37,000 km2 landscape of the Western Ghats, while another study
estimated site-level abundance at 0.26 (±0.02) equating to a density of 6.62 (±0.58) dholes
per 100 km2 in a Protected Area of India’s Eastern Himalayas. The third study estimated
the density to range from 2.2 to 3 dholes per 100 km2 in two protected areas of Thailand.
The lone study that applied spatial capture–recapture models used a combination of
genotype-based individual identification and indirect signs, and the estimated density
ranged from 12 to 14.2 dholes per 100 km2 in one Protected Area of India’s Western Ghats
(Fig. 2).

Empirical study in India
Based on direct counts of uniquely identifiable individuals, we determined the minimum
number of the focal animals in our study location was 29 dholes and nine leopards. From
the SECRmodels (likelihood and Bayesian formulations), we estimated leopard population
size at 11.84 to 12.53 individuals (see Fig. 3 and Supplementary File 1). As shown in Fig. 4,
the site-based abundance models overestimated dhole population size by a large margin
(considering the minimum number from direct counts and ecological expectation) across
all scenarios (abundance range: 104–189 individuals; Supplementary File 2). Estimated
detection probability was low across all models (<0.10) and the correlation parameter
was positive but closer to zero. We found the STE models to be the most reliable in
estimating population size and densities of dholes (N = 33.03 ± 4.07; D= 9.15/100 km2)
and leopards (14.31 ± 2.68; D= 3.96/100 km2; Fig. 3). In particular, the STE model
specified with the ‘largest area’ setting (see Methods section for details) produced the
most precise estimates–relatively speaking–that were comparable to direct counts for
both species, our field-knowledge based expectation from the area, and the SECR-based
estimates for leopard. The TTE model did not perform well under any of the scenarios
of varying movement rates (for either species), and the estimates of population size were
unreasonably high and imprecise (Table 1).

DISCUSSION
Our review of literature on dhole population status revealed that studies of robust
population estimation across the species’ range remain extremely scarce. This may be
because dholes were not the primary species of interest in some studies, but also because
they do not have distinct natural marks, thereby making it difficult to assign individual
identities (such as with camera-trap photo-encounter data). It is likely that a majority of
studies have therefore used RAIs, or assessed the distribution of dholes in terms of habitat
occupancy or extent of suitable habitats. Only a small percentage of studies examined
dhole population size using site-based abundance models (Selvan et al., 2014; Kamler et al.,
2015; Ngoprasert, Gale & Tyre, 2019), or spatial capture–recapture using genetic methods
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Figure 3 Estimates of density and abundance of leopards in Radhanagari Wildlife Sanctuary. (A) Es-
timates of density (left) and abundance (right) of leopards in Radhanagari Wildlife Sanctuary (April–May
2019), based on Spatially Explicit Capture–Recapture models. Density calculated as individuals per 100
km2. Error bars for the likelihood-based estimates indicate Standard Errors, and those for Bayesian esti-
mates are Standard Deviation values. (B) Estimates of density (left) and abundance (right) of leopards in
Radhanagari Wildlife Sanctuary (April–May 2019), based on space-to-event models (Moeller et al. 2011).
Density calculated as individuals per 100 km2. L, L+10% and L+20% are three scenarios, where viewshed
areas were calculated as ‘largest’, ‘largest+10%’ and ‘largest+20%’. Error bars for density are 95% confi-
dence intervals.

Full-size DOI: 10.7717/peerj.12905/fig-3

(Srivathsa et al., 2021). Our empirical study confirms that estimating dhole population
size with camera-trap photographs is challenging, especially when model assumptions are
not fully met or the data are scarce–both of which exemplify common issues with photo-
encounter data of large carnivores in most tropical regions. We tested three models which
did not require individual identification; one site-based abundance model that required
count data (Martin et al., 2011), and twomodels that used species-specific camera-trapping
rate (TTE and STE, Moeller, Lukacs & Horne, 2018). Of these, only the STE model, which
was not sensitive to animal movement rate, showed some promise in generating reasonable
population size estimates for dholes. STE model estimates for the leopard served as a useful
control for the dhole as we had comparable estimates from SECR and direct counts.

Population size or density estimates of dholes are rare in the literature, even though
they are valuable for conservation management at the scale of protected areas. Of the
three models we tested to derive population estimates of dholes, the STE and TTE models
are designed to work with random placement of camera-traps and time-lapse pictures
to avoid variable detectability associated with motion-sensor pictures (Moeller, Lukacs &

Punjabi et al. (2022), PeerJ, DOI 10.7717/peerj.12905 10/20

https://peerj.com
https://doi.org/10.7717/peerj.12905/fig-3
http://dx.doi.org/10.7717/peerj.12905


Figure 4 Estimates of density and abundance of dholes based on space-to-event ‘STE’ and Site-based
Abundance (SBA) models in Radhanagari Wildlife Sanctuary. (A) Estimates of density (left) and abun-
dance (right) of dholes in Radhanagari Wildlife Sanctuary (April–May 2019), based on space-to-event
‘STE’ models. (B) Estimates of density (left) and abundance (right) of dholes in Radhanagari Wildlife
Sanctuary (April–May 2019), based on site-based abundance models (beta-binomal/Poisson mixture
models;Martin et al., 2011). Density was calculated as individuals per 100 km2. up–uninformed priors,
pp–partially informed priors, cp–constrained priors. Error bars for density are 95%.

Full-size DOI: 10.7717/peerj.12905/fig-4

Horne, 2018). However, many carnivores are inherently rare and therefore camera-trap
data on carnivores is generally collected from non-random placement of cameras along
trails or roads to maximise encounter probability (Karanth et al., 2017; Iannarilli et al.,
2021). Despite using a non-random survey design and motion-sensor pictures, we derived
biologically reasonable estimates for both the dhole and leopard using the STE model. For
the leopard, estimates from STE models matched those generated from SECR models. It is
important to note here that settings for sampling frequency and length for the STE model
were kept to 1 s each, representing a snapshot in time, as larger settings (not presented)
resulted in overestimation (noted in Loonam et al., 2021). The TTE model, on the other
hand, was not a useful approach for either species, as all the estimateswere biased high across
all scenarios of animal movement rates that we specified. We believe this may be due to
two plausible reasons; first, as the TTE model shows high sensitivity to hourly movement
rate for deriving sampling periods, the values we supplied were not representative of
movement rates in our study region; and second, our study design used non-random
camera placement and motion-sensor pictures that likely inflated trapping rate, reduced
the number of sampling periods before first detection, and thereby overestimated the
population size. Additionally, both the TTE and STE models rely on first detection of
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Table 1 Estimates of population abundance and density from the Time-to-Event models. Estimates of population abundance and density from
the Time-to-Event models (TTE) under different scenarios of hourly movement rates for the dhole and leopard in Radhanagari Wildlife Sanctuary
from the Western Ghats, India.

Dhole Leopard

Model Average hourly movement rate= 266 m/hr Average hourly movement rate= 77.58 m/hr
TTE (Largest area)

a. N±SE (CI) 372.67± 189.51 (145.57–954.05) 1226.61± 409.14 (648.9–2318.33)
b. D (CI)/100 km2 103.23 (40.32–264.28) 339.78 (179.75–642.2)

TTE (Largest area + 10%)
a. N±SE (CI) 173.11± 123.89 (49.08–610.55) 1132.22± 377.84 (598.87–2140.57)
b. D (CI)/100 km2 47.95 (13.59–169.13) 313.63 (165.89–592.96)

TTE (Largest area + 20%)
a. N±SE (CI) 329.83± 164.23 (131.12–829.66) 703.07± 287.67 (325.16–1520.2)
b. D (CI)/100 km2 91.37 (36.32–229.83) 194.76 (90.07–421.11)

Model Average hourly movement rate= 424 m/hr Average hourly movement rate= 200 m/hr
TTE (Largest area)

a. N±SE (CI) 90.34± 90.43 (17.65–462.46) 506.83± 227.05 (219.2–1171.9)
b. D (CI)/100 km2 25.02 (4.89–128.11) 140.4 (60.72–324.63)

TTE (Largest area + 10%)
a. N±SE (CI) 332.27± 165.80 (131.86–837.28) 375.89± 187.67 (149.10–947.62)
b. D (CI)/100 km2 92.04 (36.53–231.93) 104.12 (41.30–262.5)

TTE (Largest area + 20%)
a. N±SE (CI) 77.15± 76.72 (15.19–391.86) 521.21± 212.92 (241.33–1125.7)
b. D (CI)/100 km2 21.37 (4.21–108.55) 144.38 (66.85–311.83)

Model Average hourly movement rate= 791.7 m/hr Average hourly movement rate= 264.37 m/hr
TTE (Largest area)

a. N±SE (CI) 83.53± 84.65 (16.08–433.87) 579.87± 237.11 (268.30–1253.24)
b. D (CI)/100 km2 23.14 (4.54–120.19) 160.63 (74.32–347.16)

TTE (Largest area + 10%)
a. N±SE (CI) 154.49± 109.78 (44.12–540.92) 351.52± 176.51 (138.77–890.41)
b. D (CI)/100 km2 42.79 (12.22–149.84) 97.37 (38.44–246.65)

TTE (Largest area + 20%)
a. N±SE (CI) 354.73± 159.70 (152.83–823.34) 329.89± 164.22 (131.18–829.62)
b. D (CI)/100 km2 98.26 (42.34–228.07) 91.38 (36.34–229.81)

Notes.
Largest area, largest viewshed area; Largest area + 10%, largest viewshed area + 10% of viewshed area; Largest area + 20%, largest viewshed area + 20% of viewshed area; N, esti-
mated abundance; SE, estimated standard error; CI, 95% confidence intervals; D/100 km2, estimated density per 100 km2.

the animal during a sampling occasion. Variable detection probability at the scale of the
camera viewshed can also affect abundance estimates. Increasing area of the viewshed
also negatively affects the estimates of abundance, as seen from our comparison of three
different viewshed area (Largest area, +10%, +20%) scenarios. Therefore, viewshed area
should be measured accurately in field settings to avoid biasing the abundance estimates.

The site-based abundance model (described by Martin et al., 2011) appeared to over-
estimate dhole population size even with informed priors. This is likely because the
estimated detection probability of dholes was extremely low (<0.1 across all models)
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in our study, which can positively bias the abundance estimate (Williams, Nichols &
Conroy, 2002). The estimated correlation parameter (ρ) was positive, ranging from 0.10
to 0.11, suggesting non-independence of detections and some heterogeneity in detection
probability (Martin et al., 2011). We recognize that our study design could have led to
double counting of dholes across camera-trap sites, as sites may not have been sufficiently
independent (inter-trap distance: 0.8–5.8 km). In their application of this model with
certain modifications, Ngoprasert, Gale & Tyre (2019) thinned their data by removing trap
locations that were within 2 km of each other to deal with this problem. In our case, the
dataset was too sparse to begin with, making such post-hoc manipulations infeasible. To
fully gauge its reliability, this model warrants further testing on larger camera-trap datasets
where count data on dholes are correlated across sampling units. We also acknowledge
that our limited sample size and the relatively homogeneous habitat (protected forest area)
made it difficult to incorporate spatial covariates to examine site-level variations in local
abundance and factors affecting density, as it has been done for e.g., leopards (Havmøller et
al., 2019). Future studies could explore how abundance of preferred prey species, presence
of competing co-predators, and anthropogenic factors affect dhole spatial densities.

Taken together, our comparison of the three models reveals that the STE model can be a
potential approach for camera-trap studies where dholes were the primary focus or bycatch
data is collected on the species. The STE model should therefore be tested widely to assess
its utility in deriving meaningful estimates for dholes, especially in scenarios when some
model assumptions are not met. It would also be worthwhile to examine study designs
with random sampling (off-trails) and time-lapse pictures to understand if and how these
would affect trapping rate and corresponding population estimates. Study designs that
use random placement of cameras and time-lapse pictures for rare carnivores will require
a high number of camera traps and longer survey periods to accrue adequate sample
sizes, which would entail higher operational costs and possible violations of the closure
assumption. However, doing so may serve as a suitable alternative to index-based methods
(RAIs) which are still fairly common in studies of dholes in South Asia, despite their widely
acknowledged flaws (Sollmann et al., 2013).

Our results also have conservation relevance in light of recent findings from studies
of dholes in South Asia. Srivathsa et al. (2020a) and Srivathsa et al. (2020b) found that
dholes occupy nearly 249,606 km2 of forest and agro-forest habitats, including 162 PAs,
across India; yet population estimates from the majority of these PAs are unavailable. We
found a density of ∼9 dholes/100 km2 in our study area, Radhanagari Wildlife Sanctuary,
from the northern Western Ghats, which is lower than 12–14 dholes/100 km2 estimated
from Wayanad Wildlife Sanctuary in southern Western Ghats (Srivathsa et al., 2021).
However, our estimate is higher than those reported from northeast India’s Pakke Tiger
Reserve (6–7 dholes/100 km2; Selvan et al., 2014) and Thailand’s Dong Phayayen-Khao
Yai–Kaeng Krachan Forest Complex (2–3 dholes/100 km2; Ngoprasert, Gale & Tyre, 2019).
Radhanagari has moderate densities of herbivore ungulates and protection levels, and
shares tenuous connectivity to other dhole habitats in the landscape (Punjabi et al., 2017;
Rodrigues, Srivathsa & Vasudev, 2021). Three breeding packs were identified in our study
area (pack size ranging from six to 12), which produces a conservative number of six
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breeding adults in an estimated population of 33 dholes. Clearly, this population is very
small and at a high risk of local extinction in a short span of 50 years if isolated due to break
in connectivity (Kao et al., 2020). Considered together, the number of dhole breeding pairs,
density, and abundance estimates in Radhanagari emphasizes the PA’s high conservation
value for the species, both in the Western Ghats landscape, and globally.

Current understanding of dhole ecology, social structure and adaptability is plagued by
wide knowledge gaps in several aspects. In African wild dogs (Lycaon pictus)–a species that
is phylogenetically and behaviorally similar to dholes–a minimum number of individuals
is needed in a pack in order to successfully hunt and sustain breeding (Courchamp &
Macdonald, 2001). Whether the same is true for dholes remains unknown. It is reasonable
to assume that generating estimates of not just individuals, but the number of breeding
packs per area, the average pack-size per area or pack densities, may be more ecologically
relevant for dholes, as has been done with wolves (Canis lupus; Mattioli et al., 2018).
Additionally, the continued decline of dholes and other large carnivores in Asia also
calls for building upon population size estimates from select areas and progress towards
understanding drivers of population dynamics and local extinctions across larger spatial
and temporal scales. A recently developed transnational genetic registry has allowed
for forecasting population dynamics for species like the wolf, brown bear (Ursus arctos)
and wolverine (Gulo gulo) in Scandinavia (Bischof et al., 2020). A similar repository and
approach for threatened large carnivores in Asia would serve as a crucial conservation tool
and allow for planning long-term management strategies.

CONCLUSION
Ecological data on carnivore populations are inherently noisy, and surveys often generate
sparse detections of species which are either uncommon or occur at low densities (Gese,
2001; Royle, Stanley & Lukacs, 2008; Boitani, Ciucci & Mortelliti, 2012). When surveying
unmarked animal populations, issues such as non-identifiability of individuals, spatial
autocorrelation among sampling units, heterogeneity in animal detections, and sparse
photo-captures affect the analytical approach and inferences drawn (see Gilbert et al.,
2021 for a review). Estimating populations of unmarked animals therefore presents a
suite of methodological challenges. We find that the space-to-event models showed
some promise in estimating dhole populations in our study region, likely because these
models are not sensitive to the animal’s movement rate. Other novel methods such as
the REM (Lucas et al., 2015), REST model (Nakashima, Fukasawa & Samejima, 2018) or
camera-trap based distance sampling (Howe et al., 2017) could not be explored in our study
due to the inherently different study design and assumption requirements, but have been
successfully demonstrated in other species under certain scenarios (Palencia et al., 2021).
We encourage further development of user-friendly tools for implementing such analyses
of data on unmarked species, as this is likely the reason for low publication rates in terms of
population studies of dholes and similar unmarked species. The widespread application of
camera-trapping methodology to study felids across Asia (e.g.,Macdonald et al., 2019) have
led to large amounts of photo-encounter data being generated; these datasets likely include
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photo-encounter data on dholes, but remain unutilized. We urge researchers with access
to these data to (1) explore the applications detailed in this paper, and/or (2) make their
data available on public repositories so as to permit carnivore researchers and statistical
ecologists to evaluate old and newly developed models to estimate dhole populations, and
thereby contribute towards conservation monitoring of this endangered species.
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