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Abstract: Non-destructive analysis of chlorpheniramine maleate (CPM), pharmaceutical tablets, and
granules was conducted by chemometrics-assisted attenuated total reflectance infrared spectroscopy
(ATR-IR). For tablets, an optimum PLSR model with eight latent factors was obtained from area-
normalized and standard normal variate (SNV) pretreated ATR-IR spectral data with correlation
coefficients (R2) of calibration and cross-validation of 0.9716 and 0.9602, respectively. The model
capability for the 42 test set samples was proven with R2 between the reference and model prediction
values of 0.9632, and a root-mean-square error of prediction (RMSEP) of 1.7786. The successive PLSR
model for granules was constructed from SNV and first derivative pretreated ATR-IR spectral data
with two latent factors and correlation coefficients (R2) of calibration and cross-validation of 0.9577
and 0.9450, respectively.

Keywords: non-destructive analysis; FT-IR; content uniformity; PLSR

1. Introduction

Uniformity of the dosage unit is a quality attribute indicating consistency of pharma-
ceutical dosage forms. This measurement is required to ensure product quality, efficacy, and
patient safety. Content uniformity (CU) is a uniform dosage unit test for narrow therapeutic
index drugs, especially for tablets and hard capsules whose dose or ratio of drug substance
is <25 mg or 25%. In general, CU is performed using the procedure for assay, but the
analysis is conducted for 10 or 30 individual units in dosage form for CU [1]. Therefore,
CU testing is usually time- and reagent-consuming.

Applications for non-destructive analysis based on chemometrics-assisted spectro-
scopic methods such as near-infrared (NIR) spectroscopy, Raman spectroscopy, Terahertz
spectroscopy, Fourier transform infrared spectroscopy (FTIR) for process analytical technol-
ogy (PAT), and quality control in pharmaceutical manufacturing are increasing [2–8]. In
addition, trend quality guidelines for regulation use chemometrics-assisted spectroscopic
methods in drug quality control [9].

Chemometrics is defined as a chemical discipline using mathematical, statistical,
and other methods to accomplish objectives, e.g., the optimal measurement procedure,
the optimal experiment condition, and the amount of relevant chemical information by
chemical data analysis. The most commonly used chemometric technique for quantitative
analysis is a supervised technique, namely partial least square regression or PLSR [1].
Chemometric-assisted spectrophotometric methods are widely used for determining active
substances in pharmaceutical and herbal medicine samples [10,11].

Fourier transform infrared spectroscopy (FTIR) coupled with chemometrics for pharma-
ceutical analysis and quality control in the pharmaceutical industry has been reported [12–16].
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Eid et al. (2020) reported a PLSR method for the quantitative determination of vildagliptin and
metformin in pharmaceutical combinations with diverged concentration ranges [12]. Lawson
et al. (2018) presented a PLSR model for the rapid identification of paracetamol in counterfeit
medicines [13]. The application of FTIR and chemometrics for the quantitative determination
of anti-inflammatory drugs was reported by Hassib et al. (2017) [14]. Sruthi et al. (2018)
and Riyanto et al. (2014) presented chemometrics-assisted FTIR methods for determining
levosulpiride and methamphetamine, respectively [15,16].

The non-destructive analysis of pharmaceutical dosage forms using FTIR coupled with
chemometrics is attractive since it is fast, simple, and environmentally friendly. However,
its application in the low concentration dosage has problems because IR transmittance
signals from a desired active pharmaceutical ingredient (API) may interfere with major
excipients in the formulation. However, many pharmaceutical products are produced
as low-content tablets. These tablets must be studied separately for content uniformity
(CU) using the corresponding assay method with at least 10 individual tablets. Therefore,
this challenges our study to demonstrate whether ATR-IR coupled with chemometrics
can be employed for low-content tablets that use chlorpheniramine maleate (CPM) as the
model drug.

Quantitative determinations of CPM use high-pressure liquid chromatography
(HPLC) [17–19], direct current polarography [20], near-infrared chemical imaging [21],
and UV–vis spectrophotometric methods [22,23]. Assay methods based on solvent ex-
traction steps prior to UV spectrophotometric measurements for tablets’ CPM content
are described in the standard methods of the United State Pharmacopia (USP) 2022 [24].
Therefore, CU testing of CPM using the USP reference method is time-consuming, suffering
from sample preparation steps and producing organic solvent waste.

We used chlorpheniramine maleate (CPM) tablets and granules in this study as repre-
sentative samples to develop non-destructive analysis methods based on chemometrics-
assisted FT-IR spectroscopy. The developed methods can be used as alternative procedures
for CU testing and monitoring CPM content in the final mix granules before tableting.
The candidate methods are fast, simple, and more environmentally friendly than the
UV-spectrophotometric standard method [24].

2. Results
2.1. ATR-IR Measurement

CPM tablets with typical IR spectra of 4–30 mg/tablet (seven concentration levels)
are shown in Figure 1A. IR spectra peaks corresponded to functional groups in the CPM
molecule (Figure 1B), i.e., C=O (~1700 cm−1), C-H str (~2900 cm−1), C=N (~1640 cm−1),
C=C (~1600 cm−1), C-O str (~1100 cm−1), and C-H bending (~880 cm−1). The same IR
spectra were obtained for granules samples as tablets.

2.2. HPLC Method and Method Validation

The peak of CPM appeared at 3.1 min using the HPLC system described in Section 5.4.
The CPM peak’s retention time in the sample solution was close to the retention time of the
principal peak in the standard solution. As shown in Table 1, the method’s validation results
were acceptable, with R2 values higher than 0.999 for linearity (n = 3). Accuracy expressed
in terms of % recovery values ranged from 100.0–102.9%. Repeatability and intermediate
precision, expressed in terms of RSD percentage of recovery percentage values, were 1.26
(n = 9) and 1.13% (n = 18), respectively. Specificity was approved with the peak purity index
of CPM peaks from the chromatogram of standard spiked placebo and chromatogram of
the standard solution. The peak purity index was close to 1.0, indicating that the pure peak
of CPM was eluted without interference from other excipients.
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Figure 1. (A) Typical IR spectra of chlorpheniramine maleate tablets (4–30 mg/tablet). (B) Chemical
structure of chlorpheniramine maleate.

Table 1. HPLC method validation results.

Method Validation Characteristics Results

Range 10–30 µg/mL
Linearity

Equation y = 14,603x − 2363
R2 (n = 3) 0.9999

Accuracy (% Recovery) 100.0–102.9%
Precision

Repeatability (n = 9) 1.26
Intermediate precision (n = 18) 1.13

Specificity
Peak purity index (standard) 1.0000
Peak purity index (standard spiked placebo) 0.9999

2.3. PLSR Modelling

PLSR models for determining CPM in tablets were constructed from 168 IR spectra
of calibration samples using HPLC values as references. As seen in Figure 1A, ATR-IR
spectra of CPM had weak signals and contained noise. Data transformations are useful
for reducing noise, baseline shift, and enlarging informative signals [25–28]. A total of
13 models were developed, as shown in Table 2. The optimum PLSR model was obtained
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from the spectra intervals 500–1700 and 2500–4000 cm−1 with area normalization and
standard normal variate (SNV) data pretreatments. The model was constructed from eight
latent factors with correlation coefficients (R2) of calibration and cross-validation of 0.9716
and 0.9602, respectively. Plots of calibration and cross-validation of the model for tablets
are displayed in Figure 2.

Table 2. The developed PLSR models and models parameter.

Model
Number

Spectral Range
(cm−1) Spectral Data * Latent

Factors
R2

(Model)
R2

(Pearson) RMSEC RMSEP Bias
Derivative
Polynomial

Order

1 400–4000 original 5 0.9142 0.9328 2.5419 2.4797 0.1986 -

2 400–4000 D2 9 0.9545 0.9309 1.8506 2.4850 −0.0359 -

3 400–4000 area-normalized 4 0.9083 0.9287 2.6284 2.5648 0.1862 -

4 400–4000 area-
normalized + SNV 3 0.9355 0.9438 2.2040 2.2418 0.2695 -

5 2700–4000 area-
normalized + SNV 5 0.9605 0.9591 1.7251 2.0673 −0.1105 -

6 400–4000 D1 5 0.9264 0.9312 2.3546 2.478 −0.0123 2 order 11 pt.

7 400–4000 D1 + SNV 9 0.9394 0.941 2.1359 2.3093 −0.2371 2 order 11 pt.

8 500–1700 D2 7 0.9716 0.9417 1.4625 2.2801 −0.3258 2 order 11 pt.

9 2500–4000 D2 5 0.9823 0.9579 1.1555 2.0986 −0.1973 2 order 11 pt.

10 500–1700,
2500–4000 D2 7 0.9840 0.9562 1.0986 2.0155 −0.415 2 order 11 pt.

11 500–1700 area-
normalized + SNV 8 0.9741 0.9639 1.3977 1.7611 0.0495 -

12 2500–4000 area-
normalized + SNV 8 0.9481 0.9508 1.9759 2.1874 −0.1130 -

13 500–1700,
2500–4000

area-
normalized + SNV 8 0.9716 0.9632 1.4616 1.7786 0.0176 -

* D1 = First derivative, D2 = second derivative, original = original spectral data, SNV = standard normal variate.
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Figure 2. Plots of calibration and cross-validation of the optimum model for tablets. Calibration and
cross-validation samples are in agreement, indicating that the data are appreciated modelled, the
closer the slope is to 1, R2 of model (R2 calibration) and R2 validation are close together indicating a
good fit of model and prediction ability for future samples.
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By comparing the score plots of the original and pretreatment data of the best model
(area-normalization and SNV), it was seen that the pretreated data were better grouped by
concentration (Figure 3A) compared with the original data (Figure 3B). The model parame-
ters such as R2 of model and prediction, RMSEP, and bias were superior to other models.
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Figure 3. Score plots of (A) the pretreated data (area normalization and SNV) and (B) original data
of the best model for tablets. The data grouping by concentrations along with PC1 was clearly seen
from the pretreated data compared the original data.

As shown in Table 3, 11 PLSR models were developed for the quantitative determination
of CPM content in the granule samples. The optimum model was obtained from SNV and
first derivative with two polynomial orders and 11 smoothing points in the pretreated data.
The model was constructed from two latent factors and the spectral interval of 400–3700 cm−1.
The model had correlation coefficients (R2) of calibration and cross-validation of 0.9577 and
0.9450, respectively. Calibration and cross-validation plots of the granules model are shown in
Figure 4.
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Table 3. The developed PLSR models and model parameters of granules.

Model
Number

Spectral Range
(cm−1) Spectral Data * Latent

Factors
R2

(Model)
R2

(Pearson) RMSEC RMSEP Bias
Derivative
Polynomial

Order

1 400–3700 Original 2 0.9498 0.9762 15.0802 10.6003 −2.0409 -

2 400–1700,
2800–3700 Original 2 2 0.9395 0.9782 16.5568 10.1016 −1.8677 -

3 400–3700 SNV 1 0.9366 0.9835 16.9389 8.6349 −0.3478 -

4 400–1700,
2800–3700 SNV 1 0.9355 0.9838 17.0872 8.5433 −0.3631 -

5 400–3700 Area normalization 2 0.9295 0.9730 17.8691 11.2178 −2.0792 -

6 400–3700 SNV + D1 2 0.9577 0.9858 13.8447 8.0012 −0.4014 2 order 11 pt.

7 400–3700 SNV + D1 2 0.9572 0.9851 13.9199 8.4352 −0.6258 2 order 21 pt.

8 400–3700 SNV + D1 1 0.9362 0.9833 16.9942 8.6657 −0.3323 3 order 11 pt.

9 400–3700 SNV + D1 1 0.9364 0.9834 16.9678 8.6601 −0.3574 3 order 21 pt.

10 400–3700 SNV + D1 1 0.9368 0.9835 16.9125 8.6220 −0.3550 4 order 11 pt.

11 400–3700 SNV + D1 1 0.9368 0.9835 16.9196 8.6263 −0.3573 4 order 21 pt.

* D1 = First derivative, original = original spectral data, SNV = standard normal variate.
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Figure 4. Plots of calibration and cross-validation of the optimum model for granules. Calibration
and cross-validation samples indicating that the data are appreciated and modelled, the closer the
slope is to 1, R2 of model (R2 calibration) and R2 validation are close together, indicating a good fit of
model and prediction ability for future samples.

In the score plots of the original (Figure 5A) versus pretreated spectral data (Figure 5B)
after pretreatment, the samples were clearly grouped by concentrations and PC1. The
prediction ability parameters such as the model’s R2 of prediction, RMSEP, and bias were
0.9858, 8.0012, and −0.4014, respectively.
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Figure 5. Score plots of (A) original data and (B) the pretreated data (SNV + 1st derivative) of the
best model for granules. The data grouping by concentrations along with PC1 was clearly seen from
the pretreated data compared the original data.

2.4. Quantitative Determination of CPM Tablets and Granules by PLSR and HPLC Methods

The 42 CPM tablets (4–30 mg/tablet) not used in PLSR modeling were used as external
validation samples. The determination results obtained from the HPLC method (reference
values) were plotted alongside those from the optimum PLSR model. As displayed in
Figure 6A, the results from the two methods had good agreement with the correlation
coefficient (R2 Pearson) of 0.9632. In addition, the HPLC and PLSR methods’ determination
results were compared statistically. The results were not significantly different at a 95%
confidence interval with p-value of 0.99. The residual plots of the tablet model are displayed
in Figure 6B. The residuals of the data set were normally scattered, but they showed a little
heteroscedasticity for higher concentrations.
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Figure 6. (A) The correlation plot between reference and predicted CPM contents of test set samples
for tablets showed the slope close to 1, a good R2 (Pearson), low RMSEP and bias. (B) The residuals
plots of the prediction values compared with reference values showed a little heteroscedasticity for
the high concentrations.

Twenty-one CPM granules of test set samples were determined using the optimal
PLSR model. The prediction plot for 21 granules in Figure 7A shows that the correlation
coefficient (R2 Pearson) of 0.9858 was obtained with RMSEP and bias values of 8.0012 and
−0.4014, respectively. A normal pattern of residual plots was obtained for the granules
model (Figure 7B). The PLSR model and HPLC method’s determination results were also
statistically compared. We found no significant difference between the concentrations of
CPM in granules from the two methods (p-value = 0.98).



Molecules 2022, 27, 3760 9 of 15

Molecules 2022, 27, 3760 10 of 16 
 

 

plots of the prediction values compared with reference values showed a little heteroscedasticity for 

the high concentrations. 

Twenty-one CPM granules of test set samples were determined using the optimal 

PLSR model. The prediction plot for 21 granules in Figure 7A shows that the correlation 

coefficient (R2 Pearson) of 0.9858 was obtained with RMSEP and bias values of 8.0012 and 

−0.4014, respectively. A normal pattern of residual plots was obtained for the granules 

model (Figure 7B). The PLSR model and HPLC method’s determination results were also 

statistically compared. We found no significant difference between the concentrations of 

CPM in granules from the two methods (p-value = 0.98). 

 

Figure 7. (A) The correlation plot between reference and predicted CPM contents of test set samples 

for granules showed the slope close to 1, a good R2 (Pearson), low RMSEP and bias. (B) The residuals 

plots of the prediction values compared with reference values showed the random distribution of 

the residual values with respect to reference values. 

Figure 7. (A) The correlation plot between reference and predicted CPM contents of test set samples
for granules showed the slope close to 1, a good R2 (Pearson), low RMSEP and bias. (B) The residuals
plots of the prediction values compared with reference values showed the random distribution of the
residual values with respect to reference values.

3. Discussion

In this study, the HPLC method reported by Sirigiri et al. [29] was used to quan-
titatively determine the actual concentration of CPM in all tablet and granule samples.
However, the column dimension used in this study differed from that used in Sirigiri
et al.’s study (3.9 × 150 mm, 5 µm versus 4.6 × 250 mm, 5 µm). From the USP general
chapter <621> [30], the particle size and/or the column length can be modified for isocratic
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separations if the ratio of the column length (L) to the particle size (dp) remains constant or
within the range of −25–50% of the prescribed L/dp ratio. The L/dp ratio limit of Sirigiri
et al. [29] was 37,500–75,000. The L/dp in our study was 30,000 and exceeded the allowed
limit of USP. Therefore, the HPLC procedure used in this study was validated for linearity
and range, accuracy, precision, and specificity.

We demonstrated the non-destructive analysis of CPM content in tablets and granules
by ATR-IR and chemometrics (PLSR). ATR mode in FTIR allowed fast, simple, and non-
destructive measurement. However, its weak signals and noise is a drawback, especially
in quantitative analysis. The application of IR absorption in quantitative analysis usually
requires chemometrics for these reasons [14–16].

PLSR is a spectral decomposition technique highly used in multivariate calibration
methods. The advantage of PLSR over other multivariate calibration methods, e.g., prin-
cipal component regression (PCR), is that spectral data and property or assay data are
used together to create a model. Property data are used to find a correlating pattern in
the spectroscopic data while ensuring that the estimated regression factors are relevant
to the chemical values [31,32]. In PLSR, a set of samples, namely a calibration set with
spectral data and the desired property, were used to build the prediction model. Then, the
prediction ability of the constructed model was determined by the desired property for a
set of samples, namely the validation set or test set, that did not contribute to constructing
the model. For this purpose, several calibration and validation samples were set up for the
PLSR modeling of CPM tablets and granules (Table 4).

Table 4. Number of calibration and validation samples for building up PLSR models of tablets
and granules.

Active Content (%)
Tablets Model Granules Model

Calibration Validation Calibration Validation

4 24 6 7 3
8 24 6 7 3

12 24 6 7 3
15 24 6 7 3
20 24 6 7 3
25 24 6 7 3
30 24 6 7 3

Total 168 42 49 21

Various PLSR models were obtained for tablets and granule samples (Tables 2 and 3).
The criteria for selecting a suitable model include high R2 values (R2 model and R2 Pearson)
and low RMSEC, RMSEP, and bias. Several models in Table 2 were found to be acceptable
using these criteria, such as models 5, 8, 9, 10, 11, and 13. Model 13 was selected as the
most suitable model for tablets because it has a high R2 model, R2 Pearson, and almost
the lowest bias. The bias of model 13 is almost three times less than model 11. Bias is an
important parameter indicating the model’s accuracy and prediction ability. Model 13 was
less superior to other models for this reason.

Wavelength selection is an important factor in obtaining the appreciated model.
Normally, most IR absorption bands from a molecule’s functional groups are present at
wavenumbers around 500–1800 cm−1 and 2800–3500 cm−1. The R2 of models constructed
from the selected spectral range of 500–1700 cm−1 or 500–1700 cm−1 + 2500–4000 cm−1

(model 5, 8–13) were superior to those obtained from the overall spectral range (model 1–4,
6–7). The models contributed by the overall spectral range usually contain simultaneously
useful and useless information or noise. Therefore, the R2 values of those models were
less than the models constructed from the selected spectral range. For the granules model,
R2 obtained from some wavelength regions and the overall spectral range was almost the
same. However, the model error in terms of RMSEC, RMSEP, and bias parameters was
potentially reduced in models constructed from SNV and first derivative data pretreatment.
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This finding may be because data pretreatment can reduce spectral noise and enlarge
informative signals.

The residual plots of prediction results obtained from the optimum models were
evaluated. As seen in Figures 6B and 7B, the residual plots of the tablet model showed
little heteroscedasticity for higher concentrations, whereas a normal pattern of residual
plots was obtained for the granules model. These results may be because the final mix
granule powder was ground before the ATR-IR measurement, resulting in reducing the
particle size distribution and increasing the consistency of ATR-IR measurement for the
same CPM concentration level. The final mix of granule powder was compressed without
prior grinding for the tablet. Therefore, the appearance of one surface component of the
mixture in greater amounts than that expected from the mass ratio may occur [33] and
bring about inconsistencies in the ATR-IR measurements.

4. Conclusions

We successfully developed non-destructive analysis methods for CPM tablets and
granules with chemometrics-assisted ATR-IR. The candidate method was superior to the
UV-Visible and fluorescence spectroscopy, in which the sample preparation step was not
required. The samples were directly placed onto the ATR-IR instrument for spectrum
measurement. In addition, high throughput analysis was allowed without producing
the chemical waste. Our results showed that data transformation was required to reduce
spectral noise and improve ATR-IR spectral data. The final model for the tablets was
obtained from data in the wavelength intervals of 500–1700 and 2500–4000 cm−1 with
area normalization and standard normal variate (SNV) data pretreatments. The optimal
model for granules was obtained from SNV and first derivative data transformation of
ATR-IR spectral data in the range of 400–3700 cm−1. For both tablets and granules, the
PLSR models’ determination results statistically agreed with the HPLC method, indicating
that ATR-IR combined with PLSR could be a fast, simple, and non-destructive alternative
method for the quality control of drug substances in both in-process manufacturing and
finished product control. In addition, our findings strongly support ATR-IR coupled with
chemometrics for the assay of low concentration content tablets and in-process granule
samples. For CU testing, our results showed that the candidate method had the potential
for individual analysis of CPM tablets at 4 mg/Tablet. However, to accomplish the CU
analytical concentration range of 70–130%, the ability of the method at 70% concentration
or 2.8 mg/tablet should be further investigated in a future study.

5. Experimental
5.1. Chemicals and Reagents

Chlorpheniramine maleate (CPM) was purchased from S. Tong Chemicals Co., Ltd.
(Nonthaburi, Thailand). Lactose monohydrate, croscarmellose sodium, and magnesium
stearate were obtained from Maxway Co., Ltd. (Bangkok, Thailand). Tapioca starch and
corn starch were supplied from National Starch and Chemical Co., Ltd. (Rayong, Thailand).

5.2. Preparation of Chlorpheniramine Maleate Tablets

As shown in Table 5, chlorpheniramine maleate (CPM) tablets with seven strengths
(4, 8, 10, 15, 20, 25, and 30 mg/tablet) were prepared by the wet granulation method.
CPM, lactose monohydrate, tapioca starch, and one-half of croscarmellose sodium were
dry mixed in a rotomixer for 5 min. Corn starch was dispersed in water and heated to
60–70 ◦C. This starch paste was poured into the dry mix and mixed using a pestle and
mortar until a damp mass was obtained. The damp mass was passed through sieve No. 14.
The obtained granules were dried at 50 ◦C for 4 h and then passed through sieve No. 18.
The granules were finally mixed with the remaining croscarmellose sodium for 5 min and
magnesium stearate for 3 min by a rotomixer. This powder mix was ready to be tableted.
The diameter of each tablet was set at 6 mm, and the average weight per tablet was 132 mg
for all formulations. The prepared tablets were sampled and characterized for hardness,
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friability, disintegration time, and weight variation to ensure they complied with the USP
standard before further analysis.

Table 5. Composition of chlorpheniramine maleate (CPM) tablets.

Composition (mg/Tablet)
Formulation

1 2 3 4 5 6 7

CPM 4.0 8.0 10.0 15.0 20.0 25.0 30.0
Lactose monohydrate 80.0 76.0 74.0 69.0 64.0 59.0 54.0
Tapioca starch 40.0 40.0 40.0 40.0 40.0 40.0 40.0
Croscarmellose sodium 3.7 3.7 3.7 3.7 3.7 3.7 3.7
Corn starch 3.6 3.6 3.6 3.6 3.6 3.6 3.6
Magnesium stearate 0.7 0.7 0.7 0.7 0.7 0.7 0.7

5.3. ATR-IR Measurement

A total of 210 tablets (30 tablets for each strength) were directly measured by an FTIR
spectrophotometer (Nicolet iS5, Thermo Scientific, Waltham, MA, USA) with attenuated
total reflectance (ATR) mode. The detector was deuterated triglycine sulfate (DTGS). For
granules, 70 granule samples (7 strengths and 10 samples from each strength) were directly
placed onto the FTIR instrument.

5.4. HPLC Analysis

After ATR-IR measurement, the tablets were separately assayed with a published HPLC
method described by Sirigiri et al. [29]. The HPLC condition consisted of a Symmetry®

C18 (3.9 × 150 mm, 5 µm) column and a mobile phase mixture of water (pH 2 adjusted
with orthophosphoric acid): acetonitrile (60:40 v/v). The flow rate was 1.0 mL/min, and
the photodiode array detector was 218 nm. To prepare the sample solution, a tablet (or a
portion of granule equivalents to one tablet) was dissolved and adjusted to 25.0 mL with the
diluent. A mixture of water and acetonitrile, 50:50 (% v/v), was used as the diluent in the
HPLC experiment. Then, 1.0 mL was transferred to a 10 mL volumetric flask and adjusted
to the mark with diluent. The solution was filtered with a 0.45 µm syringe filter membrane
before being injected into the HPLC system. The concentration of CPM in the sample was
calculated using the linear equation of the calibration curve plotted between 10–30 µg/mL of
CPM standard. The actual CPM content in the granule samples was acquired from the HPLC
method in the same manner as the tablet’s condition.

5.5. PLSR Modeling

A schematic diagram for the PLSR models is illustrated in Figure 8. The IR spectra
of 210 tablets containing 4–30 mg/tablet were imported into Unscrambler to construct
the PLSR model. A total of 168 samples were selected by the Kennard and Stone algo-
rithm [34] and used as calibration samples. The remaining 42 samples served as validation
samples. Several pretreatment methods, such as the standard normal variate (SNV), area
normalization, first (D1) and second (D2) derivatives, and the two combined pretreatment
methods were applied to the original data. Various PLSR models were developed based on
the original and pretreated data with respect to reference values from the HPLC method.
A suitable model was selected from the optimal parameters, i.e., R2 of calibration model,
R2 of cross-validation, root-mean-square error of calibration (RMSEC), root-mean-square
error of prediction (RMSEP), bias, and the prediction ability of the validation samples. The
RMSEP and bias were calculated from the following equations [35]:

RMSEP =

√
∑n

i=1 (yi − yi,ref)
2

n
(1)
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Bias =
1
n

n

∑
i=1

(yi − yi,ref) (2)

where n is number of validation samples, yi is the determination value from ATR-IR, and
yi,ref is the determination value from the HPLC method.
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The PLSR models for the granules were performed in the same manner as the tablets.
Seventy elements of AIR-IR spectral data were imported into Unscrambler to construct var-
ious PLSR models from original and pretreated data. Forty-nine samples (seven strengths
with seven samples from each strength) were randomly selected as calibration samples.
The remaining 21 samples were used as validation samples. Various PLSR models were
performed from original and pretreated data with respect to reference values from the
HPLC method. A suitable model was selected from the optimal parameters, i.e., R2 of
the calibration model, R2 of cross-validation, root-mean-square error of prediction (RM-
SEP), bias, and the prediction ability of validation samples. The calibration and validation
samples’ composition for CPM tablets and granules are presented in Table 4.

Author Contributions: Conceptualization, supervision, original draft preparation, data curation,
writing—reviewing and editing, C.P.; methodology, software, validation, P.K.; product development,
preparing tablets and granule, reviewing and editing, W.L.; product development, preparing tablets
and granule, M.J. All authors have read and agreed to the published version of the manuscript.

Funding: No external funding was received.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. General Chapter: USP.Uniformity of dosage units <905>. In USP–NF; USP: Rockville, MD, USA, 2022. [CrossRef]
2. Pawar, P.; Talwar, S.; Reddy, D.; Bandi, C.K.; Wu, H.; Sowrirajan, K.; Friedman, R.; Drazer, G.; Drennen, J.K., III; Muzzio, F.J. A

“Large-N” content uniformity process analytical technology (PAT) method for phenytoin sodium tablets. J. Pharm. Sci. 2019,
108, 494–505. [CrossRef] [PubMed]

3. Doctor, J.; Thakkar, P.; Prajapati, M.; Patel, N.; Mehta, P.J. Non-destructive Raman spectroscopic method for estimation of
montelukast from tablet dosage form. Int. J. Pharm. Pharm. Sci. 2017, 9, 161–165. [CrossRef]

4. Kandpal, L.M.; Park, E.; Tewari, J.; Cho, B.K. Spectroscopic techniques for nondestructive quality inspection of pharmaceutical
products: A Review. J. Biosyst. Eng. 2015, 40, 394–408. [CrossRef]

http://doi.org/10.31003/USPNF_M99694_01_01
http://doi.org/10.1016/j.xphs.2018.06.031
http://www.ncbi.nlm.nih.gov/pubmed/30009795
http://doi.org/10.22159/ijpps.2017v9i6.14043
http://doi.org/10.5307/JBE.2015.40.4.394


Molecules 2022, 27, 3760 14 of 15

5. Takeuchi, I.; Shimakura, K.; Ohtake, H.; Takayanagi, J.; Tomoda, K.; Nakajima, T.; Terada, H.; Makino, K. Nondestructive analysis
of structure and components of tablet coated with film by the usage of Terahertz time-domain reflection spectroscopy. J. Pharm.
Sci. 2014, 103, 256–261. [CrossRef] [PubMed]

6. Woo, Y.A. Content uniformity in granules for aceclonac controlled release (CR) tablets determined using near-infrared spec-
troscopy and wide area illumination (WAI) Raman spectroscopy. Arch. Pharm. Res. 2012, 35, 351–358. [CrossRef]

7. Moros, J.; Galipienso, N.; Vilches, R.; Garrigues, S.; de la Guardia, M. Nondestructive direct determination of heroin in Seized
lllicit street drugs by diffuse reflectance near-infrared spectroscopy. Anal. Chem. 2008, 80, 7257–7265. [CrossRef]

8. Wikstrom, H.; RoMero-Torres, S.; Wongweragiat, S.; Williams, J.A.S.; Grant, E.R.; Taylor, L.S. On-line content uniformity
determination of tablets using low-resolution Raman scpectroscopy. Appl. Spectrosc. 2006, 60, 672–681. [CrossRef]

9. International Conference on Harmonisation, ICH Q2(R1) Revision: Guideline on Validation of Analytical Procedures. Retrieved
11 March 2022. Available online: https://database.ich.org/sites/default/files/Q2R2Q14_EWG_Concept_Paper.pdf (accessed on
31 March 2022).

10. Palou, A.; Cruz, J.; Blanco, M.; Tomas, J.; de los Rios, J.; Alcala, M. Determination of drug, excipients and coating distribution in
pharmaceutical tablets using NIR-CI. J. Pharm. Anal. 2012, 2, 90–97. [CrossRef]

11. Bansal, A.; Chhabra, V.; Rawal, R.K.; Sharma, S. Chemometrics: A new scenario in herbal drug standardization. J. Pharm. Anal.
2014, 4, 223–233. [CrossRef]

12. Eid, S.M.; Soliman, S.S.; Elghobashy, M.R.; Abdalla, O.M. ATR-FTIR coupled with chemometrics for quantification of vildagliptin
and metformin in pharmaceutical combinations having diverged concentration ranges. Vib. Spectrosc. 2020, 106, 102995.
[CrossRef]

13. Lawson, G.; Ogwu, J.; Tanna, S. Quantitative screening of the pharmaceutical ingredient for the rapid identification of substandard
and falsified medicines using reflectance infrared spectroscopy. PLoS ONE 2018, 13, e0202059. [CrossRef] [PubMed]

14. Hassib, S.T.; Hassan, G.S.; El-Zaher, A.A.; Fouad, M.A.; Taha, E.A. Quantitative analysis of anti-inflammatory drugs using
FTIR-ATR spectrometry. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 186, 59–65. [CrossRef]

15. Sruthi, K.; Prasanth, S.; Kamarunnisa, K.; Drisya, N.; Ashyam, K. FTIR-spectrophotometric analysis of levosulpiride and its
pharmaceutical formulations. Int. J. Pharm. Chem. Anal. 2018, 5, 151–155.

16. Riyanto, R.; Nas, S.W. Validation of analytical methods for determination of methamphetamine using Fourier transform infrared
(FTIR) spectroscopy. IOSR J. Pharm. Biol. Sci. 2016, 11, 51–59. [CrossRef]

17. Acheampong, A.; Gyasi, W.O.; Darko, G.; Apau, J.; Addai-Arhin, S. Validated RP-HPLC method for simultaneous determination
and quantification of chlorpheniramine maleate, paracetamol and caffeine in tablet formulation. Springerplus 2016, 5, 625.
[CrossRef] [PubMed]

18. Sanchaniya, P.M.; Mehta, F.A.; Uchadadiya, N.B. Development and validation of an RP-HPLC method for estimation of
chlorpheniramine maleate, ibuprofen, and phenylephrine hydrochloride in combined pharmaceutical dosage form. Chromatogr.
Res. Int. 2013, 2013, 424865. [CrossRef]

19. Moyano, M.A.; Rosasco, M.A.; Pizzorno, M.T.; Segall, A.I. Simultaneous determination of chlorpheniramine maleate and
dexamethasone in a tablet dosage form by liquid chromatography. J. AOAC Int. 2005, 88, 1677–1683. [CrossRef]

20. Pojanagaroon, T.; Liawruangrath, S.; Liawruangrath, S. A Direct current polarographic method for the determination of
chlorpheniramine maleate in pharmaceutical preparations. Chiang Mai J. Sci. 2007, 34, 135–142.

21. Xu, M.; Zhou, L.; Zhang, Q.; Wu, Z.; Shi, X.; Qiao, Y. Near-infrared chemical imaging for quantitative analysis of chlorpheniramine
maleate and distribution homogeneity assessment in pharmaceutical formulations. J. Innov. Opt. Health Sci. 2016, 9, 1650002.
[CrossRef]

22. Mahmoud, A.R.; Al-Healy, F.M. UV-Spectral studies on chlorpheniramine maleate in pure form and pharmaceutical preparations.
Egypt. J. Chem. 2021, 64, 4151–4156.

23. Bratty, M.A. Visible Spectrophotometric determination of chlorpheniramine maleate and diphenhydramine hydrochloride in raw
and dosage form using potassium permanganate. Orient. J. Chem. 2016, 32, 885–894. [CrossRef]

24. Monograph: USP. Chlorpheniramine Maleate Tablets. In USP–NF; USP: Rockville, MD, USA, 2022. [CrossRef]
25. Joshi, R.; Sathasivam, R.; Park, S.U.; Lee, H.; Kim, M.S.; Baek, I.; Cho, B.K. Application of fourier transform infrared spectroscopy

and multivariate analysis methods for the non-destructive evaluation of phenolics compounds in moringa powder. Agriculture
2022, 12, 10. [CrossRef]

26. Rohman, A.; Setyaningrum, D.L.; Riyanto, S. FTIR spectroscopy combined with partial least square for analysis of red fruit oil in
ternary mixture system. Int. J. Spectrosc. 2014, 2014, 785914. [CrossRef]

27. Mishra, P.; Nordon, A.; Roger, J.M. Improved prediction of tablet properties with near-infrared spectroscopy by a fusion of scatter
correction techniques. J. Pharm. Biomed. Anal. 2021, 192, 113684. [CrossRef]

28. Kim, G.; Hong, S.J.; Lee, A.Y.; Lee, Y.E.; Im, S. Moisture content measurement of broadleaf litters using near-infrared spectroscopy
technique. Remote Sens. 2017, 9, 1212. [CrossRef]

29. Sirigiri, B.; Chengalva, P.; Parameswari, S.A.; Aruna, G. A novel HPLC method for the simultaneous determination of chlorpheni-
ramine maleate and dextromethorphan in bulk and pharmaceutical formulation. Int. J. Pharm. Sci. Res. 2018, 9, 1147–1151.

30. General Chapter: USP. Chromatography <621>. In USP–NF; USP: Rockville, MD, USA, 2022. [CrossRef]
31. Rao, T.P.; Biju, V.M. Spectrophotometry|Organic Compounds. In Encyclopedia of Analytical Science, 2nd ed.; Worsfold, P.,

Townshend, A., Poole, C., Eds.; Elsevier: New York, NY, USA, 2005; pp. 358–366.

http://doi.org/10.1002/jps.23797
http://www.ncbi.nlm.nih.gov/pubmed/24282048
http://doi.org/10.1007/s12272-012-0216-6
http://doi.org/10.1021/ac800781c
http://doi.org/10.1366/000370206777670684
https://database.ich.org/sites/default/files/Q2R2Q14_EWG_Concept_Paper.pdf
http://doi.org/10.1016/j.jpha.2011.11.003
http://doi.org/10.1016/j.jpha.2013.12.001
http://doi.org/10.1016/j.vibspec.2019.102995
http://doi.org/10.1371/journal.pone.0202059
http://www.ncbi.nlm.nih.gov/pubmed/30096202
http://doi.org/10.1016/j.saa.2017.06.002
http://doi.org/10.9790/3008-1105035159
http://doi.org/10.1186/s40064-016-2241-2
http://www.ncbi.nlm.nih.gov/pubmed/27330891
http://doi.org/10.1155/2013/424865
http://doi.org/10.1093/jaoac/88.6.1677
http://doi.org/10.1142/S1793545816500024
http://doi.org/10.13005/ojc/320214
http://doi.org/10.31003/USPNF_M16490_01_01
http://doi.org/10.3390/agriculture12010010
http://doi.org/10.1155/2014/785914
http://doi.org/10.1016/j.jpba.2020.113684
http://doi.org/10.3390/rs9121212
http://doi.org/10.31003/USPNF_M99380_01_01


Molecules 2022, 27, 3760 15 of 15

32. Khajehsharifi, H.; Pourbasheer, E.; Tavallali, H.; Sarvi, S.; Sadeghi, M. The comparison of partial least squares and principal
component regression in simultaneous spectrophotometric determination of ascorbic acid, dopamine and uric acid in real samples.
Arab. J. Chem. 2017, 10, S3451–S3458. [CrossRef]

33. Planinsek, O.; Planinsek, D.; Zega, A.; Breznik, M.; Srcic, S. Surface analysis of powder binary mixtures with ATR FTIR
spectroscopy. Int. J. Pharm. 2006, 319, 13–19. [CrossRef]

34. Kennard, R.W.; Stone, L.A. Computer-aided design of experiments. Technometrics 1969, 11, 137–148. [CrossRef]
35. Khajehsharifi, H.; Eskandari, Z.; Sareban, N. Using partial least squares and principal component regression in simultaneous

spectrophotometric analysis of pyrimidine base. Arab. J. Chem. 2017, 10, S141–S147. [CrossRef]

http://doi.org/10.1016/j.arabjc.2014.02.006
http://doi.org/10.1016/j.ijpharm.2006.03.048
http://doi.org/10.1080/00401706.1969.10490666
http://doi.org/10.1016/j.arabjc.2012.07.015

	Introduction 
	Results 
	ATR-IR Measurement 
	HPLC Method and Method Validation 
	PLSR Modelling 
	Quantitative Determination of CPM Tablets and Granules by PLSR and HPLC Methods 

	Discussion 
	Conclusions 
	Experimental 
	Chemicals and Reagents 
	Preparation of Chlorpheniramine Maleate Tablets 
	ATR-IR Measurement 
	HPLC Analysis 
	PLSR Modeling 

	References

